\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Timothy Antony Rajkumar
Student ID: 21172200

School of Computing
National College of Ireland

Supervisor: Mr Abubakr Siddig

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Timothy Antony Rajkumar
Student ID: 21172200
Programme: MSc in Data Analytics Year: 2023
Module: MSc Research Project/ Internship
Lecturer: Abubakr siddig
Submission Due
Date: 14/08/2023
Project Title: Detection of Autism Spectrum Disorder using Deep Neural Network
Word Count: 697 Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Timothy Antony Rajkumar

Date: 14/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assighment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Timothy Antony Rajkumar
Student ID: x21172200

1 Introduction

The configuration manual contains the information about all the technologies and tools
used to implement in the research project. Software and all the technologies used in the
research are described in section-2. Section -3 describes the step by step procedure of
implementation, execution, and output of the research project along with the source code.

2 Technologies and Software

Python of version 3.9.13 was used for the development of deep neural network
algorithm to detect ASD in Toddlers.

(base) C:\Users\Timothy>python --version

Python 3.9.13

Figure 1: Version of python

Jupyter Notebook is used to develop all the artificial neural network models. The
Jupyter notebook is an open-source tool that supports python programming languages which
produces an interactive output for the user.

(base) C:\Users\Timothy>jupyter notebook --version

6.4.12

Figure 2: Jupyter notebook Version

The specification of laptop used for this research is shown below

Device name Timothy
Processor Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz 2.50
GHz

Installed RAM 24.0 GB (23.8 GB usable)

3 Implementation

e Step 1: Install the Jupyter notebook into the systems and launch Jupyter notebook for
the folder having all the source code and datasets.

= Jupyter

Files Running Clusters
Select items to perform actions on them.

(Jo | + Wm/ Desktop / Research Project / ICT Solution Artefact
£ B

& DETECTION OF ASD IN TODDLERS_CASE_STUDY-1.ipynb
& DETECTION OF ASD IN TODDLERS_CASE_STUDY-2.ipynb
& Joining the Dataset.ipynb

& Pre-processing_of Dataset-1.ipynb

&) Pre-processing_of Dataset-2.ipynb

i autism_screening.csv

0 combined_dataset.csv

(3 Dataset1.csv

(3 Dataset2.csv

0000000000

(3 Toddler Autism csv

e Step 2: Initially the dataset should be imported for data pre-processing
e Step 3: Import the necessary libraries such as pandas, numpy, TensorFlow and etc.

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import plotly.graph_objects as go

import plotly.express as px

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import plot_model

from sklearn.model_selection import train_test_split, GridSearchCV

sns.set_style("darkgrid")

pd.set_option("display.max_columns”, None) # setting to display all columns
pd.options.plotting.backend = "plotly"

Figure 3: Importing the libraries

#importing the datase? . #importing the dataset
df = pd.read_csv("autism_screening.csv") df = pd.read csv("Toddler Autism.csv")
df.head() df.head()

Figure 4: Loading the datasets

e Step 5: Performing pre-processing methods on both the datasets individually

#Finding any NULL Values

import numpy as np

np.seterr(divide="ignore', invalid='ignore")

pd.DataFrame(fd.isnull().sum(), columns=["Missing Values"]).style.bar(color = "red")

Handling The Missing Values
print(f"Maximum age is data: {df['Age in Months'].max()}\n")
print(f"Minimum age is data: {df['Age in Months'].min()}")

dropping record number 52
df.drop(index = 52, inplace = True)

resetting index
df.reset_index(inplace = True)

Replacing the NULL values in age column with the mean value of age
df['Age in Months'] = df['Age in Months'].fillna(np.round(df['Age in Months'].mean(), ©))

e Step 6: checking the outliers and removing them

def find outliers IQR(df):
ql=df.quantile(@.25)
gq3=df.quantile(0.75)
IQR=g3-q1
outliers = df[((df<(ql-1.5*IQR)) | (df>(q3+1.5*IQR)))]

return outliers

outliers = find outliers IQR(df['Age in Months'])
print('number of outliers: '+ str(len(outliers)))
print('max outlier value: '+ str(outliers.max()))
print('min outlier value: '+ str(outliers.min()))

outliers

def drop outliers IQR(df):
ql=df.quantile(0.25)
g3=df.quantile(0.75)
IQR=q@3-q1l
not outliers = df[~((df<(q1-1.5*IQR)) | (df>(g3+1.5*IQR)))]
outliers_dropped = outliers.dropna().reset_index()

return outliers_dropped
e Step 7: Dropping unwanted columns

#Dropping Unwanted Columns
df.drop(['age desc', 'Who completed the test', 'index'], axis = 1, inplace = True)
df .head()

Step 8: Checking the categorical features

#Checking for the unique values in categorical Feature
for col in df.select dtypes('0').columns:
print("--------- 9
print(f'Column name: {col}\n")
print(f'Unique values:\n{df[col].unique()}\n\n")

e Step 9: combining the two datasets

concatenated df = pd.concat([df1, df2], ignore_ index=True)
concatenated_df.reset_index(drop=True, inplace=True)
concatenated_df.to_csv('combined-dataset.csv’', index=False)
fd= pd.read_csv("combined dataset.csv")|

e Step 10: The data is Normalized using one-hot encoding

#since the order 1is not proper, one-hot encoding process 1is performed
X = pd.get dummies(X)
Y = pd.get dummies(Y)

e Step 11 : In case study-1 all the features are selected and in case study-2 selected

features are used for model implementation

#Splitting the Data
X = fd.drop("Class/ASD Traits ", axis = 1) # select all other feature except "Class/ASD Traits" for training
Y = fd['Class/ASD Traits ']

Figure 5: Case study-1 selecting all features

target_columns = 'Class/ASD Traits '
target = fd[target_columns]

feature_columns = ['A1', 'A2', 'A3','A4','A6"', 'A8','A9','A10",'Age Mons','Sex', 'Ethnicity','Jaundice’,'Family_mem with_ASD']
features = fd[feature_columns]

Figure 6: Case study -2 some features are removed

For both case studies the model implementations are same which are follows:

Step 12: The dataset is further split into test and train datasets, where the dataset is

divided into 25% and 75% for training the model.

X train, X test, Y train, Y test = train test split(X, Y, test size = 0.25)

.add(Dense(2, activation

Step 13: The dataset are trained using the ANN model

dim = X.shape[1]

= Sequential()

.add(Dense(128, input _dim = input_dim, kernel initializer='normal', activation='relu'))

add(Dense(64, input _dim = input_dim, kernel initializer='normal', activation='relu'))
add(Dense(32, activation = "relu”, kernel_initializer='normal'))

add(Dense(16, activation = "relu", kernel_initializer='normal'))

add(Dense(8, activation = "relu", kernel initializer='normal'))

‘sigmoid'))

Figure 7: ANN Model

Step 14: Compiling the Model

compiling model
model.compile(optimizer = Adam(learning rate = 0.001),

loss = 'binary crossentropy’,
metrics = ['accuracy'])

Step 15: The model is trained and saved as a model file

result = model.fit(X train, Y train, epochs = 20, batch size = 10,validation split=0.25)

[]

[]

°
input_
model
model
model.
model.
model.
model.
model

°

.

°

Figure 8: Model file created

Step 16: The model is evaluated by confusion matrix and classification report

from sklearn.metrics import confusion_matrix, classification_report

class_report = classification report(Y test[[1]], prediction)
print(class_report)

Figure 9: Classification Report

cm = confusion matrix(Y test[[1]], prediction

Figure 10: Confusion matrix
Step 17: Next, the models are tuned using hyper-parameters

def build_model(hp):
model = Sequential()

model.add(Dense(units=hp.Int('units 1", min_value=32, max_value=256, step=32),
input_dim=input_dim,
kernel_initializer="normal’,
activation="relu'))

for i in range(hp.Int('num_layers', min_value=1, max_value=5)):
model.add(Dense(units=hp.Int(f 'units_{i+2}', min_value=16, max_value=128, step=16),
activation="relu’,
kernel initializer='normal'))

model.add(Dense(2, activation="sigmoid"))
model.compile(optimizer=Adam(learning_rate=hp.Float('learning rate', min_value=le-4, max_value=le-2, sampling='log')),
loss="binary_crossentropy’,

metrics=["accuracy'])

return model

Figure 11: Model for Hyper-parameter tuning

Step 18: The hyperband algorithm is used for tuning and the model saved.

tuner = kt.Hyperband(build model,
objective="'val accuracy’,
max_epochs=20,
factor=3,
directory="my dir’',
project _name='hyperparam_tuning')

tuner.search(X train, Y _train, validation data=(X test, Y test))

best hps = tuner.get best hyperparameters(num_trials=1)[0]
best model = tuner.hypermodel.build(best hps)

best model.fit(X train, Y_train, epochs=20, validation data=(X_test, Y test))

Step 19: Finally the model is evaluated using confusion matrix and classification
report.

