ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Masters in Data Analytics

Shubham Sunil Rajeshirke
Student ID: x21231036

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

Student
Name:

Student ID:
Programme:
Module:
Lecturer:

Submission
Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Shubham Sunil Rajeshirke

Multi-objective Recommender System for E-commerce using Singular
Value Decomposition (SVD) Matrix Factorization Technique.

1521 15
... Page Count: ...,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Shubham Sunil rajeshirke

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

This configuration manual explains the steps to launch the scripts written for this research.
Following this document will make sure that the code is running correctly without any errors
and with efficiency. The hardware and software requirements for the execution of this
research are also mentioned in this document. Overall, this document will be valuable for
understanding the prerequisites of the Research and setting up the execution environment for

Introduction

Configuration Manual

Shubham Sunil Rajeshirke
Student ID: x21231036

implementing this research.

2 System Configurations

2.1 Hardware Requirements

The Hardware requirements for implementing this research are as follows:
Windows Edition: Windows 10 Home Single Language

Processor: Intel(R) Core (TM) i3-7100U CPU @ 2.40GHz 2.40 GHz
Installed RAM: 8.00 GB

System Type: 64-bit operating system, x64-based processor

Pen and Touch: No pen or touch input is available for this display.

Device name
Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch

Device specifications

DESKTOP-FISV4AI

Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz 2.40 GHz
8.00 GB

AEADGED2-194D-4C5F-8D86-6CB430FA2BD3
00327-35840-60063-AA0OEM

64-bit operating system, x64-based processor

No pen or touch input is available for this display

Fig 1 : Device Specifications

2.2 Software Requirements

The software requirements used for implementation of this research are as follows:
e Programming language: Python (version — 3.9.13)
e |IDE: Jupyter Notebook

3 Project Implementation

This section describes the steps used for implementing this research.

3.1 Programming Environment Setup

The Jupyter Notebook is launched from Anaconda Navigator to start the execution
environment used for the implementation purpose.

) ANACONDA NAVIGATOR

. Environments:
"
W Leaming

&% Community

Anaconda
Notebooks

Cloud notebooks with
hundreds of packages

o

DataSpell

Fig 2: Screenshot of Anaconda Navigator Home Page

ready to code.
-
Z Jupyter
Files Running Clusters

Select items to perform actions on them.

Do

)
m)
[

)
m)
[m)
)
m)
[m)

~ |/ Downloads | Thesis Project
D Data

[Reference Papers

| [Reference Papers 2

D Reference Papers 3

[Resources

& Recommender_System_ipynb
& RS1.ipynb

& rS2ipynb

& rS3ipynb

Fig 3: Jupyter Notebook Home Page

Name

ORACLE

Cloud Infrastructure

Last Modified
seconds ago
24 days ago
9 days ago
12 days ago
7 days ago
7 days ago
2 montns ago
2 months ago
a month ago

a month ago

e Service

Upload | New~| &

File size

326KB

24.4 kB

131 MB

206 kB

The Fig 2 above shows the interface of Anaconda Navigator from where we can launch the
Jupyter Notebook. The Fig 3 depicts the Home page of Jupyter Notebook where we can
create new notebooks or files and start executing code in it.

3.2 Data Collection

The dataset for this research is one of the largest datasets that can be used for implementation
of Recommender systems, and it is sourced from Kaggle (OTTO — Multi-Objective
Recommender System). This dataset contains the user behaviour data which is in the form of
sessions. There are two different file train and test, and both the files are in Jsonl format in
the source location. Below are the columns available in the dataset:
e Session: It is the unique id in the dataset
e Events: It represents the number of events that took place in that session.
o Aid: It represents the product id of the item associated with the event
o Ts: it represents the timestamp of the event.
o Type: It represents the type of the event like ‘Clicks’, ‘Carts’, ‘Orders’.

In the dataset there can be multiple sessions for single customer but there is no visibility for
the same in the data. Since the data is in session format the end output is also at the session
level.

A python file (with .ipynb extension) named as “x21231036_Recommender_System_Thesis”
has been created. All the scripts regarding the implementation of these Research are written
and executed in this file.

3.3 Importing Libraries
There are multiple libraries used in this research. Below is the list of libraries used and their

version.

Json 2.0.9
Pandas 1.4.4
Numpy 1.23.5
Tensorflow 2.12.0
Sklearn.model_selection.train_test split | 1.0.2
Seaborn 0.11.2
Matplotlib 3.5.2

Fig 4: Libraries with version

In [1]: # idmporting the necessary Libraries
dmport json
import pandas as pd
import numpy as np
from tensorflow.keras.models import Sequential
From tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.preprocessing.sequence import pad_ sequences
from tensorflow.keras.utils dmport to categorical
from sklearn.model selection import train_test_split
from sklearn.metrics.pairwisze import cosine_similarity
import matplotlib.pyplot as plt

Fig 5: Importing Libraries

Fig 5 represents how multiple libraries used in the entire implementation of the research are
being imported in implementation python file.

Using the ‘json’ library both the train and test datasets are imported and converted from
‘jsonl’ to ‘json’ format and stored in two different data frames ‘train_df’ and ‘test_df’.

In [7]: train_df.head() In [34]: test_df.head()
out[7]: Out[34]:
session events session events
0 12899779 [{aid" 59625, 'fs" 1661724000278, type’ . 0 12300779 [{'aid" 59625, 'ts" 1661724000278, type" ..
1 12899780 [raid: 1142000, 's" 1661724000378, "ype. 1 12309780 [faid" 1142000, ts" 1661724000378, ype'.
2 12899781 [[aid" 141736, ts" 1661724000559, ‘ype" . e

782 [Faid" 1669402, ts" 16617
3 12899782 [[aid" 1669402 15" 1661724000568, type'.. 3 12896782 [{aid" 1669402, 5" 1661724000568, type

o 12096783 [faid- 255007, - 166172400072, Type 4 12899783 [[aid" 255297, '1s" 1661724000572, ‘yps’ ..

Fig 6.a: Train data frame Fig 6.b: Test data frame

The above figures 6.a and 6.b shows the train and test data frames created after importing the
dataset.

3.4 Exploratory Data Analysis

In this section firstly the statistics of datasets are calculated, and some basic exploratory
analysis is done.

In [8]: |# Calculating statistics for Train Data
total_sessions = train_df['session’].nunique()
total_products = train_df['events'].apply(lambda x: len(set(event['sid’'] for ewent in x))}).sum()
total_events = train_df["events'].apply(len).sum()
total clicks = train_df[‘events'].apply(lambda x: sum(l for event in x if ewvent["type"] "clicks")).sum()
total_carts = train_df['ev

ents’].apply(lambda x: sum{1l for event in x if event['type'] == "carts'))}.sum()
total_orders = train_df["events’'].apply(lambda x: sum(l for event in x if event["type"] == ‘orders’)).sum()

Print statistics

print("Statistics for Train Data:")

print("Total unique sessions:", total sessions)
print("Total number of pr s:", total_products)
print("Total number of s:", total_events)
print("Total number of clicks:"™, total_clicks)
print("Total number of carts:", total_carts)
print("Total number of orders:", total_orders)

m Mmoo
3

5]

=

Statistics for Train Data:
Total unique sessions: 52e0
Total number of products: 19637
Total number of events: 28722
Total number of clicks: 25232
Total number of carts: 2335
Total number of orders: 485

Fig 7: Statistics for Train Data

As seen in Fig 7 Statistics of the train data is calculated. In this metrics like total number of
sessions, total number of products, total number of events, total number of clicks, total
number of carts and total number of orders are calculated.

Event Type Distribution

25000 A

20000

15000

Count

10000

5000

T
clicks carts orders
Event Types

Fig 8: Bar Plot for Event type distribution

In Fig 8, Bar plot for Event type distribution is showcased where we can see maximum
events in the data is of clicks event type followed by carts and orders.

Products per Session Distribution

2000

1750

1500 -

1250 A

1000

Frequency

750 -

500

250 A

T T T T T T
[+] 50 100 150 200 250
Number of Products

Fig 9: Histogram for Products per session

In Fig 9, Histogram for products per session is showcased, where we can see that in max
number of cases there are around 1-50 products and there are very few sessions with more
than 50 products.

3.5 Data Preprocessing

In the Train and Test data frames which were created in previous step, the events column
contains a list multiple dictionaries in it which represents a series of events that took place in
that session.

To apply models there was a need of normalizing this data and for that “.explode” function is
used and the data is normalized.

In [28]: # Selecting the relevant columns
Extracting user-item interoctions
user_item train = train_df.explode('events') # Exploding the df dataframe
user_item train['aid'] = user_item train['events'].apply(lambda x: x['aid']) #
user_item train['type'] = user_item train['events'].apply(lambda x: x['type'])
user_item train['ts'] = user_item train['events'].apply(lambda x: x['ts']) # Ex

Fig 10: Code for Normalizing the data frame

In [32]: final df_train.head()

Oout[32]:
session aid tz type

1 12899780 1142000 1661724000378 clicks
12598780 582732 1661724056352 clicks
12899780 973453 1661724109199 clicks

T Y

12899780 736515 1661724136868 clicks
1 12899730 1142000 1661724155248 clicks

Fig 11: Output after normalizing the data frame.

In Fig 11 we can see that as the output data frame after normalizing it there are multiple rows
for single session with unique aid and the new columns aid, ts and type are created.

Once this data frame is created then the weights are assigned as per the events where
maximum weightage is given to orders, followed by carts and clicks.

In [47]:
final_df_train['ts'] = pd.to_datetime(final df_train['ts'], unit='ms') & Convert timestamp to daotetime
weights = {"orders’: 3, 'carts’: 2, 'clicks': 1} # Assigning weights to each event type
final_df_train['weight'] = final_df_train["type'].map(weights) # defining weight column

In [49]: # Grouping the data by session id and oid and sum up the weights
Aggregating weights of duplicate entries within each session for the same product
session_product_weights = final_df_train.groupby(['session”, "aid'])['weight’].sum().reset_index()

Fig 12: Code for assigning weights.

In Fig 12 we can see the code is written where maximum weight ‘3’ is assigned to orders
followed by carts as ‘2’ and clicks as “1°. A new column ‘weight’ is also added in the data
frame.

After that the data is grouped based on session id and aid and the respective weights are
aggregated and the sum is stored in the weight column. Also, these changes are stored in a
new data frame “session_product_weights”.

In [5@]: session_product_weights.head()

Out[5@]:
session aid weight
0 12395730 582732 1
1 12899780 736515 1
2 12395730 973453 1
3 12398730 1142000 2
4 12398731 37315 1

Fig 13: Output after assigning weights.

In [51]: | # Creating ground truth DataFrame with actual products for each session
ground_truth_df = session_product_weights.groupby('session’)['aid'].apply(list).reset_index()
ground_truth_df.columns = ['session’, ‘actual_products’]

In [52]: # Displaying the ground truth DataFrame
print{ground truth_df)

session actual_products
a 12899780 [582732, 736515, 973453, 1142080]
1 12899781 [57315, 141736, 1948567, 199828, 918667]
2 12899732 [45@834, 127404, 229748, 363336, 406081, 413%62...
3 12899783 [198385, 255297, 380127, 607638, 1114789, 121&...
4 12899784 [22981, 476216, 1836375, 1190477, 1268952, 154...
2112 12384768 [886392, 1237853, 1475121, 1591574]

2113 12904778 [181414, 454926, 479978, 717779, 1208925, 1494, ..
2114 12994772 [2732, 14443, 239501, 543923, 1045144, 1@832732...
2115 12%@4773 [68526, 252695, 457068, 1633249]
2116 12904778 [247240, 954133]

[2117 rows x 2 columns]

Fig 14: Output of ‘ground_truth_df’

Also, In Fig 14 a new data frame “ground_truth_df” is created where for each session the
actual products are stored. This data frame will be useful for the evaluation purpose at the
end.

3.6 Modelling

In this section the actual modelling is done on the normalized data frame
“session_product_weights”. This is done in 5 steps as explained below:

a) Creating user-item matrix

In [53]: # Creating a user-item interaction matrix
user_item matrix = session_product weights.pivot(index='session’', columns='aid', values='weight').fillna(@)

In [54]: user_item matrix.head()

e aid 38 114 160 240 284 691 1246 1249 1514 1642 .. 1854329 1854421 1854499 1854540 1854685 1854762 1854775 1855264 1855508 1!
session
12699780 00 00 00 00 00 0O 00 00 00 00 .. 0o 0.0 0.0 0.0 0.0 0.0 00 00 0.0
12899781 0.0 00 00 00 0O 00 QO 00 00 0O .. 0.0 (] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12899762 0.0 00 00 00 0O 0O QO 00 0O 0O .. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12899783 00 00 00 00 00 0O 00 00 00 00 .. 0o 0o 0.0 00 0.0 0.0 00 00 0.0
12899784 00 00 00 00 0O 00 QO 00 00 0O .. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows = 14068 columns

Fig 15: User- item matrix

In Fig 15 we can see that user-item matrix is created. In this matrix we have session id as
rows and product code (aid) as columns and the weights are stored as values.

b) Matrix factorization using Singular Value Decomposition (SVD)

In [55]: Performing matrix factorization using Singular Value Decomposition (SVD)

ue that dec

svD ses g matrix inte three matrices: U, sigma, and Vi.

d underlying patterns in the dota and reduce the dimensionality.

This will help to
U, sigma, Vt = np.linalg.svd(user_item_matrix.values)

Fig 16: Applying Matrix Factorization using SVD.

In this step matrix factorization is applied using Singular value decomposition (SVD). This
technique decomposes the matrix into three matrices: U, sigma, and Vt. These matrices will
help in understanding the hidden patterns in the data and will help in reducing the
dimensionality.

c) Choosing Latent Features (k)

In [56]: # Choose the number of Latent features (k)
Latent features represent the underlying patterns that help us approximate the original interaction matrix.
k = 2000
Uk =uU[:, :k]
sigma_k = np.diag(sigma[:k])
Vvi_k = ve[:k, :]

Fig 17: Choosing Latent Features (k)

In this step the latent feature (k) value is set. This represents the underlying patterns which
helps in approximating the original interaction matrix.

d) Reconstructing user item interaction matrix

In [57]:

In [58]:

In [59]:

Reconstructing the user-item matrix using the reduced dimension representation
user_item matrix_reconstructed = np.dot(np.dot(U_k, sigma_k), vt_k)

Converting the reconstructed matrix back to a DataFrame
user_item_df = pd.DataFrame(user_item_matrix_reconstructed, index=user_item matrix.index, columns=user_item matrix.columns})

user_item_df.head()

aid 35 14 160 240 284 691 1246 1249 1514 1612 1854329 18544
session

12899780 -5.511947e- -4.989551e- 4.304837e- 9.878557e- T7.757214e- -1.004171e- -3263617e- -1.105088e- 3.028552e- -5.56173Ge- -4.764418e- 1.500974
0% 1 08 13 08 19 19 25 24

12899781 1.943951e- -5.005362e- -4.373313e- 5743307e- 3.529&91e- -1.183943e- -19920688e- 7.939758e- -1.123346e- 1.396634e- 479251%9e- -5.600213
08 " o7 17 1" 05 18 " 17 24 18

12599752 3 116410e- 7.397697e- .6.037782e- -2000878e- -3798416e- 3356809 -2.147135e- -5452430e- -5376803e- -8.294428e- 2970826e- 2413894
03 1 03 12 o7 19 13 26 20

12899783 1.595107e- -2.286391e- 4.931353e- 5188972e- -1721348e- -2303055e- -5.346312e- 5.579925e- -4.875116s- 1.205734e- 2.493061e- -3.952107
17 16 17 17 16 17 18 17 17 24 19

12899784 2533114e- 1.680562e- 6.062373s- 1.688208e- 5531468e- 5.804031e- -6.800324e- 1.673094e- -1.748356s- 2.261214e- -1.185203e- -4.625680
17 1 17 17 16 18 16 18 24 17

5 rows * 14068 columns
»

Fig 18: Reconstructing Matrix

In this step the user- item interaction matrix is reconstructed using the reduced dimension
representation.

e) Generating Recommendations

In

[6@]: # defining a function te get top N recommendations for a given session

def get_top_n_recommendations(session, n=3):
= user_item_df.loc[session].sort_values(ascending=False).index[:n]
return top_recommendations

top_recommendations

[61]: # Generating recommendations for each se

ion

unique_sessions = final_df_train['session’].unique()

all_recommendations = {}

[62]: for session in unique_sessions:
= get_top_n_recommendations(session)
all_recommendations[session] = top_recommendations

top_recommendations

[63]: |# Displaying the final recommendations for each session
for session, recommendations in all_recommendations.items():
print(f"Session {session}: Recl: {recommendations[@]}, Rec2: {recommendations[1]}, Rec3: {recommendations[2]}")

Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session
Session

12899788: Recl:
12899781: Recl:
12899782: Recl:
12899783: Recl:
12899784: Recl:
12899785: Recl:
12899787 Recl:

12899788: Recl:

12899789: Recl:
12899798: Recl:
12899791: Recl:
12899792: Recl:
12899793: Recl:
12899798: Recl:
12899799: Recl:
128998@1: Recl:
128998@3: Recl:
128998@5: Recl:

1142089, Rec2: 973453, Rec3: 736515
199008, Rec2: 57315, Rec3: 141736
779477, Rec2: 834354, Rec3: 595934
255297, Rec2: 3@@127, Rec3: 1817895
476216, RecZ: 1198477, Rec3: 22881
453505, Rec2: 258458, Rec3: 41635
1682750, Rec2: 1824433, Rec3: 1348855
1259911, Rec2: 39846, Rec3: 245131
1569899, Rec2: 631398, Rec3: 525156
1219653, Rec2: 1830166, Rec3: 1735585

915175, Rec2: 1385729,
1537168, RecZ: 132681,
1585431, Rec2: 3@8362,
1344786, Rec2: 558573,
413826, Rec2: 1325482,
1758538, Rec2: 812857,
925024, Rec2: 1651971,

Rec3:
Rec3:
Rec3:

Rec3:
Rec3:
Rec3:

22549, RecZ: 967498, Rec3: 199083

1561214
1672169
1132801
Rec3: 99354
1191715
1645998
1634753

Fig 19: Generating Recommendations

In this step the function ‘get top_n_recommendations(session, n=3)’ is defined for
generating the recommendations. After that a loop is defined, where it loops through all the
sessions and calls ‘get_top_n_recommendations()’ function to get the top 3 recommendations
and store it into a dictionary named “all_recommendations”.

Then a for loop is defined for reading this data from the dictionary and print it in the required
format “session: Rec1, rec2, rec3”.

3.7 Evaluation

In this step the functions are defined to calculate the evaluation metrics and then they are
printed in required format. Also, some graphical representations of the evaluation results are
generated to understand the results in a better way.

In [64]: |# defining a function to evaluate recommendations for a given session
def evaluate_recommendations(actual_products, recommended_products):
Calculate the number of true poesitives (common products between actual and recommended)
true_positives = len(set(actual_products) & set(recommended_products))

Calculate precision
precision = true_positives / len(recommended_products) if len(recommended_products) > @ else @
Calculate recall

recall = true_positives / len(actusl products) if len(actual products) > @ else @

Calculate FI1-score (harmonic mean of precision and recall)
a

f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > @ else @
— . 4 Y 4 Y !

return precision, recall, f1_score

In [65]: |# List to store evaluation results
evaluation_results = []

In [66]: for session, actual_products in ground_truth_df[['session’, 'actual_products’]].values:
the recommended products for the current session from the all_recommendations dictionary

recommended_products = all_recommendations[session].tolist()

Evaluate the recom

precision, recall, fl_score = evaluate_recommendations{actusl products, recommended_products)

nendations for the current session

tion results to the List
append({'Session’: session, 'Precision’: precision, "Recall': recall, 'Fl-score': fl_score})

Append the ewv

evaluation_results.
In [67]: | # Converting the evaluation results te a Dataframe for easier analysis

E\.ralua‘tian_;:if = pd.DataFrame(evaluation_results)

In [68]: |# Calculating the average precision, recall, and Fl-score across all sessions

average_precision = evaluation_df['Precision’].mean()

average_recall = evaluation_df['Recall’].mean()
average_fl_score = evaluation_df[’Fl-score’].mean()

Fig 20: Evaluation function for Precision, Recall and F1-score.

In this step the function ‘evaluate recommendations()’ is defined which takes
actual_products and recommended_products as the parameters and in that function firstly true
positives are calculated followed by precision , recall and F1-score. All these results are
stored in a list called ‘evaluation_results’.

This list is then converted into data frame called ‘evaluation_df’ and then printed in the
required format.

10

In [71]:

In [72]:

In [73]:

In [74]:

In [69]: # Displaying the evaluation results
print{evaluation_df)
print{f"\nAverage Precision: {average_precision}")

print({f"Average Recall: {average_ recalll}™)
print{f"Average Fl-score: {average_fl_score}")
Session Precision Recall Fl-score
@ 12859788 1.a2ae008 ©.750088 0.857143
1 12899781 1.2e2008 0.600088 0.750082
2 12859782 1.a80008 ©.878%947 0.145341
3 12859783 1.a280008 ©.333233 0.500080
4 12399784 1.2e2008 0.4238571 0.600082
2112 12584763 1.a2ae008 ©.750088 0.857143
2113 12904778 1.@e2008 0.375088 0.545455
2114 12984772 1.aae008 ©.300088 0.451538
2115 125@4773 1.280008 ©.750088 0.857143
2116 12904778 B.6665667 1.200088 O0.300022

[2117 rows x 4 columns]

Average Precision: @.919540229885859%
Average Recall: ©.64137226338@7162
Average Fl-score: @.6817285125355987

Fig 21: Evaluation results for Precision, Recall and F1-score.

Calculating hit rate and coverage
hit_rate_list = []
recommended_products_set = set()

for session, actual_products in ground_truth_df[['session’, 'actual_products®]].values:
recommended_products = all_recommendations.get(session, [])

if len{recommended_products) » @:
hit_rate_list.append(1)
recommended_products_set.update(recommended_products)
else:
hit_rate_list.append(@)

Calculating metrics
total_sessions = len{ground_truth_df)
hit_rate = np.mean(hit_rate_list)

Calculating the total number of unique products

unique_products = set()

for products in ground_truth_df['actual_products']
unigque_products.update(products)

total_unigue_products = len{unigque_products)

Calculating hit rate and coverage
coverage = len(recommended_products_set) / total_unique_products

print(f"Hit Rate: {hit_rate}")
print(f"Coverage: {coverage}")

Hit Rate: 1.8
Coverage: ©.36174296275234574

Fig 22: Code and Results for Hit Rate and Coverage

The Fig 22 above shows that how Hit Rate and Coverage is Calculated.

Finally, we got precision as 0.92, recall as 0.64, F1-score as 0.68, Hit Rate as 1 and Coverage
as 0.36. Precision of 0.92 is quite good and recall value of 0.64 is acceptable as it suggests
that 64% of recommendations generated were relevant. the F1-score of 0.68 is balancing both
precision and recall quite well. The system achieved Hit rate of 1 which is excellent as it is
the ideal value, and it reflects that at least 1 product from the recommended once is from the
user’s session whereas coverage of 0.36 is a point of concern which means that the

11

recommender system is not recommending a wider range of products. To solve that a larger
pool of products is to be considered in future.

12

