
Configuration Manual

MSc Research Project

Data Analytics

Karthika Rajan
Student ID: X21122920

School of Computing

National College of Ireland

Supervisor: Muslim Jameel Syed

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Karthika Rajan

Student ID: X21122920

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Muslim Jameel Syed

Submission Due Date: 18/09/2021

Project Title: Configuration Manual

Word Count: 3008

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Karthika Rajan

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Karthika Rajan
X21122920

1 Introduction

The environment setup is very essential because it serves as the basis for the investiga-
tion and the analysis. The configuration manual provides a detailed description of how
environment has been set up, including information on the programming language used,
the system configuration, utilised libraries and the packages. The manual also provides
step-by-step coverage of coding techniques used throughout the study, along with the
explanations and screenshots for better comprehension.

2 Environmental Setup

Successful completion of a project often relies on the use of variety of tools and the
software that automate certain processes, increase productivity and guarantee accuracy.
A complete list of all tools and software used for the project is provided in this section.

2.1 Hardware specification

Specification of the machine used in this study are shown in figure 1.

Figure 1: Hardware specification

The computer is powered by 2.50 GHz Intel(R) Core(TM) i5-12500H processor from
the 12th generation. The 12th Generation Intel processors are renowned for the improved

1



performance and the efficiency, which makes them suitable for variety of computational
tasks. The machine is equipped with a16 GB of installed RAM. The computer operates
on a 64-bit operating system.

2.2 Software specification

2.2.1 Anaconda Navigator

For this research project, Anaconda 1 was installed on the computer so that Jupyter
environment could be used. Anaconda is a complete platform that makes it easier to
set up settings for the data science and machine learning. It comes with all tools and
the packages needed to do research well. Figure 2 shows the home page of Anaconda
Navigator.

Figure 2: Software specification

2.2.2 Jupyter Notebook

As the main environment for writing and analysing the code, this study used Jupyter
Notebook version 6.4.8. Figure 3 shows how to start a Jupyter notebook by choosing
”Python 3” choice from ”New” menu.This option is the starting point for undertaking
multiple analyses in Jupyter environment. The research entails the creation of the three
distinct notebooks, each of which corresponds to various objectives:

• Machine Learning Models with Default Parameters Notebook:The application of
the machine learning models with their default settings is implemented in this note-
book. It acts as starting point for evaluating the model behaviour and performance
without any parameter adjustment.

1https://docs.anaconda.com/

2

https://docs.anaconda.com/


• Machine Learning Models with Hyperparameter Optimization Notebook: In this
notebook, hyperparameter optimisation is used to build the machine learning mod-
els.

• Deep Learning Model Notebook: The third notebook is designated for the deep
learning models implementation.

Figure 3: Jupyter Notebook

2.2.3 Python

Using Python programming language, machine learning and deep learning models were
implemented. Python’s strong ecosystem of libraries and tools and its user-friendliness
provided a firm basis for creating and trying out with the various models.

3 Imported Packages

The figure 4 depicts the packages imported in this project.

• Pandas: This library is used to manipulate and analyse the data.

• Numpy: Necessary for numerical and array operations.

• Matplotlib: It is a popular plotting library that enables creation of visualisation.

• Tensorflow: It is an open-source deep learning framework.

• Random: This module provides random number generation and random operation
capabilities.

• Xgboost: It is a scalable and effective gradient boosting library.

• RandomForestRegressor: It is a decision tree-based ensemble learning method for
the regression tasks.

• DecisionTreeRegressor: It is a single decision tree-based regression model from
scikit-learn library.

3



• KNeighborsRegressor : It is a k-nearest neighbors regression model from the scikit-
learn.

• MinMaxScaler: It scales features to a particular range (usually 0 to 1).

• PolynomialFeatures, StandardScaler: StandardScaler standardises features by elim-
inating mean and scaling to unit variance. PolynomialFeatures generates polyno-
mial features for polynomial regression.

• Ridge: It is a linear regression model that incorporates L2 regularisation as a means
to mitigate issue of overfitting.

• Sequential: It is a neural network model in high-level neural networks API Keras.

• LabelEncoder: Converts categorical data into numerical labels.

• Train test split, GridSearchCV, cross val score: It is for dividing data into training
and testing sets, tuning hyperparameters using grid search and performing the
cross-validation.

• mean squared error, mean absolute error, r2 score: These metrics are used to eval-
uate regression model performance.

• make pipeline: It creates a pipeline for data preprocessing and modelling .

• LSTM, Dense: LSTM is a kind of recurrent neural network layer utilised for se-
quence data and Dense represents a fully connected neural network layer.

Figure 4: Imported Packages

4



4 Data Source and Description of Dataset

This study obtained the dataset used to predict Irish road accidents from the website of
the Central Statistics Office (CSO)2. The dataset is in csv format.

Figure 5 depicts how the data is loaded and also shows a brief overview of the dataset’s
structure and contents. The dataset contains 9984 rows and 7 columns. The variables in
tha dataset are: Statistic Label, Year, Age group, Sex, Road user type, unit and value.
The head function is used to display first few entries of the dataset. By doing so, it
provides a preview of actual data present in the DataFrame, providing a concise summary
of its contents. The code also includes a concise summary of data types associated with
the columns in the dataset.

Figure 5: Data loading and overview

5 Data Visualization

Data visualization is a powerful technique that converts the complex datasets into visu-
ally understandable representations, making information simpler to comprehend, inter-
pret and communicate. Using diagrams, charts, maps, and other visual elements, data
visualization permits the analysts to investigate the connections among variables, find

2https://data.cso.ie/table/ROA16

5

https://data.cso.ie/table/ROA16


outliers and discover meaningful trends.

The code provided in figure 6 presents distribution of the road accidents by age group
using bar chart. By grouping and displaying data, code helps develop a better com-
prehension of the accident patterns and potential areas of concern by providing insights
into relative frequency of the crashes among various age groups.

Figure 6: Age group distribution of people involved in road accidents

Using a pie chart, the code given in figure 7 illustrates gender distribution of individu-
als involved in the traffic accidents. The chart provides the quick visual representation
of proportion of accidents linked to each gender, making it simple to compare relative
impact of accidents on each gender.

Using a stacked bar chart, the code as shown in figure 8 effectively demonstrates
pattern of road accidents by road user type and the gender. By classifying crashes
according to these two factors and presenting them as stacked bars, the chart provides
a clear and insightful means of comparing accident rates of various road user types and
genders.

6



Figure 7: Gender distribution of people involved in road accidents

Figure 8: Distribution of Road Accidents by Road User Type and Gender

7



6 Data Prepartion

Data preparation is a fundamental and essential step in data analysis, involving data trans-
formation, cleaning and arrangement of unprocessed data into suitable format for analysis,
modelling, and interpretation. Raw data is frequently available in variety of formats and
may contain inconsistencies, absent values or noise . The objective of data preparation
is to address these challenges by refining data, guaranteeing its quality and arranging it
in a coherent structure that facilitates informed decision-making.

6.1 Check for null values

Figure 9: Check for null values

Figure 9 depicts the code used to display the number of absent values in each column
of the dataset. This code computes the number of missing values in each column and
outputs the results, revealing the completeness of the dataset. The ”data.isnull().sum()”
uses pandas DataFrame method ”isnull()” to construct boolean DataFrame where every
record is either True (if the corresponding value is missing) or false (if the value is not
missing). The ”.sum()” function then calculates the sum of each column’s tYes values,
effectively tallying the missing values in each column. It is found that the dataset does
not contain any null values.

6.2 Check for duplicate rows

Figure 10: Check for duplicate rows

Figure 10 depicts the code used to identify and remove duplicate entries from the data-
frame. This code filters dataframe to include only the duplicate entries, which have

8



identical values across all the columns. There are no duplicate rows in the dataset.

6.3 Data Reduction

Summary or aggregate data frequently represents the consolidated information derived
from the individual data points. This may consist of totals, averages or other aggregated
metrics. Such data may not be appropriate for the comprehensive analysis, as it lacks
individual-level information necessary to identify patterns, relationships or trends.

Figure 11: Code for data reduction

In the Irish road accident dataset, statistical label column contains three values: ”All
Killed and Injured Casualties,” ”Killed Casualties,” and ”Injured Casualties.” ”All Killed
and Injured Casualties” represents overall number of the killed and the injured casualties.
This aggregate figure is omitted from the dataset because it does not specifically describe
any fatalities or injuries. Similarly, the value ”All ages” from the column age group
is removed, as it represents aggregated data for all age categories. The Road User type
column contains another set of aggregated data. The value ”All road users” is a collection
of data containing counts of various road user categories, such as pedestrians, cyclists,
motorcyclists, all vehicle users, and other road users. Therefore, ”all road users” is also
eliminated. ”All Car Users” equals the sum of ”Car drivers” and ”Car Passengers” .As
a result, this value is also excluded from the dataset. The code for this is given in figure
11.

9



6.4 Data Transformation

Figure 12: Code for data transformation

The code given in the figure 12 is intended to deal with the unknown age group values
(”Age unknown”) in the dataset by imputing them with median value of existing age
groups. This imputation technique ensures that ”age group” column contains legitimate
values for the further modelling and analysis.

7 Model Building and Evaluation

7.1 Machine Learning Models

There are 5 machine learning models implemented in this study and those are: Random
Forest, Decision Tree, XGBoost, KNN and Ridge regression.

7.1.1 Random Forest with and without hyperparameter optimization

Figure 13: Code for Random Forest without hyperparameter optimization

10



Figure 13 shows the code for random forest model without hyperparameter optim-
ization. First, the code defines features (independent variables) and target variable
(dependent variable). Next the dataset is divided into training and testing sets. The
code initializes a Random Forest regressor, trains it with training data and makes pre-
dictions on the test set. To assess the efficacy of a model, evaluation metrics such as Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and R-squared score are calculated.

Figure 14: Code for Random Forest with hyperparameter optimization

Figure 14 demonstrates the Random Forest algorithm’s hyperparameter tuning and
model evaluation processes. The hyperparameter grid for grid search is defined, which
includes number of trees in the forest (n estimators), the maximum depth of trees
(max depth) and minimal number of the samples necessary to split internal nodes (min samples split).
The grid search is conducted using the 5 folds of cross-validation (CV) to identify op-
timal hyperparameter combination that delivers best model performance. GridSearchCV

11



evaluates multiple hyperparameter combinations and chooses one with the highest cross-
validated score. The optimal model is then extracted from the grid search results. This
model is employed to forecast the target variable on the test set. Same evaluation metrix
are used to evaluate performance of the model.

7.1.2 XGBoost with and without hyperparameter optimization

Figure 15: Code for XGBoost without hyperparameter optimization

Figure 15 shows the code for implementing XGBoost algorithm with default para-
meters. Using xgb.XGBRegressor class, XGBoost regression model is created. Using
fit technique, the algorithm is then trained on training data (X train and y train). The
trained model is then applied to test set (X test) to predict the target values. The y pred
variable stores these predictions.

12



Figure 16 shows the code for XGBoost model with hyperparameter optimization.

Figure 16: Code for XGBoost with hyperparameter optimization

A hyperparameter grid is defined, detailing various hyperparameter combinations in-
cluding learning rates, the maximal tree depths and number of estimators. These para-
meters affect the efficacy and the behaviour of XGBoost model. A regressor for XGBoost
is created. Next, the code uses grid search technique (GridSearchCV) to explore hy-
perparameter grid systematically. Grid search identifies, using a 5-fold cross-validation
strategy (cv=5), the hyperparameter combination that produces highest performance on
the training data.The best model stores the best model derived from grid search. This
model contains the optimal hyperparameters for the provided data. Using this optimized

13



model, predictions are made on the unaltered test set (X test). This method illustrates
how hyperparameter tuning can enhance the performance of the model by identifying the
parameter configuration that produces highest predictive accuracy.

7.1.3 Decision Tree with and without hyperparameter optimization

Figure 17: Code for Decision Tree without hyperparameter optimization

Figure 17 shows the code for decision tree without hyperparameter optimization.
Decision Tree regressor instance with a fixed random state is created for consistency.
Afterward, model is trained with training data. Using the trained model, predictions
are made on test data, resulting in the y pred values.Using functions from sklearn.metrics
library, multiple evaluation metrics such as MSE, RMSE, MAE and R-Squared score are
calculated.

14



Figure 18 shows the code for decision tree with hyperparameter optimization.

Figure 18: Code for Decision Tree with hyperparameter optimization

An instance of Decision Tree regressor is created. Afterwards a hyperparameter grid
containing values for the maximum tree depth and minimum required samples for node
separation is defined. The code uses a grid search technique (GridSearchCV) to sys-
tematically explore hyperparameter grid using a 5-fold cross-validation strategy (cv=5),
ultimately identifying hyperparameter combination that produces the greatest perform-
ance on the training data.The best dt model is used to store the optimized model ac-
quired through grid search. Using this best model, predictions are made on the test data,
yielding y pred values.

15



7.1.4 KNN with and without hyperparameter optimization

Figure 19: Code for KNN without hyperparameter optimization

Figure 19 shows the code for KNN model without hyperparameter optimization. A
KNN regression model is built and set up with a predetermined number of neighbors - in
this case, five to take into account while making predictions. Using training set of data
(X train and y train) the model is trained and predictions are made for test set of data
(X test) using trained KNN model.

Figure 20 shows the code for KNN model with hyperparameter optimization. A
KNN regressor instance is created and a hyperparameter grid with values for number of

16



neighbours to take into account (n neighbors) and prediction weight function (weights)
is defined. Grid search (GridSearchCV) and 5-fold cross-validation (cv=5) are used by
the algorithm to systematically explore hyperparameter grid and identify the setting
that yields best performance on the training data. The grid search’s top model is saved
under the name best knn model. This improved model is then used to make predictions
on test data, producing y pred values.

Figure 20: Code for KNN with hyperparameter optimization

17



7.1.5 Ridge Regression with and without hyperparameter optimization

Figure 21 shows the code for Ridge regression model without hyperparameter optimiza-
tion.

Figure 21: Code for Ridge Regression without hyperparameter optimization

The data is normalized via the feature scaling, which improves the model stability
and the convergence. To transfer data, a StandardScaler object is used. To capture
any potential nonlinear relationships in data, degree 2 polynomial features are then in-
serted. The PolynomialFeatures class is used to implement this transformation. The
association between the characteristics and the target variable is modelled using Ridge

18



Regression and regularisation parameter (alpha) of the model is fine-tuned using cross-
validation.

Figure 22: Code for Ridge Regression with hyperparameter optimization

Figure 22 shows the code for Ridge regression model with hyperparameter optimiz-
ation. With multiple degrees for polynomial features and varied alpha values for Ridge
Regression, a search space for hyperparameters is established. After that, grid search
(GridSearchCV) is used to choose optimal configuration based on negative mean squared
error by methodically examining the hyperparameter combinations and using 5-fold cross-
validation.

19



7.2 Deep Learning Models

There are 2 deep learning models implemented in this study and those are: LSTM and
FNN

7.2.1 Long Short-term Memory(LSTM)

Figure 23 and 24 shows the LSTM model.

Figure 23: Code for LSTM model

In order to guarantee consistency across runs, code starts by setting seed values. The
data is transformed into a series of time steps and moulded into a suitable (3D) format

20



Figure 24: LSTM model

21



for implementing LSTM model. Using the Sequential API of Keras, an LSTM model is
created that consists of an LSTM layer and dense output layer. A mean squared error
loss function and the Adam optimizer are used in the model’s construction. The LSTM
model is trained using the rearranged training data, with batch size and the epoch count
being specified. Using the trained LSTM model, predictions are made on the test data
after training.

7.2.2 Feedforward Neural Network(FNN)

Figure 25: Code for FNN model

Figure 25 shows the code for FNN model. The input characteristics are scaled using

22



MinMaxScaler to normalise them between 0 and 1. Sequential API from Keras is used
to build the FNN model. It is made up with the layers that are closely related and
have activation features like ”relu.” The mean squared error loss function and the Adam
optimizer are used in the model’s construction. Fitting FNN model to the scaled training
data includes determining the batch size and number of epochs. Predictions are made
for the test data using the trained model after training.

8 Conclusion

The hardware and software requirements have been thoroughly documented in this con-
figuration manual, ensuring a smooth setup for performing the models. The manual’s
detailed guide to data preparation ensures that data are optimally structured for training
the model. The manual then delves into the construction of predictive models, highlight-
ing various evaluation metrics and algorithms. This manual ultimately empowers users
with knowledge and tools necessary to transition from raw data to the accurate predic-
tions.

23


	Introduction
	Environmental Setup
	Hardware specification
	Software specification
	Anaconda Navigator
	Jupyter Notebook
	Python


	Imported Packages
	 Data Source and Description of Dataset
	Data Visualization
	Data Prepartion
	Check for null values
	Check for duplicate rows
	Data Reduction
	Data Transformation

	Model Building and Evaluation
	Machine Learning Models
	Random Forest with and without hyperparameter optimization 
	XGBoost with and without hyperparameter optimization 
	Decision Tree with and without hyperparameter optimization 
	KNN with and without hyperparameter optimization 
	Ridge Regression with and without hyperparameter optimization 

	Deep Learning Models
	 Long Short-term Memory(LSTM) 
	 Feedforward Neural Network(FNN) 


	Conclusion

