~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Karthika Rajan
Student ID: X21122920

School of Computing
National College of Ireland

Supervisor: Muslim Jameel Syed

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Karthika Rajan
Student ID: X21122920
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Muslim Jameel Syed
Submission Due Date: 18/09/2021
Project Title: Configuration Manual
Word Count: 3008
Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Karthika Rajan

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Karthika Rajan
X21122920

1 Introduction

The environment setup is very essential because it serves as the basis for the investiga-
tion and the analysis. The configuration manual provides a detailed description of how
environment has been set up, including information on the programming language used,
the system configuration, utilised libraries and the packages. The manual also provides
step-by-step coverage of coding techniques used throughout the study, along with the
explanations and screenshots for better comprehension.

2 Environmental Setup

Successful completion of a project often relies on the use of variety of tools and the
software that automate certain processes, increase productivity and guarantee accuracy.
A complete list of all tools and software used for the project is provided in this section.

2.1 Hardware specification

Specification of the machine used in this study are shown in figure [1}

'® Dewvice specifications

Device name Karthi

ASUS-Vivobook

Processor 12th Gen Intel(R) Core(Th) i5-12500H 2.50 GH=

Installed RANM 16.0 GB (15.6 GB usable)

Device ID BA7AOTTF-0A43-4798-884A-13C3FC1AZEB7Y

Product ID 00342-22022-23563-AM0OEM

System type 64-bit operating system, x64d-based processor

Pen and touch Mo pen or touch input is available for this display
Related links Domain or workgroup System protection Advanced system settings
== Windows specifications

Edition Windows 11 Home

“Wersion 21H2

Installed on 19/09/2022

OS build 220001574

Experience Windows Feature Experience Pack 1000.22000.1574.0

Figure 1: Hardware specification

The computer is powered by 2.50 GHz Intel(R) Core(TM) i5-12500H processor from
the 12th generation. The 12th Generation Intel processors are renowned for the improved

performance and the efficiency, which makes them suitable for variety of computational
tasks. The machine is equipped with al6 GB of installed RAM. The computer operates
on a 64-bit operating system.

2.2 Software specification
2.2.1 Anaconda Navigator

For this research project, Anaconda E| was installed on the computer so that Jupyter
environment could be used. Anaconda is a complete platform that makes it easier to
set up settings for the data science and machine learning. It comes with all tools and
the packages needed to do research well. Figure [2] shows the home page of Anaconda
Navigator.

Q

file Help

{2) ANACONDA NAVIGATOR 0 ossiction

A Home
| Allappliations ol on | base ot | | chamnets
. Environments. & 8 2 ¢ 2 &
Ly . o
M Leaming @ ’;. @ jupyter ::.
i y i

Dataspell CMD.exe Prompt Notebook

044
Run a cmd.exe terminal with your current
envirenment from Nevigator activated

Powershel Prompt
2 64s 00
Web-based, interactive computing Run & Powershell terminal with your
notebook environment. Edit and run current environment from Navigator
human-readable docs while describing the activated
dats analysis

Jupyterlab Qt Console

ah Community

PyQE GUI that supports inline figures,
proper multiline editing with syntax

An extensible environment For interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Dataspellis an IDE For explorstory dits
analysis and prototyping machine lezring
models. t combines the interactivity of
Jupyter notebooks with the intelligent
Fython and R coding assistance of PyCharm
in one user-Friendly environment;

| Launch | | Launch | | Launch | | Launch | | Launch |

highlighting, graphical calltps, and more.

| instalt |
% 2] 2 L] %
|
o A ORACLE
q Q Cloud Infrastructure

Spyder
A5
Anaconda SeientiFic P'fthon Development
Notebooks EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
Em‘:g’éz‘:?z:ﬁ:ﬂ;‘f: debugging and introspection Festures

ready to code

 Launh |

Datalore

Kick-start your data science projects in

secondsin pre-configured environment.

Enjoy coding assistance For Python, SQL,

and R in Jupyter notebooks and benefit

from ne-code sutomations. Use Datalore
online for free.

 Launch |

1BM Watson Studio Cloud Oracle Data Science Service

1BM Wakson Studio Cloud provides you the || OCI Data Seience offers a machine learning
tools to analyze and visualize data, to platform to build, train, manage, and

cleanse and shape data, to create and train

machine learning models. Prepare data and

deploy your machine learning models on
the cloud with your Favorite open-source

build models, using open source data tools.
science tools or visusl modeling
[Launen |

 Launch |

Figure 2: Software specification

2.2.2 Jupyter Notebook

Gluaviz Orange 3
124 3320
Multidimensional data visuslization across | Component based data mining Framework
files. Explore relationships within and Data visualization and data analysis for
among related datasets. novice and expert. Interactive workflows
with a large toolbox.

| nstalt | | instalt |

As the main environment for writing and analysing the code, this study used Jupyter
Notebook version 6.4.8. Figure |3| shows how to start a Jupyter notebook by choosing
"Python 3” choice from ”New” menu.This option is the starting point for undertaking
multiple analyses in Jupyter environment. The research entails the creation of the three
distinct notebooks, each of which corresponds to various objectives:

e Machine Learning Models with Default Parameters Notebook:The application of
the machine learning models with their default settings is implemented in this note-
book. It acts as starting point for evaluating the model behaviour and performance
without any parameter adjustment.

'https://docs.anaconda.com/

Connect v

https://docs.anaconda.com/

e Machine Learning Models with Hyperparameter Optimization Notebook: In this
notebook, hyperparameter optimisation is used to build the machine learning mod-
els.

e Deep Learning Model Notebook: The third notebook is designated for the deep
learning models implementation.

- Ju pyter Quit Logout

Files Running Clusters

~

Select items to perform actions on them Upload || New~ | &

Notebaok:
0o - Wl Name 4) e
Python 3 (ipykemel)
O [anaconda3 R
0 O Contacts Other

[J [Deskiop Text File

0 [Documents Folder

Terminal
O [Downloads

Figure 3: Jupyter Notebook

2.2.3 Python

Using Python programming language, machine learning and deep learning models were
implemented. Python’s strong ecosystem of libraries and tools and its user-friendliness
provided a firm basis for creating and trying out with the various models.

3 Imported Packages
The figure [4] depicts the packages imported in this project.

e Pandas: This library is used to manipulate and analyse the data.

e Numpy: Necessary for numerical and array operations.

e Matplotlib: It is a popular plotting library that enables creation of visualisation.
e Tensorflow: It is an open-source deep learning framework.

e Random: This module provides random number generation and random operation
capabilities.

e Xgboost: It is a scalable and effective gradient boosting library.

e RandomForestRegressor: It is a decision tree-based ensemble learning method for
the regression tasks.

e DecisionTreeRegressor: It is a single decision tree-based regression model from
scikit-learn library.

KNeighborsRegressor : It is a k-nearest neighbors regression model from the scikit-
learn.

MinMaxScaler: It scales features to a particular range (usually 0 to 1).

PolynomialFeatures, StandardScaler: StandardScaler standardises features by elim-
inating mean and scaling to unit variance. PolynomialFeatures generates polyno-
mial features for polynomial regression.

Ridge: It is a linear regression model that incorporates L2 regularisation as a means
to mitigate issue of overfitting.

Sequential: It is a neural network model in high-level neural networks API Keras.
LabelEncoder: Converts categorical data into numerical labels.

Train_test_split, GridSearchCV, cross_val_score: It is for dividing data into training
and testing sets, tuning hyperparameters using grid search and performing the
cross-validation.

mean_squared_error, mean_absolute_error, r2_score: These metrics are used to eval-
uate regression model performance.

make_pipeline: It creates a pipeline for data preprocessing and modelling .

LSTM, Dense: LSTM is a kind of recurrent neural network layer utilised for se-
quence data and Dense represents a fully connected neural network layer.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import random

import xgboost as xgb

from sklearn.ensemble impeort RandomForestRegressor

import xgboost as xgb

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import PolynomialFeatures, StandardScaler

from sklearn.linear_model import Ridge

from keras.models impert Sequential

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test split, GridSearchCV, cross_wval score
from sklearn.metrics import mean_squared_error, mean_absclute_error, r2_score
from sklearn.pipeline impeort make_pipeline

from keras.layers import LSTM, Dense

Figure 4: Imported Packages

4 Data Source and Description of Dataset

This study obtained the dataset used to predict Irish road accidents from the website of
the Central Statistics Office (CSO)P| The dataset is in csv format.

Figure|p|depicts how the data is loaded and also shows a brief overview of the dataset’s
structure and contents. The dataset contains 9984 rows and 7 columns. The variables in
tha dataset are: Statistic Label, Year, Age group, Sex, Road user type, unit and value.
The head function is used to display first few entries of the dataset. By doing so, it
provides a preview of actual data present in the DataFrame, providing a concise summary
of its contents. The code also includes a concise summary of data types associated with
the columns in the dataset.

data = pd.read csv("C:\\Users\\karthi\\Downloads\\RESEARCH PROJECT\\full data.csv")

data.shape

(9984, 7)

print(data.head())

Statistic Label Year Age Group Sex Road User Type UNTT VALUE
Killed Casualties 20885 All ages Male All road users HNumber 286
Killed Casualties 2085 All ages Male Pedestrians MNumber 51
Killed Casualties 20885 All ages Male Pedal cyclists HNumber 7
Killed Casualties 2885 All ages Male Motor cyclists HNumber 53
Killed Casualties 2805 All ages Male All Car users HNumber 148

o e @

print(data.dtypes)

Statistic Label object

Year int64
Age Group object
Sex object
Road User Type object
UNTT object
VALUE inté4

dtype: object

Figure 5: Data loading and overview

5 Data Visualization

Data visualization is a powerful technique that converts the complex datasets into visu-
ally understandable representations, making information simpler to comprehend, inter-
pret and communicate. Using diagrams, charts, maps, and other visual elements, data
visualization permits the analysts to investigate the connections among variables, find

’https://data.cso.ie/table/ROA16

https://data.cso.ie/table/ROA16

outliers and discover meaningful trends.

The code provided in figure [6] presents distribution of the road accidents by age group
using bar chart. By grouping and displaying data, code helps develop a better com-
prehension of the accident patterns and potential areas of concern by providing insights
into relative frequency of the crashes among various age groups.

#Age Group Distribution of People involved in Road Accidents

Group the data by age group and calculate the total number of accidents for each group
age_group_counts = data.groupby('age group')["VALUE'].sum()

Plot the bar chart

plt.figure(figsize=(18, 8))

age_group_counts.plot(kind="bar", color='maroon"’)

plt.title('Age Group Distribution of People involved in Road Accidents')
plt.xlabel(fAge Group'}

plt.ylabel(Number of Accidents')

plt.xticks(rotation=45}

plt.show()

Age Group Distribution of People involved in Road Accidents

25000

20000

15000

Number of Accidents

10000

2 £ £ 52 £ 52 £ £ £ &2 &
2 2 2 B 2 B 2 2 2 2 K,
A A S S R o8
o ~ ~ A ot e o < & 3
3 7 P > » P w2 < &
,ﬂ"’\
o
Age Group

Figure 6: Age group distribution of people involved in road accidents

Using a pie chart, the code given in figure [7]illustrates gender distribution of individu-
als involved in the traffic accidents. The chart provides the quick visual representation
of proportion of accidents linked to each gender, making it simple to compare relative
impact of accidents on each gender.

Using a stacked bar chart, the code as shown in figure [§ effectively demonstrates
pattern of road accidents by road user type and the gender. By classifying crashes
according to these two factors and presenting them as stacked bars, the chart provides
a clear and insightful means of comparing accident rates of various road user types and
genders.

#aender Distribution of People involved in Roagd Accidents

gender_counts = data.groupby('Sex')["VALUE'].sum()

plt.figure(figsize=(2, 8))

plt.pie(gender_counts, labels=gender_counts.index, autopct="%¥1.1f%%", startangle=98)
plt.title('Gender Distribution of People involved in Road Accidents')

plt.axis('equal”)

plt.show()

Gender Distribution of People involved in Road Accidents

Female

Male

Figure 7: Gender distribution of people involved in road accidents

#Distribution of Road Accidents by Road User Type and Gender
Group the filtered data by road user type and gender and calculate the count of accidents for each combination
grouped_data = data.groupby([' road_user_type’, 'Sex'])['VALUE'].sum().unstack()

Plot the stacked bar chart
plt.figure(figsize=(18, 6))
grouped_data.plot(kind="bar’, color=['pink', "lightblue’, "blue', 'yellow'])

Set the x-axis Llabel
plt.xlabel('Road User Type')

Set the y-axis Llabel
plt.ylabel('Number of Accidents')

Set the chart title
plt.title('Distribution of Road Accidents by Road User Type and Gender')

Add a Legend
plt.legend(title="Gender")

Show the plot
plt.tight_layout()
plt.show()

<Figure size 720x432 with @ Axes>

Distribution of Road Accidents by Road User Type and Gender

., 25000 Gender
= Female
& 20000 4 Male
L=
£
15000 1
]
T 10000 4
E
2 5000 4
1] T T T T T T
jay = 4 4] 8 2
g 5) 2) %
= 9 5 g = 5
o a = = B £
k5 = o &
8 :

Road User Type

Figure 8: Distribution of Road Accidents by Road User Type and Gender

6 Data Prepartion

Data preparation is a fundamental and essential step in data analysis, involving data trans-
formation, cleaning and arrangement of unprocessed data into suitable format for analysis,
modelling, and interpretation. Raw data is frequently available in variety of formats and
may contain inconsistencies, absent values or noise . The objective of data preparation
is to address these challenges by refining data, guaranteeing its quality and arranging it
in a coherent structure that facilitates informed decision-making.

6.1 Check for null values

print(data.isnull().sum())

statistic label @
Year @
age group @
Sex @
road_user type 8
UNIT 8
VALUE 8
dtype: int6d

Figure 9: Check for null values

Figure [J] depicts the code used to display the number of absent values in each column
of the dataset. This code computes the number of missing values in each column and
outputs the results, revealing the completeness of the dataset. The ”data.isnull().sum()”
uses pandas DataFrame method ”isnull()” to construct boolean DataFrame where every
record is either True (if the corresponding value is missing) or false (if the value is not
missing). The ”.sum()” function then calculates the sum of each column’s tYes values,
effectively tallying the missing values in each column. It is found that the dataset does
not contain any null values.

6.2 Check for duplicate rows

duplicate rows = data[data.duplicated()]
duplicate rows

Statistic Label Year Age Group Sex Road User Type UNIT VALUE

Figure 10: Check for duplicate rows

Figure[10|depicts the code used to identify and remove duplicate entries from the data-
frame. This code filters dataframe to include only the duplicate entries, which have

identical values across all the columns. There are no duplicate rows in the dataset.

6.3 Data Reduction

Summary or aggregate data frequently represents the consolidated information derived
from the individual data points. This may consist of totals, averages or other aggregated
metrics. Such data may not be appropriate for the comprehensive analysis, as it lacks
individual-level information necessary to identify patterns, relationships or trends.

Remove rows where road user type is all car users and all road users

data = data[~((data['road_user_type'] == 'All Car users’') (data['road_user_type'] == "All road users'))]
Remove rows where statistic is all injured
data = data[data['statistic_label'] != "All Killed and Injured Casualties']
Remove rows where age group is all ages
data = data[data['age_group’] != 'all ages']
Print the updated DataFrame
print(data)
statistic_label VYear age_group Sex road_user_type \
17 Killed Casualties 2885 8 - 5 years Male Pedestrians
18 Killed Casualties 2885 8 - 5 years Male Pedal cyclists
19 Killed Casualties 2885 © - 5 years Male Motor cyclists
21 Killed Casualties 2885 8 - 5 years Male Car drivers
22 Killed Casualties 2885 © - 5 years Male Car passengers

6650 Injured Cassualties 2820 Age unknown Female Pedal cyclists
6651 Injured Cassualties 28286 Age unknown Female Motor cyclists
6653 Injured Cassualties 2820 Age unknown Female Car drivers
6654 Injured Cassualties 2828 Age unknown Female Car passengers
6655 Injured Cassualties 2828 Age unknown Female Other road users

UNIT WALUE
17 Number 3
18 Number 2]
16 Number 2]
21 Number e
22 Number 2]

6658 MNumber
6651 Number
6653 MNumber
6654 Number
6655 Number

oo ®®-

[4668 rows x 7 columns]

Figure 11: Code for data reduction

In the Irish road accident dataset, statistical label column contains three values: 7 All
Killed and Injured Casualties,” ”Killed Casualties,” and " Injured Casualties.” ” All Killed
and Injured Casualties” represents overall number of the killed and the injured casualties.
This aggregate figure is omitted from the dataset because it does not specifically describe
any fatalities or injuries. Similarly, the value ”All ages” from the column age group
is removed, as it represents aggregated data for all age categories. The Road User type
column contains another set of aggregated data. The value ” All road users” is a collection
of data containing counts of various road user categories, such as pedestrians, cyclists,
motorcyclists, all vehicle users, and other road users. Therefore, "all road users” is also
eliminated. 7 All Car Users” equals the sum of ”Car drivers” and ”Car Passengers” .As
a result, this value is also excluded from the dataset. The code for this is given in figure

Ik

6.4 Data Transformation

Find the mode value of the "age" column
mode value = data["age group”].mode()[8]

data.loc[data["age _group”] == "Age unknown”, "age group”] = mode value

Figure 12: Code for data transformation

The code given in the figure[12]is intended to deal with the unknown age group values
(" Age unknown”) in the dataset by imputing them with median value of existing age
groups. This imputation technique ensures that ”age_group” column contains legitimate
values for the further modelling and analysis.

7 Model Building and Evaluation

7.1 Machine Learning Models

There are 5 machine learning models implemented in this study and those are: Random
Forest, Decision Tree, XGBoost, KNN and Ridge regression.

7.1.1 Random Forest with and without hyperparameter optimization

Define the independent variables (features) and dependent variable (target)
features = ["statistic label”, "Year', "age group’, 'Sex’', ‘road_user_type’]
target = "VALUE®

Prepare the data for training
X = data[features]

y = data[target]

Convert categorical variagbles to numerical using one-hot encoding
X = pd.get_dummies(X)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=08.2, random_state=42)

Create a Random Forest regressor object
rf_regressor = RandomForestRegressor({n_estimators=188, max depth=None, min_samples_split=2, random_state=42)

Train the model
rf_regressor.fit(X_train, y_train)

Make predictions on the test set
yv_pred = rf_regressor.predict({X_ test)

Calculate evaluation metrics

mse = mean_squared_error(y_test, v pred)
mae = mean_absolute_error(y_test, y_pred)
rmse = mean_squared_error(y_test, y pred, squared=False)

r2 = r2_score(y_test, y_pred)

Print the evaluation metrics

print{”"Mean Squared Error (MSE):", mse)
print({”"Mean Absolute Error (MAE)}:", mae)
print("Root Mean Squared Error (RMSE):", rmse)
print{(”"R-squared Score:", r2)

Mean Squared Error (MSE): 141.35549777883486

Mean Absclute Error (MAE)}: 5.2315821872283292

Root Mean Squared Error (RMSE): 11.889343874698673
R-squared Score: 8.94289486792968694

Figure 13: Code for Random Forest without hyperparameter optimization

10

Figure shows the code for random forest model without hyperparameter optim-
ization. First, the code defines features (independent variables) and target variable
(dependent variable). Next the dataset is divided into training and testing sets. The
code initializes a Random Forest regressor, trains it with training data and makes pre-
dictions on the test set. To assess the efficacy of a model, evaluation metrics such as Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and R-squared score are calculated.

#Define the independent varigbles (features) ond dependent varioble (target)
features = ['statistic_label",'Year', ‘'age_group', 'Sex', 'road_user_type']
target = "VALUE'

Prepaore the data fFor training

X = data[features]

yw = data[target]

Convert categorical varighles te numerical wsing one-hot encoding

W = pd.get_dummies(X)

Split the data into troining and testing sets

¥_train, ¥_test, v _train, y_test = train_test_split(X, vy, test_size=8.2, random_state=42)

Create o Rondom Forest regressor objec
rf_regresszor = RandomForestRegressor(random_state=42)

Define the hyperparameter grid for grid search
param_grid = {

'n_estimators': [188, 208, 388], # MNumber of trees in the forest

'max_depth': [None, 5, 18], # Moeimum depth of the tree

'min_samples_split': [2, 5, 18] # Minimum number of samples required to split an internal node
H

Perform grid search to find the best hyperparaometers
grid_search = GridSearchCV({estimator=rf_regressor, param_grid=param_grid, cw=5)
grid_search.fit{¥_train, v_train)

Get the best model from grid search
best_rf _model = grid_search.best_estimator_

Make predictions on the test set using the best model
v_pred = best_rf_model.predict{¥_test)

Colculote evaluation metrics

mse = mean_squared_error(y_test, y_pred)

mae = mean_absolute error{y_test, v_pred)

rmse = mean_sguared_error{y_test, v_pred, sguared=False)
r2 = r2_score{y_test, yv_pred)

Print the evaluation metrics
~int{"Mean Squared Error (MSE)}:", mse)
~int{"Mean Absolute Error (MAE):", mae)
~int{"Root Mean Sguared Error (RMSE):™, rmse)
~int{"R-=squared Score:™, r2)

TT T T

Mean Squared Error (MSE): 136.826765648561882

Mean Absolute Error (MAE)}: 5.1882858430824172

Root Mean Squared Error (RMSE): 11.697297365144681
R-sgquared Score: @.9587253353177374

Figure 14: Code for Random Forest with hyperparameter optimization

Figure [14] demonstrates the Random Forest algorithm’s hyperparameter tuning and
model evaluation processes. The hyperparameter grid for grid search is defined, which
includes number of trees in the forest (n_estimators), the maximum depth of trees
(max_depth) and minimal number of the samples necessary to split internal nodes (min_samples_split).
The grid search is conducted using the 5 folds of cross-validation (CV) to identify op-
timal hyperparameter combination that delivers best model performance. GridSearchCV

11

evaluates multiple hyperparameter combinations and chooses one with the highest cross-
validated score. The optimal model is then extracted from the grid search results. This
model is employed to forecast the target variable on the test set. Same evaluation metrix
are used to evaluate performance of the model.

7.1.2 XGBoost with and without hyperparameter optimization

features = ['statistic_lsbel®,'Year', ‘age_group', 'Sex', "road_user_type']
target = "VALUE'

Prepare the data for training

X = data[features]

y = data[target]

Convert caotegoricol varisbles to numerical using one-hot encoding
X

= pd.get_dummies(X)

A5

Split the data into troining and testing sets
X _train, ¥ _test, y_train, y_test = train_test_split(X, vy, test_size=0.2, random_state=42)

Troin an XGBoost model
model = xgb.XGBRegressor)
model.fit(X_train, y_train)

Make predictions on the test set
yv_pred = model.predict(¥_test)

Colculate evaluation metrics

mse = mean_squared_error(y_test, y_pred)

mae = mean_sbsolute _error{y_test, y_pred)

rmse = mean_squared_error(y_test, y_pred, squared=False)
r2 = rZ_score(y_test, y_pred)

Print the evaluagtion metrics

print({“"Mean Squared Error (MSE):", mse)
print{"Mean Absolute Error (MAE):", mae)
print{"Root Mean Squared Error (RMSE):™, rmse)
print{"R-squared Score:", r2)

Mean Squared Error (MSE): 181.79175684411736

Mean Absolute Error (MAE): 5.353884187140472

Root Mean Squared Error (RMSE): 18.8891%8@53575754
R-sguared Score: 8.9633422991275451

Figure 15: Code for XGBoost without hyperparameter optimization

Figure shows the code for implementing XGBoost algorithm with default para-
meters. Using xgb.XGBRegressor class, XGBoost regression model is created. Using
fit technique, the algorithm is then trained on training data (X_train and y_train). The
trained model is then applied to test set (X_test) to predict the target values. The y_pred
variable stores these predictions.

12

Figure 16| shows the code for XGBoost model with hyperparameter optimization.

Define the features and target variable
features = ['statistic label", 'Year', '=
target = "VALUE®

Prepore the data for training

X = data[features]

v = data[target]

Convert cotegoricol verigbles to numerical wsing one-hot encoding
X = pd.get_dummies(X)

Split the data into troining ond testing sets

X _train, ¥ _test, yv_train, v_test = train_test_split(X, v, test_size=8.2,

Define the hyperporometer grid for grid search

param_grid = {
‘learning_rate": [8.1
"'max_depth': [1, 3, 5],
‘n_estimators': [166, 366, 588]

H

4

Create an XGBoost regressor

model = xgh.XGERegreszor()

Perform grid search to find the best hyperparameters

grid_search = GridSearchCVW{estimator=model, param_grid=param_grid, cw=5)
grid_search.fit{¥X_train, yv_train)

Get the best model from grid search
best_model = grid_search.best_estimstor_

Make predictions on the test set using the best model
yv_pred = best_model.predict{¥_test)

Calculate evalugtion metrics

mse = mean_squared_error{y_test, y_pred)

mae = mean_gbsolute_error{y_test, yv_pred)

rmse = mean_sgquared_error{y_test, yv_pred, sgquared=False)
r2 = r2_score{y_test, v_pred)

Print the evoluation metrics

print{"Mean Squared Error (MSE}:", mse)
print{"Mean Absolute Error (MAE}:", mae)
print{"Root Mean Sguared Error (RMSE):™, rmse)
print{"R-squared Score:", r2)

Meam Sguared Error (MSE): 99.96885941986121

Meam Absolute Error (MAE): 5.797719987333043

Root Mean Squared Error {(RMSE): 9.998242770457437
R-zguared Score: 8.9640816497331734

ge_group”, 'Sex', "'road user_type"]

rendom_state=42)

Figure 16: Code for XGBoost with hyperparameter optimization

A hyperparameter grid is defined, detailing various hyperparameter combinations in-
cluding learning rates, the maximal tree depths and number of estimators. These para-
meters affect the efficacy and the behaviour of XGBoost model. A regressor for XGBoost
is created. Next, the code uses grid search technique (GridSearchCV) to explore hy-
perparameter grid systematically. Grid search identifies, using a 5-fold cross-validation
strategy (cv=5), the hyperparameter combination that produces highest performance on
the training data.The best_model stores the best model derived from grid search. This
model contains the optimal hyperparameters for the provided data. Using this optimized

13

model, predictions are made on the unaltered test set (X_test). This method illustrates
how hyperparameter tuning can enhance the performance of the model by identifying the
parameter configuration that produces highest predictive accuracy.

7.1.3 Decision Tree with and without hyperparameter optimization

features = ['statistic_label®,'Year', 'age_group', 'Sex', 'road_user_type']
target = "VALUE'

epare the data for training
data[features]
data[target]

P

Convert categorical verisbles to numerical using one-hot encoding
X = pd.get_dummies(X)

Split the daota into troining and testing sets
X _train, X _test, v _train, y_test = train_test _split(X, y, test_size=0.2, random_state=42)

Create g Decision Tree regressor objec

decision_tree = DecisionTreeRegressor(random_state=42)

ara

Train the model
decision_tree.fit(X_train, yv_train)

Make predictions on the test set

v_pred = decision_tree.predict{X_test)

Calculate evalugtion metrics

mse = mean_squared_error{y_test, y_pred)

mge = mean_gbsolute error({y_test, yv_pred)

rmse = mean_squared_error({y_test, v_pred, squared=False)
r2 = r2_score(y_test, y_pred)

Print the evgluation metrics

print({"Mean Sgquared Error (MSE):", mse)
print({"Mean Absoclute Error (MAE):", mae)
print{"Rooct Mean Sguared Error (RMSE):", rmse)
print("R-squared Score:™, r2)

Mean 5Squared Error (MSE): 234.2125813449824

Mean Absolute Error (MAE): 6.344982386117137

Root Mean Sgquared Error (RMSE): 15.304805482014937
R-sguared Score: ©.91565432132096282

Figure 17: Code for Decision Tree without hyperparameter optimization

Figure shows the code for decision tree without hyperparameter optimization.
Decision Tree regressor instance with a fixed random state is created for consistency.
Afterward, model is trained with training data. Using the trained model, predictions
are made on test data, resulting in the y_pred values.Using functions from sklearn.metrics
library, multiple evaluation metrics such as MSE, RMSE, MAE and R-Squared score are
calculated.

14

Figure [18| shows the code for decision tree with hyperparameter optimization.

e features and target variable
['statistic_label’, 'Year', 's
VALUE'

Define th
features =
target = °

ge_group', 'Sex', 'road_user_type']

Prepare the data for training
= data[features]
data[target]

=
X
y
Convert cotegoricol variobles to numerical using one-hot encoding
= pd.get_dummies (X)

=

Split the data into troining and testing sets

¥ _train, ¥X_test, y_train, y_test = train_test_split(X, v, test_size=0.2, random_state=42)
Create g Decision Tree regressor object

dt_regressor = DecisionTreeRegressaor()

Define the hyperparometer grid for grid search
param_grid = {
'ma¥_depth': [None, 5, 18], # Maximum depth of the tree
'min_samples_split': [2, 5, 18] #

h

Perform grid search te find the best hyperparameters
grid_search = GridSearchCV(estimator=dt_regressor, param_grid=param_grid, cv=5)
grid_search.fit{¥_train, y_train)

Get the best model from grid search
best_dt_model = grid_search.best_estimator_

Make predictions on the test set using the best model
y_pred = best_dt_model.predict(X_test)

Calculate evaluation metrics

mse = mean_sguared_error(y_test, y_pred)

mae = mean_sbsolute_srror{y_test, v_pred)

rmse = mean_squared_error{y_test, yv_pred, sgquared=False)
r2 = r2_score(y_test, y_pred)

Print the evaluation metrics

print{"Mean Squared Error (MSE):", mse)
print{"Mean Absolute Error (MAE):", mae)
print{"Root Mean Squared Error (RMSE):", rmse)
print{"R-squared Score:", r2)

Mean Sguared Error (M3E): 286.46592552422268

Mean Absolute Error (MAE): 5.852675343456255

Root Mean Sguared Error (RMSE): 14.368922211642134
R-sguared Score: @,9255465786516953

Figure 18: Code for Decision Tree with hyperparameter optimization

Minimum number of samples required to split an internal

node

An instance of Decision Tree regressor is created. Afterwards a hyperparameter grid
containing values for the maximum tree depth and minimum required samples for node
separation is defined. The code uses a grid search technique (GridSearchCV) to sys-
tematically explore hyperparameter grid using a 5-fold cross-validation strategy (cv=5),
ultimately identifying hyperparameter combination that produces the greatest perform-
ance on the training data.The best_dt_model is used to store the optimized model ac-
quired through grid search. Using this best model, predictions are made on the test data,

yielding y_pred values.

15

7.1.4 KNN with and without hyperparameter optimization

£ features and target variable
['statistic_label', 'Year', 'a
VALUE'

features
target =

Define th
= ge_group”, "Sex', 'road_user_type']
1

gepare the data for training
data[features]
data[target]

[ald

b

Convert cotegerical veriables to numerical using ome-hot encoding
X = pd.get_dummies(X)

e

Split the dota into troining gnd testing sets
_train, X_test, v_train, y_test = train_test_split(X, v, test_size=8.2, random_state=42)

Create g KMV regression model
knn_model = KMeighborsRegressor(n_neighbors=5) # Specify the number of neighbors

Train the model
knn_model.fit{¥_train, y_train)

Make predictions on the test set

v_pred = knn_model.predict(X_test)

Caolculote evalugtion metrics

mse = mean_sguared error(y_test, y_pred)

mge = mean_sbsolute error(y_test, yv_pred)

rmse = mean_squared_esrror{y_test, v_pred, squared=False)
réz = r2_score(y_test, y_pred)

Print the evgluation metrics

print({"Mean Squared Error (MSE):", mse)
print{"Mean Absolute Error (MAE):", mae)
print("Rooct Mean Sguared Error (RMSE):", rmse)
print{"R-squared Score:", r2)

Mean Squared Error (MSE): 544.1388459885847

Mean Absolute Error (MAE): 13.458325379689545

Root Mean Squared Error (RMSE): 29.853929957708813
R-squared Score: @.6068@73374528638

Figure 19: Code for KNN without hyperparameter optimization

Figure shows the code for KNN model without hyperparameter optimization. A
KNN regression model is built and set up with a predetermined number of neighbors - in
this case, five to take into account while making predictions. Using training set of data
(X_train and y_train) the model is trained and predictions are made for test set of data
(X_test) using trained KNN model.

Figure [20] shows the code for KNN model with hyperparameter optimization. A
KNN regressor instance is created and a hyperparameter grid with values for number of

16

neighbours to take into account (n_neighbors) and prediction weight function (weights)
is defined. Grid search (GridSearchCV) and 5-fold cross-validation (cv=>5) are used by
the algorithm to systematically explore hyperparameter grid and identify the setting
that yields best performance on the training data. The grid search’s top model is saved
under the name best_knn_model. This improved model is then used to make predictions
on test data, producing y_pred values.

Define the features and target variagble
features = ['statistic label', '¥Year', 'z
target = "WVALUE'

ge_group', "Sex', "road_user_type"]

Prepare the data for training

X = data[features]

y = data[target]

Convert cotegorical varigbles to numerical wusing ene-hot encoding
X = pd.get_dummies(X)

.“_

Split the data into training and testing sets

¥_train, X_test, v_train, v_test = train_test_split(X, vy, test_size=8.2, random_state=42}
Cregte o KMN regressor object

knn_regressor = KNelghborsRegressor()

Define the hyperparaometer grid for grid search

param_grid = {
'n_neighbors": [3, 5, 71, # Number of neighbors to consider
'weights': ["uniform', 'distance"] # Weight function used in prediction

¥

Perform grid search to find the best hyperparameters
grid_search = GridsearchCV(estimator=knn_regressor, param_grid=param_grid, cv=5)
grid_search.fit({¥_train, v_train)

Get the best model From grid search

best_knn_model = grid_search.best_estimator_

Make predictions on the test set using the best model
y_pred = best_knn_model.predict(X_test)

Calculate evaluation metrics

mse = mean_squared_erroriy_test, v_pred)

mae = mean_absolute_error{y_test, y_pred)

rmse = mean_squared_error{y_test, yv_pred, sguared=False)
r2 = r2_score(y_test, y_pred)

Print the evoluation metrics

print{"Mean Squared Error (MSE}:", mse)
print{“"Mean Absolute Error (MAE):", mae)
print{"Root Mean Squared Error (RMSE):", rmse)
print{"R-squared Score:", r2)

Mean Squared Error (MSE): 627.2428099752194

Mean Absolute Error (MAE): 18.987255887469997

Root Mean Squared Error (RMSE): 25.844316829973536
R-zguared Score: ©.7741145236585774

Figure 20: Code for KNN with hyperparameter optimization

17

7.1.5 Ridge Regression with and without hyperparameter optimization

Figure 21| shows the code for Ridge regression model without hyperparameter optimiza-
tion.

Define the features and target variable
features = ['statistic_label', 'Year', 'z
target = '"VALUE'

ge_group', "Sex', "road_user_type']

Prepare the data for training

X = data[features]

v = data[target]

Convert categorical veriagbles to numerical using one-hot encoding
¥ = pd.get_dummies (X}

a5

Split the datg inte troining ond testing sets
_train, X_test, y_train, v_test = train_test_split{X, v, test_size=0.2, random_state=42)

Apply feature scaling

scaler = Standardscaler()

X train_scaled = scaler.fit_transform{¥_train)
¥_test_scaled = scaler.transform{¥_test)

Apply polynomigl features

poly = PolynomialFeatures{degree=2)

X_train_poly = poly.fit_transform(X_train_scaled)
X test_poly = poly.transform(X_test_scaled)

Apply Ridge Regression with cross-validotion

ridge = Ridge(alpha=08.5) # Adjust aglpha as needed

ridge_scores = cross_wval_score{ridge, X_train_poly, y_train, scoring="'neg_mean_squared_error', cv=5)
ridge_rmse_scores = (-ridge_scores)*+@.5

ridge_rmse_mean = ridge_rmse_scores.meani)

&

Train the model
ridge.fit(X_train_poly, y_train)

Make predictions on the test set
yv_pred = ridge.predict{X_test_poly)

Calculate evaluation metrics

mse = mean_squared_error(y_test, y_pred)

mae = mean_absolute_error(y_test, v_pred)

rmse = mean_squared_error{y_test, yv_pred, squared=False)
r2 = r2_score(y_test, y_pred)

&

Print the evoluation metrics

print({"Mean Squared Error (MSE):", mse)
print{"Mean Absolute Error (MAE):™, mae)
print{"Root Mean Sguared Error (RMSE):", rmse)
print{"R-squared Score:", r2)

Mean Sguared Error (M5E): &46.3923235621094]1

Mean Absolute Errcor (MAE): 18.83573248628588
Root Mean Sgquared Error (RMSE): 25.42424576489343
R-squared Score: 8.7672183154682558

Figure 21: Code for Ridge Regression without hyperparameter optimization

The data is normalized via the feature scaling, which improves the model stability
and the convergence. To transfer data, a StandardScaler object is used. To capture
any potential nonlinear relationships in data, degree 2 polynomial features are then in-
serted. The PolynomialFeatures class is used to implement this transformation. The
association between the characteristics and the target variable is modelled using Ridge

18

Regression and regularisation parameter (alpha) of the model is fine-tuned using cross-
validation.

N Define the Features and target variable
features = ["statistic label®, "Year', "age group”, "Sex’, "road_ user type”]

Larget = "WALUE"

& Pregare the dato Ffor Drainisg
x datal features |
¥ datal target)

& Covmvertd colegoricol wariables to muemerical wsing onme-hot encoding

E = pd.get_dusmies (M)

A Split the dota inte Croiming and testing Sels
X_train, X test, ¥ train, y test = Tralin_test split{M¥, y, test size=8.2, random_state=d47Z})

& Define the pipeline with PolpnomisiFfectures and Ridge Regression
pipeline = make_plipelinel

PolynomialFeatures [Dnc lude_Bias=False),

StardardScaler(),

Ridgel}
1

& DefFine the hpperporamelers search space
param_grid = {
'‘polynonial featwres degree': [2;, 3, 4],
‘ridge alpha™: [@.1, &.5, 1.8]

H

& Perform grid search
grid search = GridSearchiVipipeline, param_grid, scoring='neg_mean_squared_error” , cwv=S5)
grid search.fit{x train, y traim)

& Get Che best hyperparomsters
best params = @rid search.best params_

& Train the sodel with The best hyperporometers
model = grid_search.best _estimator_
model . FEU{¥ train, y train})

& Maks predictions wsing the model with the best hyperpardame Ders

y_pred = model.predict(x test)

& Colculaote eworlualion metrics

mise = mean_squared_serror(y_test, y_pred)

mae = mean_absolute_errorly _test, y pgred)

rase = mean squared_error(y_test, y_pgred, squared=False)
r2 = r2_score(y_Lest, y_pred)]

& Print the pvdlualtion metrics wilh the best hyperparaneters
print("Best Hyperparameters:™, besh params)

print{(“Best Mean Sguared ror (MSE)}:™, mse}

print("Best Mean Absolute Error (MAE):T, mae)

print{“Best Root Mean Sgquared Error (RMSE}:™, romme)
print(~"Best R-squared Score:"; r2)

Best Myperparameters: {"polynomialfeatures degree': 4, 'ridge alpha®: 8.1}
Best Mean Squared Error (MSE): 152 51746E97548682

Besl Mean Absolute Error (MAE): 6.3855352345E1359

Best Root Mean Squared Error (RMSE): 12.365988387981433%

Bestl R-sguared Score: B.544938679515431%5

Figure 22: Code for Ridge Regression with hyperparameter optimization

Figure [22| shows the code for Ridge regression model with hyperparameter optimiz-
ation. With multiple degrees for polynomial features and varied alpha values for Ridge
Regression, a search space for hyperparameters is established. After that, grid search
(GridSearchCV) is used to choose optimal configuration based on negative mean squared
error by methodically examining the hyperparameter combinations and using 5-fold cross-
validation.

19

7.2 Deep Learning Models

There are 2 deep learning models implemented in this study and those are: LSTM and
FNN

7.2.1 Long Short-term Memory(LSTM)
Figure [23] and [24] shows the LSTM model.

N Z=t Che cepd valuess

Seed valwe = 42

np.random. segad{ seed_walue)
random. Sead [Sesd_valus)
Lf.random.sel_seed(seed_walue)

& DeFine the Features and targst cariobles
Featwres = ["statistic_label”™ . "Year', "age proup”, "Sex’', "“road_ users Type” |
target = "VaALUE®

& Prepare the data for Craining
X = datal features |
¥ = datatarget])

& Covrvert categoricol warigbles To sumerical wsing onme-fol encoding

E = pd.get dusmies (X}

B Spilit the dotg into Trgiming ond tesTing sels
E_train, X test, ¥ train, y_test = Crain_test_split{X, ¥, test_sizFe=8_.2, random state=42)

A ZScgle the tnpul fegfures o O roangs between & ard 1
scaler = MinMaxScaleri)

E_train_scaled = scaler.fit_transform(E_tralind
X_test scaled = scaler.transformX_test)

& Reshapes the data o be 30 for input o LSTH (sangles, timestegs, Fealuress)
X_train_rechapsd = ng.rechape(X train_scaled, (X _Train_scaled.cshape(@], 1, X train_scaled.cshapae[1]33
¥ _test reshaped = np.reshapge(d_test scaled, (X test scaled.shape[8], 1, X test scaled._shage[1]5)

& Build the LSTM model

model = Sequentiall)

model . add{LSTHM{&54, input cshape=(1, X train_=caled.shape[1]}}]1
model . add{Dense(1))

mode]l .compile(loss="mean_squared_error” , opblimizer="adam'}

& Train the LSTM sookel

model FIt{¥ train_rechaped, ¥ Train, epochc=53, batch size=3F, verboca=1})

B Maks predictions onr Che test et
¥_pred = model. predict(X test reshaped)

& Colculate evoluvaltion metrics

mi=e = mean_sgquared_errorc(y _Ltest, y pred)

mage = mean_absclute error(y _Test, ¥y pred)

rase = mean_sguared errordy_test, y pgred;, squared=False)
r2 = r2_scoore(y test, y_pred)

it the evalualion me
vE{ "Mean Sguared Error
L "Mean Absolute Ermo
vL{"Root Mean Sguared Error (RMSE}:=™, rmse)
W "R-squarsed Score:™;, r2)

Epoch 1,558

1164116 [====== = ===] - 25 2masSstep - loss: 4348 3477
Epoch 2/58
116,116 [====== =====z= ===] - 85 2msSstep - loss: 4885 .82EB
Epoch 3,58
116,116 [====== =====z= ===] - 85 2msSstep - loss: 36481172
Epoch 4,58
116/116 [====== e ===] - @5 2msfotep - lo=s: IZEL._ABEE
Epoch 5,58
1165116 [====== ——=== ===] - Bs ZmsSoctep - 1loss: IAT6E.TFSES
Epoch &/58
1165116 [====== e ===] - 85 2messtep - loss: 3815%.5171
Epoch 7558
1164116 [====== = ===] - 85 Im=ssiep - loss: ZEES.2GT0
Epoch B/58
116,116 [====== e ===] - 85 AmsSstep - loss: Z745.27E3

Figure 23: Code for LSTM model

In order to guarantee consistency across runs, code starts by setting seed values. The
data is transformed into a series of time steps and moulded into a suitable (3D) format

20

1167116 l:::::=:====:====::====:====:==J - @% d.rrr_ﬁl."s.te‘j
Epoch 18758

1167116 l::::::::::::::::::::::::::::::] - e d-ITI"_‘h.IrE.tEfJ
Epoch 19758
1164116 [==============================] - His amsSfstep
Epoch 28758
11641165 [==============================] - Hs AmsSfstep
Epoch Z41/58
1164115 [==============================] - Hs amsSstep
Epoch ZIZ/58
1164116 [==============c====c-—=cco-=co=] - @5 AmsSstep
Epoch 23758
1164116 [===========——c=——=———-——-o-—==] - Gs Amsfstep
Epoch 24758
1164116 [===========——==——==——-——---—==] - @5 AmsSstep
Epoch 25758
1167116 l:::::=:====:====::====:====:==] - @% d.rrr_ﬁl."s.te‘j
Epoch 26458
1167116 l::::::::::::::::::::::::::::::] - e d-ITI"_‘h.IrE.tEfJ
Epoch 27758
1164116 [==============================] - His amsSfstep
Epoch 2B/ 58
1164115 [==============================] - Hs amsSstep
Epoch 29758
1164116 [==============c====c-—=cco-=co=] - @5 AmsSstep
Epoch 3I8s 58
1164116 [===========——c=——=———-——---—==] - Gs AmsSstep
Epoch 31758
1164116 [===========——==——=c——-——---—==] - @5 AmsSstep
Epoch 3Z/58
1167116 l:::::=:====:====::====:====:==] - @% d.rrr_ﬁl."s.te‘j
Epoch 33758
1167116 l::::::::::::::::::::::::::::::] - e d-ITI"_‘h.IrE.tEfJ
Epoch 34,58
11&67116 l:::::=:::==::::=::::==::::=:::] - @5 d.nﬁl.rs.tep
Epoch 35758
11641165 [==============================] - Hs amsSfstep
Epoch 36458
1164115 [==============================] - Hs amsSstep
Epoch 37758
1164116 [==============c====c-—=cco-=co=] - @5 AmsSstep
Epoch 3IESS&
1164116 [===========——c=——=———-——---—==] - Gs AmsSstep
Epoch 3I9¢ 58
1164116 [===========——==——=c——-——---—==] - @5 AmsSstep
Epoch 28758
1167116 l:::::=:====:====::====:====:==] - @% d.rrr_ﬁl."s.te‘j
Epoch 41758
1167116 l::::::::::::::::::::::::::::::] - e d-ITI"_‘h.IrE.tEfJ
Epoch £Z/58
11&67116 l:::::=:::==::::=::::==::::=:::] - @5 d.nﬁl.rs.tep
Epoch £3758
11641165 [==============================] - Hs amsSfstep
Epoch 24758
1164115 [==============================] - Hs amsSstep
Epoch 45758
1164116 [==============c====c-—=cco-=co=] - @5 AmsSstep
Epoch 46/58
1164116 [===========——c=——=———-——---—==] - Gs AmsSstep
Epoch 47758
1167116 l:::::=:====:====::====:====:==] - @% d.rrr_ﬁl."s.te‘j
Epoch 48758
1167116 l::::::::::::::::::::::::::::::] - e d-ITI"_‘h.IrE.tEfJ
Epoch 20758
11&67116 l:::::=:::==::::=::::==::::=:::] - @5 d.nﬁl.rs.tep
Epoch S8/ 58
1164116 [- B Ams/Sstep

29,29 [== 1ls Ims/step
Hean Squared Error (MSE): S4Z.B327442699231

Hean Absolute Error (MAE): 9. 3B708658157687

Rool Mean Squared Error (AMSE): 23 .258771383B6757
R-sguared Score: @.F@4S136852ITIEI2TI0

Figure 24: LSTM model

21

loss:

loss:

o5t

lo=s:

lo=x=:

lo=x=:

lo=x=:

lo=s:

loss:

loss:

o5t

lo=x=:

lo=x=:

lo=x=:

lo=s:

loss:

loss:

oSt

lo=s:

lo=x=:

lo=x=:

lo=x=:

lo=s:

loss:

loss:

oSt

lo=s:

lo=x=:

lo=x=:

lo=x=:

loss:

loss:

oSt

o5t

2882 .

1945

1897,

1846

1797 .

1745 .

17a4 .

1G5,

1615,

1577,

1536 .

1496 .

1455,

12z4 .

13ES.

1355,

1318 .

12832 .

1246,

1z311.

1177,

1145,

1114,

18683 .

1856 .

18ZE

1881

SAS6

267E

7 R

ATES

1554

L==

GIET

2526

e417z

TOBEG

SSEL

Hio|

R

259

agos

IGEE

SGEE

SE49

TaE44

STE3

aATET

2734

2274

191z

JAGSE

S7F6.6319

S51.5%124

HI2E.

5131

HE4 STEA

HE5E ASET

for implementing LSTM model. Using the Sequential API of Keras, an LSTM model is
created that consists of an LSTM layer and dense output layer. A mean squared error
loss function and the Adam optimizer are used in the model’s construction. The LSTM
model is trained using the rearranged training data, with batch size and the epoch count
being specified. Using the trained LSTM model, predictions are made on the test data
after training.

7.2.2 Feedforward Neural Network(FNN)

& E=t Che ceed valuwses
Seed_wvalwe = 432

rnp.random. seedf{ cead_wvalose)
rardom. seed [seed walues)
Lf.random. sel_ssed(seed _walue)

& DefFine the Ffegtures arnd targst variables

Featwres = ["statistic label”, "Year';, "age proup” ., "Sex”; road_user Type"]
Carget = “WaLUE"®
& Prepares the doto Ffor Draining
x = data| features |
¥ = data|target)
Covrrert calegoricol wardgbles o rmumer-icdl wosing onme-fol encod'ing

X =

= pd.get dusmies (X}

& Eplit the dotgo into Troiming oand testing Sselfc

X_Train, ¥_test, ¥ Uralim, ¥ Test = tralin_test_split{X, ¥, T[est size=8_.Z2, random _state=2LIX)
& Eoale the tnpult fedgtures To & roangs belewen & andg 1

scaler = MinMasScaler()

X _train_scaled = scaler_fit_transform(X_traind

X _Test scaled = scaler.transform(X_test)

& Burildd the FMA socdel

model = Sequentiall)

mode] add{Dense(62, activation="relu’;, Lngul shape={_{¥ traim_scaled.shapel[1].)133
mode] add{Dense(32, activation="relu”’)}

model add{Dense(1]))

N Comprile fhe modlel
mnodel .complle(loss="mearn_squared_error” , opbtimizer="adamn" }

& Train the FAN sodsl
model . FET{¥ train_scaled, y train, epochs=58, bkatch_ size=32, werbose=1]}

& MEpke predictions ot The fest el

¥_pred = model.predici(Hd_test scaled}

& Crlculates evdlualion smeirics
mse = mean_sgquared_ errocy test, y pred)
mag = mean_absolute_errorc(y Tect, y pered)
rmsse = mean_sguared _errocly e, y pwed, squared=Falsze)
rZ = rZ_scorel(y test, % pred)
evdiualion medtrics
Sguared Error [(HSE}:™, mse}
Sbsolube Errmor (MAER:-" . mae)
print("Rkoot Mean Sguared Error (RMSE}:™, rrse)
print{"R-squared Soocre:z™; rZ)

Epoch &£4 758

A16/115 [==============================] - B85 Ims,/step - loss: 27X . 4897
Epoch 45758

A16/11E [====s======s=====s=====o====o===] - Bs 2msSstep - loss: 271.E281
Epoch 25/58

116,115 [==========s=====s=====s=z=====z===] - @5 Ims/step - loss: 26E.&157F
Epoch 47/58

116115 [=====================s=========] - @5 ImsSstep - loss: 2564.6234
Epoch 48758

115,116 [==============================] - @5 2m=/atep - loss: 27I_BIZT
Epoch £9/758

116115 [==========s=====s====s=z=====z===] - @5 Ims/step - lo=s: 251.611%
Epoch S8y 58

A16/115 [==============================] - B85 2ma/,step - loss: 259, 3347
29529 [======= e = = - a5 Jms < heys

Hean Squared Error (MSE): 201, :IT-'-"-il!d-éBBQQEE

Hean dbsolute Error (HAE): 7.32113185399815977
Rootl Mean Squared Evrror (BMSE) @ 14 15864545687 773
R-squared Score: B 5274314580 EIEAT

Figure 25: Code for FNN model

Figure [25| shows the code for FNN model. The input characteristics are scaled using

22

MinMaxScaler to normalise them between 0 and 1. Sequential API from Keras is used
to build the FNN model. It is made up with the layers that are closely related and
have activation features like ”"relu.” The mean squared error loss function and the Adam
optimizer are used in the model’s construction. Fitting FNN model to the scaled training
data includes determining the batch size and number of epochs. Predictions are made
for the test data using the trained model after training.

8 Conclusion

The hardware and software requirements have been thoroughly documented in this con-
figuration manual, ensuring a smooth setup for performing the models. The manual’s
detailed guide to data preparation ensures that data are optimally structured for training
the model. The manual then delves into the construction of predictive models, highlight-
ing various evaluation metrics and algorithms. This manual ultimately empowers users
with knowledge and tools necessary to transition from raw data to the accurate predic-
tions.

23

	Introduction
	Environmental Setup
	Hardware specification
	Software specification
	Anaconda Navigator
	Jupyter Notebook
	Python

	Imported Packages
	 Data Source and Description of Dataset
	Data Visualization
	Data Prepartion
	Check for null values
	Check for duplicate rows
	Data Reduction
	Data Transformation

	Model Building and Evaluation
	Machine Learning Models
	Random Forest with and without hyperparameter optimization
	XGBoost with and without hyperparameter optimization
	Decision Tree with and without hyperparameter optimization
	KNN with and without hyperparameter optimization
	Ridge Regression with and without hyperparameter optimization

	Deep Learning Models
	 Long Short-term Memory(LSTM)
	 Feedforward Neural Network(FNN)

	Conclusion

