~

National
Collegef
[reland

Configuration Manual

MSc Research Project
MSc. in Data Analytics

Sudharsan Ramesh
Student ID: 21234639

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

National College of Ireland

Project Submission Sheet
School of Computing

National
College o
[reland

Student Name:

Sudharsan Ramesh

Student ID: 21234639
Programme: MSc. in Data Analytics
Year: 2023

Module: MSc Research Project
Supervisor: Arjun Chikkankod
Submission Due Date: 18/09/2023

Project Title: Configuration Manual
Word Count: 836

Page Count: 12

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Sudharsan Ramesh
Date: 18t September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). a
Attach a Moodle submission receipt of the online project submission, to |
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your |
own reference and in case a projectis lost or mislaid. It is not sufficient to keepa copy

on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1 Introduction

This is the configuration manual of the project “Improvements in Aerial Object Detection:
Comparing YOLOv7 with YOLOv5 for Fine Drone and Bird Detection in Volatile
Environments”. This setup documentation contains all of the relevant data, including the
equipment | utilized, software and hardware specifications, crucial code screenshots, and
reproducibility requirements. The specifications are detailed in Section 2, which includes the

Configuration Manual
Sudharsan Ramesh

21234639

Software Standard and Hardware Specifications.

2 Specifications
The following chapters go through the software and hardware requirements for this proposed

study.

2.1 Software Configurations

As we can see in Table 1, the summary of the software configurations that have been
employed during this investigation. Figure 2 demonstrates the hardware and operating

system performance.

Table 1: Software

Software

Configuration

Operational System

Windows 10 Home Single Language

Online IDE Google Colab notebooks
Coding Language Python
Coding Language Version Python 3.7

Additional Tools Used

Labellmg, Google Colab

2.2 Hardware Configurations

Table 2 illustrates the hardware configurations used in this investigation.

Table 2: Hardware

Hardware

Configuration

System

Intel(R) Core(TM) 4210U

Operation System

Windows 10 Home Single Language

RAM 6.00 GB
Storage 1TB
Libraries cv2, os, torch, tensorflow, yaml, utils

Graphic Card

Intel (R) HD Graphics Family

[tem

05 Mame

Version

Other O35 Description
05 Manufacturer
System Mame
System Manufacturer
System Model
System Type

System 5kU
Processor

BIOS Version/Date
SMEIOS Version
Embedded Controller Version
BIOS Mode
BaseBoard Manufacturer
BaseBoard Product
BaseBoard Version
Platform Raole

Secure Boot State
PCR7 Configuration
Windows Directary
System Directory
Boot Device

Locale

Figure 1:

Value

Microsoft Windows 10 Pro

10.0.19045 Build 19045

Mot Available

Microsoft Corporation

DESKTOP-BFKOUSE

LEMOVD

20AMSTXBOD

x6d-based PC
LEMOWO_MT_204AM_BU_Think_FM_ThinkPad *240

Intel(R) Core(Th) i5-4300U CPU @ 1.80GHz, 2484 Mhz, 2 Core(s), 4 Logical Pr...

LENOVO GIETO98WW (2.48), 08-08-2019
2.7

1.18

LEFI

LEMOWO

20AMSTXEOD

0B98407 WIN

Mobile

Off

Elevation Required to View
ChWindows
Ch\Windows\system32
yDevice\Harddiskvolumel
United Kingdom

Device and Windows Specifications

3 Integrated Development Environment

To conduct the research and run the code, Google Colab's was utilized, and Figure 2 below
shows how it appears once | start it.

rch.google.com

Welcome To Colaborator
¢ y > Share L2 e
File Edit View Insert Runtime Tools Help

+ Code + Text & Copy to Drive Connect = | A
Table of contents O Xx Py

Q Getting started
Welcome to Colab!
Data science
{x}
Machine learning If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the

(] command palette.
More Resources

Featured examples

Section

What is Colab?

Calab, or "Colaboratory”, allows you to write and execute Python in your browser, with

<> + Zero configuration reguired
= Access to GPUs free of charge
= Easy sharing

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Infroduction to Colab to learn

Figure 2: Google Colab launched

4 Labellmg

4.1 Download Labellmg

C & sourceforge.net/pro

SOURCEFORGE

Open Source Software Business Software s ur GitHub

reeForg

/Labelimg

Hj‘ Labellmg

Graphical image annotation tool and label object bounding boxes

This is an exact mirror of the Labellmg project, hosted at https:/github.com/tzutalin/labelimg. SourceForge is not affiliated with Labellmg. For more information, see the SourceForge Open
Source Mirror Directory.

wnloads:

Get Updates Share This

Figure 3: Downloading Software

4.2 Open Labellmg

L

- o x
File Edit View Help

Box Labels
[Edit Label
[difficult

Clusedefauitlabel ||

TVEW

Qpen

2

?

Change Save Di

\ 4

Next Image

+*

Prev Image

Verify Image

FileList 8
<>

PascalvoC

LY
Lonly
Create
RectBox

B

Duplicate
RectBox
Y
P
Delete
RectBox

Figure 4: Labellmg Application

4.3 Select Directory to open and save images

& - O X
~ ¢ ” Box Labels
labellmg - Open Director
V R i [Edit Label
= « v 4 > ThisPC > NewVolume (Ds) » v 0 O Search New Volume (D:) [difficit
v Organise v New folder (] Ousedefuttibel [|
QOpen Dir ~
[This PC A Name Date modified Type
V “J 3D Objects Job Search_2023 File folder
Change Save Dir I Desktop project File folder
* ﬁ Documents Semester 1 File folder
‘ Download Semester 2 File folder
Next Image owmoacs Semester 3 File folder
« b Music Shiva File folder
&= Pictures yolovs File folder
Preyv I
rev Image B videos
] i Local Disk (C)
Verify Image - MNew Volume (D
- = New Volume (E)
L = New Volume () v < >
Save
Folder: | New Volume (D) File List g
<>
Select Folder Cancel
PascalvoC
=18
Create
RectBox
Duplicate
RectBox
v
-
Delete
RectBox

Figure 5: Labellmg Directory Selection

4.4 Draw and Save Annotations

When we select and save, the photograph is stored to the place we have specified previously.
Afterwards we just click on the next photograph and repeat the process for each picture.

. Box Labels
[Edit Label
[difficult

[use default label |

[Drone

L
& labellmg ? X

Drone | El

Drone

X 1079, V:392

Figure 6: Image labeling

5 YOLOvV7 Training Phase

5.1 Installing the YOLOvV7 Environment

To get started with YOLOv7, we'll download the repository and apply the requirements.
This will prepare our development platform so that object identification training and
interpretation instructions can be executed.

° # Downloading YOLOv7 repository and installing r“equirementsl
lgit clone https://github.com/WongKinYiu/yolov7
#cd yolovw?
!'pip install -gr requirements.txt

[» Cloning into "yolov?' ...
remote: Enumerating objects: 1191, done.
remote: Counting objects: 188% (6/6), done.
remote: Compressing objects: 18@% (4/4), done.
remote: Total 1191 (delta 2), reused 6 (delta 2), pack-reused 1185
Receiving objects: 1@e% (1191/1191), 74.23 MiB | 17.35 MiB/s, done.
Resolving deltas: 1@8% (511/511), done.
Jcontent/yolov?/yolov?

Figure 7: Clone form Repository

7

After that, we can look at our Google Colab setup and begin installing requirements. We will be
able to reduce training time by using the GPU, Torch is preconfigured on Colab, and it is a
beneficial characteristic. As we do not attempt to run this code locally, there are no
additional setups to be followed for YOLOvV7.

5.2 Download Correctly Formatted Custom Dataset

Loading into this notebook our data

'unzip fcontent/Drone.zip -d fcontent/yolov?/

C» Archive:

Jcontent/Drone.zip

creating: /fcontent/yolov?/train/images/
inflating: /content/yolov?/train/images/@@2@.jpg
inflating: /content/yolov7/train/images/8881. jpg
inflating: /content/yolov7/train/images/8882. jpg
inflating: /content/yolov?/train/images/0623. jpg
inflating: /content/yolov?/train/images/8884.jpg
inflating: /content/yolov?/train/images/@825.jpg
inflating: /content/yolov7/train/images/80886. jpg
inflating: /content/yolov7/train/images/@80887. jpg
inflating: /content/yolov7/train/images/8883. jpg
inflating: /content/yolov?/train/images/0829. jpg
inflating: /content/yolov?/train/images/8898. jpg
inflating: /content/yolov?/train/images/@891.jpg
inflating: /content/yolov7/train/images/86892. jpg
inflating: /content/yolov7/train/images/8893. jpg
inflating: /content/yolov7/train/images/88%4. jpg
inflating: /content/yolov?/train/images/@895.jpg
inflating: /content/yolov?/train/images/8896. jpg
inflating: /content/yolov?/train/images/@897.jpg
inflating: /content/yolov7/train/images/8101. jpg
inflating: /fcontent/yolov7/train/images/1.png
inflating: /content/yolov7y/train/images/188.png
inflating: /content/yolov?/train/images/181.png

Figure 8: Import Dataset

5.3 Model Architecture

We can use the pre-created yaml file because it specifies our model's characteristics, such as the

number of classes, anchors, and layers.

data.yaml

[drone,

bird]

Figure 9: Yaml data

o # define number of classes based on YAML
import yamﬂ
with open(™/content/data.yaml”, 'r') as stream:
num_classes = str(yaml.safe_load(stream)['nc’'])

[1 num classes
L

Figure 10: Importing Yaml file

5.4 Train the Model

Based on the information we have Yolov7 is now ready to train with our yaml files on hand.
To start training, execute the training instruction with the following parameters:

Table 3: Train model

Image 416 x 416

Size of the batch 16

Epoch 300

Data location /content/data.yaml
Weights yolov7.pt

Name Yolov7_result

And run the training command:

° #customize iPython writefile so we can write variables
from IPython.core.magic import register line cell magic

@register line cell magic
def writetemplate(line, cell):

with open(line, "w"') as f:
f.write{cell.format(**globals()))

° # train yolov7 on custom data for 380 epochs

]

time its performance

Fktime

%cd /content/yolov7/
!python train.py --img 416 --batch 16 --epochs 386 --data '/content/data.yaml' --weights 'yolov7.pt' --name yolov7_results --cache

/content/yolov7
2823-88-12 23:15:48.836487: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use availabl
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-88-12 23:15:49.8088573: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

YOLOR S? v8.1-126-g84932d7 torch 2.8.1+culld CUDA:@ (Tesla T4, 15181.8125MB)

Namespace(weights="yolov7.pt', cfg="", data='"/content/data.yaml', hyp="data/hyp.scratch.p5.yaml’, epochs=308, batch_size=16, img_siz
tensorboard: Start with "tensorboard --logdir runs/train', view at http://localhost:6886/
hyperparameters: 1r8=8.e1, 1rf=8.1, momentum=8.937, weight_decay=6.0085, warmup_epochs=3.8, warmup_momentum=8.8, warmup_bias_lr=8.1,
wandb: Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)
Overriding model.yaml nc=8@ with nc=2

LR I e I N L S I I oy . =]

[
L]

from
-1
-1
-1
-1
-1
-2
-1
-1
-1
-1

[-1, -3, -5, -6]

n
1
1
1
1
1
1
1
1
1
1
1

params module

928 models.common.Conv
18568 models.common.Conv
36992 models.common.Conv
73984 models.common.Conv

8328 models.common.Conv

83280 models.common.Conv
36992 models. common.Conv
36992 models.common.Conv
36992 models.common.Conv
36992 models.common.Conv

8 models.common.Concat

train yolov7 on custom data for 3@ epachs

time its performance

fktime

%cd /content/yolov?/
!python train.py --img 416 --batch 16 --epochs 388 --data '/content/data.yaml’ --weights 'yolov7.pt' --name yolov?_results --cache

Epoch
8/209

Epoch
1/299

Epoch
2/299

Epoch
3/299

Epoch
4/299

gpu_mem
1.316G
Class
all

gpu_mem
5.66G
Clazs
all

gpu_mem
6.6G
Clazs
all

gpu_mem
6.6G
Class
all

gpu_mem
6.6G
Class

box obj cls total

6.68471 ©.003546 0.81797 8.1112
Images Labels P
125 139 8.8585

box obj cls total

6.67564 ©.803919 ©.01452 @.899%@7
Images Labels P
125 138 8.839

box obj cls total

9.8691 6.809287 0.81157 0.88996
Images Labels P
125 138 8.129

box obj cls total

6.86187 ©.81081 0©.888934 ©.83807
Images Labels P
125 139 8.233

box obj cls total

B.85867 ©.983097 0.887384 0.87548
Images Labels P

labe

R
8.113

labe

R
8.183

labe

R
6.343

labe

R
8.297

labe

R

s
48

s
38

s
19

1s
48

s
27

arguments

[3, 32, 3, 1]
[32, 64, 3, 2]
[64, 64, 3, 1]
[64, 128, 3, 2]
[128, 64, 1, 1]
[128, 64, 1, 1]
[64, 64, 3, 1]
[64, 64, 3,
[64, 64, 3,
[64, 64, 3,
(1

1
1
1
1

img size
416: 1% 25/25 [@9:30¢0@:80, 1.23s/it]
mAP@.S mAP@.5:.05: 188% 4/4 [8:86¢00:00, 1.73s/it]
8.8249 8.08364

img size
416: 1@a% 25/25 [@09:11<0@:88, 2.24it/s]
mAP@.5 mAP@.5:.95: 1@@% 4/4 [08:81<@0:80, 3.85it/s]
8.09384 8.08626

img size
416: 10@% 25/25 [@@:11<8@:080, 2.80it/s]
mAP@.5 mAP@.5:.95: 1@8% 4/4 [08:81<@0:80, 3.64it/s]
8.12 8.8338

img size
416: 10@% 25/25 [0@:12<8@:080, 2.85it/s]
mMAPG.5 mAP@.5:.05: 100% 4/4 [09:01¢PG:00, 3.06it/s]
8.256 8.8846

img_size
416: 10@% 25/25 [e@:12¢80:88, 2.88it/s]
mAP@.5 mAP@.5:.95: 108% 4/4 [0@:00<00:00, 4.96it/s]

Figure 11: Training the YOLOv7

10

5.5

Evaluate Custom YOLOvV7 Detector Performance

O = I - Y

from PIL import Image|
from IPython.display import display

Open the image file using Image.open()

image = Image.open('/content/yolovy/runs/train/yolov7_results/results.png’)
Display the image
display(image)
Box Objectness Classification Precision Recall
0.08 0.010 —— results Lo
0.015 0.8 0.8
0.06 0.008
' 0.010 0.6 0.6
0.006
0.04 0.4 0.4
0.005
0.004 0.2 02
0.02
0.000 0.0
0 200 0 200 0 200 0 200 0 200
val Box val Objectness val Classification mAP@0.5 mAP@0.5:0.95
0.020 1.0
0.010
0.5
0.10 an1s 0.8
' 0.4
0.009
0.6
o 0.010 -
0.008 .‘ivi ' 0.4 0.2
M Ae 1 ﬂ '
Figure 12: Result Visualization
5.6 Run Inference with Trained Weights
° # trained weights are saved by default in our weights folder
%l=s runs/
train/
[1 %ls runs/train/yolov7_results/weights
best_278.pt epoch_@49.pt epoch_149.pt espoch_249.pt epoch_297.pt last.pt
best.pt epoch_874.pt epoch_174.pt epoch_274.pt epoch_298.pt
epoch_©@8.pt epoch 839.pt epoch_199.pt epoch_295.pt epoch_299.pt
epoch_®24.pt epoch 124.pt epoch_224.pt epoch_296.pt init.pt
[1 # when we ran this, we saw .®87 second inference time. That is 14@ FP5 on a TESLA Plée!

use the best weights!
%cd fcontent/yolow7/
!python detect.py --weights /content/yolov7/runs/train/yolov?_results/weights/best.pt --img 416 --conf @.1

/content/yolov?
Namespace (weights=["/content/yolov?/runs/train/yolov?_results/weights/best.pt"], source='/content/yolov?/ v
YOLOR 5? v@.1-126-g84932d7 torch 2.0.1+cull8 CUDA:@ (Tesla T4, 151@1.8125MB)

Fusing layers...

RepConv.fuse_repvgg_block

RepConv.fuse_repvgg block

RepConv.fuse_repvgg block

Jusr/local/lib/python3.18/dist-packages/torch/functional.py:584: UserWarning: torch.meshgrid: in an upcomi
return _VF.meshgrid(tensors, *Fkwargs) # type: ignore[attr-defined]

Model Summary: 386 layers, 36485311 parameters, 6194944 gradients, 183.2 GFLOPS

Convert model to Traced-model...

traced_script_module saved!

model is traced!

Figure 13: Detecting the class after YOLOv7

11

5.7 Export Trained Weights for Future Inference

o from google.colab import driwve
drive.mount(" /content/drive")

Mounted at fcontent/driwve

5.8 Detecting Drone and Bird Images
o import os

import random
import matplotlib.pyplet as plt
from PIL import Image

Path to the directory containing the images
image_dir = '/content/yolov?/runs/detect/exp’

Get a list of image file names in the director‘y{
image_files = [f for f in os.listdir(image dir) if f.lower().endswith({('.jpg', ".jpeg', '.png', ".gif', '".bmp"})]

Randomly select 28 images
random_images = random.sample(image files, 28)

Create a 4x5 grid for the collage
num_rows = 4
num_cols = 5

Set up the figure
fig, axes = plt.subplots{num_rows, num_cols, figsize=(15, 12))
plt.subplots_adjust(wspace=8.2, hspace=0.4)

Loop through the axes and display images
for i, ax in enumerate(axes.flat):
img path = os.path.join(image_dir, random_images[i])
img = Image.open(img_path)
ax. imshow(img)
ax.axis('off")
ax.set_title(random_images[i])

plt.show(}

Figure 14: Show the detected Image

5.9 Final Output

N

drone 0.96

12

13

