“—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

KARTHIK RAMACHANDRAN
Student ID: x21234884

School of Computing
National College of Ireland

Supervisor: Taimur Hafeez

~

College
Ireland

National College of Ireland

Project Submission Sheet
School of Computing

National
College
Ireland

Student Name:

KARTHIK RAMACHANDRAN

Student ID: x21234884
Programme: Data Analytics

Year: 2023

Module: MSc Research Project
Supervisor: Taimur Hafeez
Submission Due Date: 14/08/2023

Project Title: Configuration Manual
Word Count: 590

Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: KARTHIK RAMACHANDRAN
Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

a copy on computer.

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for | O

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

KARTHIK RAMACHANDRAN
x21234884

1 Introduction

This paper give an idea about the implementation of the proposed system |1 (n.d.). The
code execution and their corresponding output is shared in this configuration manual.
The system configuration is also shared in this paper.

2 System Configuration of the proposed system

Google colab platform is used to execute the proposed system. The detailed configuration
list is shown in Figure

Platform Google colab pro +
GPU driver Nvidia V100

RAM 52 GB

Storage Google Cloud Platform

Figure 1: Configuration

3 Importing packages

The main packages that used for the proposed study were tensorflow and python. The
study was built using tensorflow 12.0 framework. The list of packages imported were
displayed in Figure

4 Data loading

The data is loaded from google cloud platform which is mounted to google colab. Figure

5 Exploratory data analysis

Exploratory data analysis were performed on amazon review dataset. The distribution
of target variable is ploted in Figure

[2] import tensorflow as tf
import pandas as pd
import numpy as np
from keras.layers import IntegerLookup
from matplotlib import pyplot as plt
import seaborn as sns
from keras import backend as K
import math
from keras.models import Model
import scann

Figure 2: Libraries

from google.colab import auth
auth.authenticate_user()

lecho "deb http://packages.cloud.google.com/apt gcsfuse-bionic main" > /etc/apt/sources.list.d/gecsfuse.list
lcurl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
lapt -gq update

lapt -gq install gcsfuse

Imkdir myfolder
lgesfuse --implicit-dirs datarepol23 myfolder

Ils
print("TensorfFlow version:", tf._ version__)

import pandas as pd
import io
pd.set_option('display.max_colwidth', -1)

df = pd.read_csv('myfolder/amazon_reviews.txt', sep=" ")

Figure 3: Data loading

fig, axes = plt.subplots(ncols=2, figsize=(17, 4), dpi=160)
plt.tight_layout()

df.groupby('RATING').count()['DOC_ID'].plot(kind='pie', ax=axes[@],
labels=['Rating 1(8%)', 'Rating 2 (6%)',
'Rating 3 (9%)','Rating 4 (19%)', 'Rating 5 (58%)'])
sns.countplot(x=df['RATING'], hue=df['RATING'], ax=axes[1])

axes[@].set_ylabel('')

axes[1].set_ylabel('')

axes[1].set_xticklabels(['Rating 1', 'Rating 2','Rating 3','Rating 4', 'Rating 5'])
axes[@].tick_params(axis='x"', labelsize=15)

axes[@].tick_params(axis='y', labelsize=15)

axes[1].tick_params(axis='x"', labelsize=15)

axes[1].tick_params(axis='y', labelsize=15)

axes[@].set_title('Target Distribution', fontsize=13)
axes[1].set_title('Target Count', fontsize=13)

plt.show()

Figure 4: Data exploration

plt.show()

Target Distribution Target Count
Rating 4 (19%) Rating 3 (9%) 12000 Rﬂ”?
- 2
Rating 2 (6%) 10000 1 e 3
- 4
Rating 1(8%) 8000 { ™= 5
6000
4000
2000
Rating 5 (58%)
o N
Rating 1 Rating 2 Rating 3 Rating 4 Rating 5
RATING

Figure 5: Plot

The length of reviews were analyzed. Data exploration illustrate count of reviews
exceeding length 1500 in Figure [0]

‘0/5 [12] review=df_1['REVIEW_TEXT'].values
result = [len(sentence.split()) for sentence in review]

é [13] j2 = [i for i in result if i >= 15@0]
32

[1632, 1614, 2805]

Figure 6: Data exploration

6 Data cleaning

The data was cleaned after removal of punctuation’s and HTML tags in Figure [7]

v [18] df_1=df[['RATING','REVIEW_TEXT']]

‘0/5 [11] df_1['REVIEW_TEXT'] = df 1['REVIEW_TEXT'].str.replace(r'<[*<>]*>', '', regex=True)

<ipython-input-11-df37f71cb972>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#ret
df_1['REVIEW_TEXT'] = df_1['REVIEW_TEXT'].str.replace(r'<[~<>]*>", '', regex=True)

Figure 7: Data cleaning

7 Label encoder and text vectorization

The model parameters were assigned with corresponding value. The dataframe was con-
verted into dataset and split into training and test dataset. The training dataset were
used for encoding target variable in Figure

3

¥ [16] ds=tf.data.Dataset.from_tensor_slices((dict(df_1[['REVIEW_TEXT']]),dict(df_1[['RATING']])))

@

; [17] 1lim=df.shape[e]
lim_bound=(1im/32)*@.8
print(1lim_bound)
525.@
; [18] train_ds=ds.batch(32).take(525)
test_ds=ds.batch(32).skip(525)
é [19] len(test_ds)
132
; [28] score_onehot=IntegerLookup(output_mode="one_hot")

score_ds=train_ds.map(lambda x,y: y['RATING'])
score_onehot.adapt(score_ds)

TARGET=1len(score_onehot.get_vocabulary())
print(TARGET)

Figure 8: Label encoding

The dataframe was converted into dataset using preprocessing function which also
create dataset in batches and shuffled it and shown in in Figure [9)

é [21] def preprocess_dataset(series,batch_size,shuffle_buffer_size):
dataset=tf.data.Dataset.from_tensor_slices((dict(df_1[['REVIEW_TEXT']]),dict(df_1[['RATING']])))
dataset=dataset.shuffle(shuffle_buffer_size,seed=1234)
dataset=dataset.map(lambda x,y:(

{"inputs":x['REVIEW_TEXT']},
{"rating":score_onehot(y['RATING'])}
))
dataset=dataset.batch(batch_size)
return dataset

v

he [22] train_ds=preprocess_dataset(train,batch_size=32,shuffle_buffer_size=512)

test_ds=preprocess_dataset(test,batch_size=32,shuffle_buffer_size=512)

Figure 9: Dataset transformation

Now, text vectorization function was built for transformation of comments into its
tokens as shown in Figure
8 Model creation and metrics

Model template was created and is shown in Figure
Training of model was achieved using fit method and displayed in Figure
Accuracy and loss were ploted and displayed in Figure [13| and Figure [14] respectively.

9 Transforming reviews into vectors

Embedding layer was extracted from the model, and this layer was used to convert reviews
into embedding vectors in Figure

R T

text_layer=tf.keras.layers.TextVectorization(max_tokens=VOCABULARY,output_sequence_length=MAXLEN, standardize='lower_and_strip_punctuation',
Isplit:'whitespace ' ,output_mode="int"')

train_text=train_ds.map(lambda x, y:x['inputs'])

text_layer.adapt(train_text)

Figure 10: Text vectorization

L i B 20 -~
° def create_model():
raw_str=tf.keras.Input(shape=(1,),dtype=tf.string,name="inputs’')
vectorize_layer=text_layer(raw_str)
concat_feature=tf.keras.layers.Embedding(VOCABULARY,EMBEDDING_OUT,mask_zero=True,
name='sending_embedding_layer')(vectorize_layer)

concat_1_layer=tf.keras.layers.LSTM(units=180,activation="tanh’',return_sequences=True)(concat_feature)
concat_2_layer=tf.keras.layers.LSTM(units=280,activation="tanh')(concat_1_layer)
op=tf.keras.layers.Dense(TARGET,activation="'softmax',name="rating')(concat_2_layer)
model=tf.keras.Model(inputs=[raw_str],outputs=[op])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=6.001,clipvalue=6.5),

loss={'rating':tf.keras.losses.categorical_crossentropy},metrics="accuracy')
return model

Figure 11: LSTM model using embedding layer

A O ERE W
‘ ° model=create_model()
history=model.fit(train_ds,epochs=5,validation_data=test_ds)

E h 1/5
6?;;657/[] - 149s 21lms/step - loss: ©.8742 - accuracy: 0.6789 - val_loss: 0.9887
22352;/?] - 9@s 137ms/step - loss: B8.7132 - accuracy: ©.7177 - val_loss: ©.7893
::;;25??] - 76s 116ms/step - loss: 8.5959 - accuracy: ©.7643 - val_loss: ©.7350
Epoch 4/5
6;7/657/[] - 73s 1llms/step - loss: 8.5863 - accuracy: ©.8820 - val_loss: ©.6783
E h 5/5
6;;;657/[] - 64s 97ms/step - loss: ©.5111 - accuracy: ©.8066 - val_loss: 0.6560 -

»

Figure 12: Model Fit

[1] plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Accuracy of the model')
plt.ylabel('accuracy"')
plt.xlabel('epoch"')
plt.legend(['train"', 'val'], loc='upper left')
plt.show()

Figure 13: Accuracy plot

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Loss value of the model')
plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train’, 'val'], loc='upper left')
plt.show()

Figure 14: Loss plot

embed = Model(inputs=model.get_layer(name="inputs").input,
outputs=model.get_layer(name="sending_embedding_layer").output)

def encoded_data(ip):
r = embed.predict([ip])
#tencodel = tf.nn.12_normalize(r)
return r

df['embeded']=df['REVIEW_TEXT'].apply(lambda x:encoded_data(str(x)))

df.to_json("encodings.json", orient='records"')

Figure 15: Embedding vectors

10 Implementation of scann

This phase was executed in different script called Scann.ipynb The json stored from above
script was loaded and the packages were imported initially in Figure

pip install scann

import tensorflow as tf
import scann

import pandas as pd
import scann

import numpy as np

from google.colab import auth
auth.authenticate_user()

lecho "deb http://packages.cloud.google.com/apt gcsfuse-bionic main" > /etc/apt/sources.list.d/gcsfuse.list
leurl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -

lapt -qq update

lapt -gqq install gcsfuse

Imkdir myfolder
lgesfuse --implicit-dirs datarepol23 myfolder

Figure 16: Loading packages

The loaded file was read using pandas package and the DOC_ID acts as identifier
was used to identify the reviews. The list of DOC_ID was collected in target variable in

Figure [I7]

import pandas as pd
import io
pd.set_option('display.max_colwidth', -1)

encodings = pd.read_json('myfolder/encodings.json')

targets = encodings['DOC_ID'].values.tolist()
targets = list(set(targets))

Figure 17: Reading encodings

11 Scann Model

Encodings of each review were collected in an array in Figure
Scann model was built using the dot product parameter in Figure

12 Search Function

Filter neigbor function was created to calculate the distance between each reviews and
the comments having distance greater than 200 were captured in Figure

7

e_arr = []

X, vy = len(encodings.embeded[@]), len(encodings.embeded[6][@])

for i in range(encodings.shape[©]):
e_arr.append(encodings.embeded[i])

Figure 18: Encodings

simpler tensor
embedding_raw = tf.convert_to_tensor(e_arr, name = "embedding_raw", dtype=tf.float32)

embedding = tf.reshape(embedding_raw, name = "embedding", shape=(encodings.shape[@8], x*y*128))
searcher = scann.scann_ops.builder(embedding, 1@, "dot_product").score_brute_force(True).build()

save searcher
scann_module = searcher.serialize_to_module()

Figure 19: Scann model

def filter_neighbours(t):
try:
compare_with = t
query = encodings[encodings.DOC_ID == compare_with].index[@]
query_vector = embedding[query]
neighbors, distances = searcher.search(query_vector, final_num_neighbors = 20)
neighbors = neighbors.numpy().tolist()
distances = distances.numpy().tolist()
r =[]
if len(distances) > @:
for n, d in zip (neighbors, distances)
v ={}
v['target'] = t
v['neighbor']
v['distance']
r.append(v)
list(filter(lambda d: d['neighbor'] != t, r))
list(filter(lambda d: d['distance'] > 280 , r))
#r = list(filter(lambda d: d['neighbor'] not in targets, r))
return r

encodings.iloc[n]['DOC_ID"']
d

r

r

except Exception as eroare:
print(eroare)

Figure 20: Filter function

Embedding vector of each comment was passed to the filter_neigbor function in Fig-
ure

ra = []
for x in targets:
ra.append(filter_neighbours(x))

rb = []
for y in ra:
if isinstance(y, list):
for x in y:
rb.append(x)

rdf = pd.DataFrame.from_dict(rb)
rdf_filtered=rdf[rdf['distance']>22e].copy()

rdf_filtered.to_parquet('scanned.parquet’)

Figure 21: Passing each vector

Raw data were loaded further to merge back with comments using DOCcolumn in

Figure

ra = []
for x in targets:
ra.append(filter_neighbours(x))

rb = []
for y in ra:
if isinstance(y, list):
for x in y:
rb.append(x)

rdf = pd.DataFrame.from_dict(rb)
rdf_filtered=rdf[rdf['distance']>22@].copy()

rdf_filtered.to_parquet('scanned.parquet')

Figure 22: Loading raw data

13 Results

The target column indicated the reviews and neighbor column captured similar reviews.
The result is displayed in Figure

B C D E F
REVIEW_TEXT_ NEIGHBOR REVIEW_TEXT TARGET target neighbor distance
I'| purchased this TV last month as a | purchased this TV last month as a bedr 3933 1746 243.5477
. | purchased this TV last month as a | purchased this TV last month as a bedr 4021 1746 243.5565
. I am reviewing the Wubble ball on | am reviewing the Wubble ball on two | 3416 1973 217.7109
. It's a piece of junk! My son had se¢lt's a piece of junk!
My son had se¢ 3879 2335 212.9282
. Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 3007 2470 210.7244
 Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 3057 2470 211.8583
i Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 2470 3007 210.725
" Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 3057 3007 210.725
i Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 2470 3057 211.8583
I Just like everyone else, my bulb bu Just like everyone else, my bulb burnt ot 3007 3057 210.7244
I'l am reviewing the Wubble ball on | am reviewing the Wubble ball on two | 1973 3416 217.7109
. It's a piece of junkl
My son hzlt's a piece of junk! My son had seen th¢ 2335 3879 212.928
.| purchased this TV last month as a | purchased this TV last month as a bedr 1746 3033 243.5478
. | purchased this TV last month as a | purchased this TV last month as a bedr 4021 3933 243.5847
- | purchased this TV last month as a | purchased this TV last month as a bedr 1746 4021 243,557
' | purchased this TV last month as a | purchased this TV last month as a bedr 3933 4021 243.5852

Figure 23: Results

References

1 (n.d.).
URL: https://www.tensorflow.org/text/tutorials /text_classification_rnn

10

	Introduction
	System Configuration of the proposed system
	Importing packages
	Data loading
	Exploratory data analysis
	Data cleaning
	Label encoder and text vectorization
	Model creation and metrics
	Transforming reviews into vectors
	Implementation of scann
	Scann Model
	Search Function
	Results

