ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Rian Dwi Putra
Student ID: 22108637

School of Computing
National College of Ireland

Supervisor:
Rejwanul Haque
&

John Kelly

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Rian Dwi Putra
Student ID: 22108637
Programme: MSc in Data Analytics Year: 2023
Module: Research Project
Lecturer: Rejwanul Haque & John Kelly
Submission Due
Date: August 14 2023
Project Title: Forecasting Sales and Inventory in Supply Chain using Machine

Learning Methods
Word Count: 1149 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rian Dwi Putra

Date: August 14 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Rian Dwi Putra
22108637

Introduction

You will gain a better understanding of the project's system requirements from this

configuration manual. The research project's hardware/software platforms, data sources,

code, figures, and files are all described in this configuration manual. Implementing the

research project “Forecasting Sales and Inventory in Supply Chain using Machine Learning

Methods” will be made easier with this manual.

2 System Requirements

The following minimum system requirements are suggested for this data analytics projects:

1.
2.

Working Framework: Windows 10, macOS, or Linux (Ubuntu).

Processor: Intel Core i5 or AMD Ryzen 5 (or equivalent) for basic machine learning
tasks.

RAM: 8 GB or greater RAM is beneficial for handling bigger datasets and complex
models.

Storage: SSD (Solid State Drive) with 256 GB for quicker access to data and model
training.

Graphics Processing Unit (GPU): A GPU (NVIDIA GTX or RTX series) can
significantly accelerate model training for advanced projects, even though it is not
necessary for basic projects.

Python and Anaconda: Install Python 3.7 or later which comes with essential libraries
like NumPy, Pandas, and scikit-learn, needs to be installed alongside Python 3.7 or
later.

Jupyter Notebook: For intelligent coding and visualization.

Integrated Development Environment (IDE): Visual Studio Code, PyCharm, or

Jupyter Lab are IDEs that are recommended.

9. Internet connection: To get to online resources, datasets, and machine learning

libraries.

3 Project Development

3.1 Importing Libraries

Importing libraries in Python means adding external code modules or packages to the
current Python program to make it more useful. Python offers a vast ecosystem of libraries
and bundles that give pre-composed code to different tasks, for example, data manipulation,
visualization, machine learning, and more. At the point when importing a library, we will get
access to its capabilities, classes, and variables, enable it to involve in the code. This
empowers programmer to use existing code instead of composing all that from the scratch,
saving time and effort.

Importing all required libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import xgboost as xgb

import lightgbm as lgb

import datetime as dt

import calendar,warnings,itertools,matplotlib,keras,shutil

import tensorflow as tf

import statsmodels.api as sm

from datetime import datetime

from sklearn.model selection import train_test_split,cross_val_score, cross_val_predict
from sklearn import svm,metrics,tree,preprocessing,linear_model

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from sklearn.tree import DecisionTreeRegressor

from sklearn.linear_model import Ridge,LinearRegression,ElasticMet, Lasso
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import accuracy score,mean_squared error,recall score,confusion matrix,f1 score,roc_curve, auc, r2_score
from sklearn.datasets import load_iris,make_regression

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.kernel ridge import KernelRidge

from keras import Sequential

from keras,layers import Dense

from IPython.core import display as ICD

from tensorflow core.estimator import inputs

#Hiding the warnings
warnings.filterwarnings('ignore")

Figure 1. Importing required libraries
Generally, bringing in libraries in Python upgrades the programming capacities to access and
use existing code, making Python a flexible and strong language for different tasks and

domains.

3.2 Dataset

The method for gathering the project's data will be discussed in this phase. Describe the

process by which the data will be gathered, transformed, cleaned, and prepared for analysis.

This study will utilize DataCo Smart Supply Chain dataset, which can be downloaded from
https://data.mendeley.com/datasets/8gx2fvg2k6/5.

Data Collection

The dataset used in this project is maintained transparently with the Creative Commons 4.0 license by Fabian Constante, Fernando Silva, and Anténio Pereira
through the Mendeley data repository. The dataset consists of roughly 180k transactions from supply chains used by the company DataCo Global for 3 years.
The dataset can be downloaded from:

https://data.mendeley.com/datasets/8gx2fvg2k6/5

Figure 2. Dataset definition

3.2.1 Importing Dataset

An organized collection of data that captures relevant information about the flows of

goods, services, and materials throughout the supply chain network is captured in this Supply

Chain dataset. Typically, data on pricing, customer-related metrics, product details, sales and

demand data, inventory levels, supplier data, transportation and logistics data, and pricing

data are included.

#Importing Dataset using pandas
dataset=pd.read_csv("DataCoSupplyChainDataset.csv"”,header= @,encoding= ‘unicode escape")
dataset.head(5)# Checking 5 rows in dataset

Days for Days for Product

T : Benefit per Sales per Delivery . . Category Category Customer Order Product
Type shipping shipment order customer Status Late_delivery_risk Id Name City ™~ Zipcode CardlId Category Des
(real) (scheduled) Id
0 DEBIT 3 4 91250000 314640015 Advance 0 73 Sporting ooniae NaN 1380 73
shipping Goods
1 TRANSFER 5 4 249089996 311350985 Late 1 73 SPONG cogias NaN 1360 73
lelivery Goods
2 CASH 4 4 247.779999 309.720001 ShiPping 0 73 SPoting oo jose NaN 1360 73
on time Goods
3 DEBIT 3 4 22850001 304800998 ~dvance 0 73 Sporting Los NaN 1360 73
shipping Goods Angeles
4 PAYMENT 2 4 134210007 208250000 A~dvance 0 73 Seorting ~ooiae NaN 1360 73
shipping Goods

5 rows x 53 columns

Figure 3. Importing dataset

3.2.2 Data Cleaning & Preprocessing

Data cleaning in Python refers to the most common way of distinguishing and
correcting mistakes, irregularities, and errors in a dataset to guarantee its quality
and reliability for analysis and modelling. Data cleaning is a significant stage in
the data preprocessing pipeline, as raw data frequently contains missing data,
outliers, duplicate entries, and different inconsistencies that can prompt bias or

wrong outcomes whenever left neglected.

https://data.mendeley.com/datasets/8gx2fvg2k6/5

Data Cleaning

dataset.shape

(180519, 53)
The total data set comprises of 180519 records and 53 columns

dataset.apply(lambda x: sum(x.isnull())) #Checking missing values

Figure 4. Data definition
e Taking care of missing data in Python refers to the most common way of
recognizing and overseeing data that are not accessible or incomplete in a dataset.
Missing data can happen because of different reasons,such as data collection
errors, system issues, or participant non-response. Managing missing data is

fundamental to guarantee the exactness and reliable quality of data analysis.

The data comprises of a few missing values from Customer Lname, Product Description, Order Zipcode and, Customer Zipcode which should be taken out or
removed prior to continuing with the analysis. And furthermore, since there is an opportunity various customers could have a similar first name or same last
name another column with 'Customer Full Name' is created to avoid from any ambiguities.

Adding first name and Last name together to create new column
dataset['Customer Full Name'] = dataset['Customer Fname'].astype(str)+dataset['Customer Lname'].astype(str)

To make it easier for analysis some unimportant columns will be dropped

data=dataset.drop(['Customer Email','Product Status','Customer Password','Customer Street','Customer Fname','Customer Lname',
'Latitude’, 'Longitude’, 'Product Description’,'Product Image', 'Order Zipcode','shipping date (DateOrders)'],axis=1)

data.shape

(180519, 42)

There are 3 missing values in Customer Zipcode column. Before proceeding with the analysis of the data, the values that are missing are simply zip codes,
which are not very important. These values are replaced with zero.

data['Customer Zipcode']=data[Customer Zipcode'].fillna(e)#Filling NaN columns with zero

Figure 5. Handling missing data
e Data modeling in Python refers to the most common way of making numerical or
statistical representations of a dataset to make predictions, gain insight, or solve of
explicit issues. It involves building models that identify relationships between
input features and target variables by utilizing a variety of statistical and machine
learning methods.

Data Modelling

To measure the performance of different models the machine learning models are trained to predict sales, order quantity is predicted for regression type
models.

A new dataset is created with the copy of original data for training the data and validation.

train data=data.copy()

#Dropping columns with repeated values
train data.drop(['Delivery Status','Late delivery risk','Order Status','order date (DateOrders)'], axis=1, inplace=True)

There are some columns with object type data which cannot be trained in machine learning models so all the object type data is converted to int type using

preprocessing label encoder library.

create the Labelencoder object
le = preprocessing.LabelEncoder()
#convert the categorical columns into numeric

Customer Country']
Market ']

le.fit_transform(train_data['Customer Country'])
le.fit_transform(train_data['Market'])

train_data
train_data

[= (_data[

[= (_datal
train_data['Type'] = le.fit_transform(train_data['Type'])
train_data['Product Name'] = le.fit_transform(train_data['Product Name'])
train_data['Customer Segment'] = le.fit transform(train_data['Customer Segment'])
train_data['Customer State’] = le.fit_transform(train_data['Customer State'])
train_data['Order Region'] = le.fit_transform(train_data['Order Region'])
train_data['Order City'] = le.fit_transform(train_data['Order City'])
train_data['Category Name'] = le.fit transform(train_data['cCategory Name'])
train_data['Customer City'] = le.fit_transform(train_data['Customer City'])
train_data['Department Name'] = le.fit transform(train_data['Department Name'])
train_data['Order State'] = le.fit transform(train_data['Order State'])
train_data['Shipping Mode'] = le.fit_transform(train_data['Shipping Mode'])
train_data['Order Country'] = le.fit transform(train_data['Order Country'])

r (_data[’

train_data['customer Full Name']= le.fit_transform(train_data['Customer Full Mame'])

#display the initial records
train_data.head()

Figure 6. Data modelling
Presently every each of the data is changed into int type. The dataset is parted
into train data and test data so model can be trained with train data and the
performance of model can be assessed utilizing test data.

4 Model Building

Model building in Python refers to the most common way of making and preparing
prescient or logical models utilizing machine learning, statistical, or other computational
methods. Preparing the data, selecting an appropriate algorithm, and iteratively adjusting the

model's parameters to improve performance are all part of it.

4.1 Splitting the data into training and test set

Splitting data into training and test sets in Python refers to the most common way of
dividing a dataset into two separate subsets: one for training the machine learning model for
use and the other for assessing how well it performs. This division is essential for
determining the model's generalizability to unknown, new data and avoiding overfitting.

This study uses the split ratio of 70-30, with the larger portion going to training and the
smaller portion going to testing. By fitting the model to the data in the training set, the
algorithm is able to learn about data patterns and relationships. The test set, then again, is
utilized to assess the model's performance by making forecasts on the unseen data and

contrasting the predictions with the actual target values.

For comparison of regression models sales and order quantity are predicted

xs=train_data.loc[:, train data.columns != 'Sales']

ys=train_data['Sales’]

xs_train, xs test,ys train,ys test = train_test split(xs,ys,test size = 0.3, random state = 42)
xg=train_data.loc[:, train_data.columns != 'Order Item Quantity']

yq=train_data[‘Order Item Quantity']

xq_train, xq_test,yq train,yq test = train_test split(xq,yq,test size = 0.3, random state = 42)

Figure 7. Splitting dataset

4.2 Building the regression model

The data is currently fit to be utilized in machine learning models. The result is
regression type, so every each of the models are compared by Mean Absolute Error (MAE)
and RMSE. The lower the value of MAE & RMSE, the better the model is performing.

def regressionmodel(model s,model q,xs train, xs test,ys train,ys test,xq train, xq test,yq train,yq test):
model s=model_s.fit(xs_train,ys_train)#ritting train data for sales
model g=model q.fit(xq train,yq train)#Fitting train data for order quantity
ys pred=model s.predict(xs test)#predicting sales with test data
yq_pred=model_q.predict(xq_test)#predicting order quantity with test data

print('Model parameter used are:',model_s) #Printing the model to see which parameters are used
#Printing mean absolute error for predicting sales

print("MAE of sales is 1", metrics.mean_absolute_error(ys_test,ys_pred))

#Printing Root mean squared error for predicting sales

print("RMSE of sales is :",np.sqri(metrics.mean_squared_error(ys_test,ys_pred)))
#Printing R2 for predicting sales

print("R2 of sales is :",metrics.r2_score(ys_test,ys_pred))

#Printing mean absolute error for predicting order quantity

print("MAE of order quantity :", metrics.mean_absolute_error(yq_test,yq_pred))
#Printing Root mean squared error for predicting order quantity

print("RMSE of order quantity :",np.sgrt(metrics.mean_squared_error(yq_test,yq_pred)))
#Printing R2 for predicting order quantity

print("R2 of order quantity :", metrics.r2_score(yq_test,yq_pred))

Figure 8. Building regression model
e Linear Regression

Linear Regression

model s=LinearRegression()
model g=LinearRegression()
regressionmodel (model s,model q,xs train, xs_test,ys train,ys test,xq train, xq_test,yq train,yq_test)

Figure 9. Linear regression
e Lasso Regression
Lasso Regression

model s = linear_model.Lasso(alpha=0.1)
model q = linear model.lLasso(alpha=0.1)
regressionmodel (model s,model q,xs_train, xs_test,ys train,ys_test,xq_train, xq_test,yq train,yq test)

Figure 10. Lasso Regression

e Ridge Regression
Ridge Regression

model s = Ridge(alpha=1.0)
model q = Ridge(alpha=1.0)
regressionmodel (model s,model q,xs_train, xs_test,ys train,ys test,xq _train, xq_test,yq train,yq test)

Figure 11. Ridge Regression
e Decision Tree Regression

Decision Tree Regression

model s = tree.DecisionTreeRegressor()
model q = tree.DecisionTreeRegressor()
regressionmodel (model s,model q,xs_train, xs_test,ys train,ys_test,xq_train, xq_test,yq _train,yq test)

Figure 12. Decision Tree Regression
e Random Forest Regression
Random Forest Regression

model s = RandomForestRegressor(n_estimators=180,max_depth=10, random_state=40)
model q = RandomForestRegressor(n_estimators=180,max_depth=18, random_state=40)
regressionmodel (model s,model q,xs_train, xs_test,ys train,ys test,xq train, xq_test,yq train,yq test)

Figure 13. Random Forest Regression
e Light Gradient Boosting Regression
Light Gradient Boosting Regression

model s = lgb.LGBMRegressor()
model q = lgb.LGBMRegressor()
regressionmodel (model s,model q,xs_train, xs_test,ys _train,ys test,xq_train, xq_test,yq _train,yq_test)

Figure 14. Light Gradient Boosting Regression
e eXtreme Gradient Boosting Regression

eXtreme Gradient Boosting Regression

model s = xgb.XGBRegressor()
model g = xgb.XGBRegressor()
regressionmodel(model s,model q,xs_train, xs_ test,ys train,ys_test,xq _train, xq_test,yq train,yq _test)

Figure 15. eXtreme Gradient Boosting Regression

4.3 Comparison table for Regression Model

In this table, the key performance metrics used to assess the models, for example, R-
squared (coefficient of determination), RMSE (Root Mean Squared Error), and MAE (Mean
Absolute Error), are recorded. These metrics show how well each model makes predictions

and fits the data.

The comparison table guides in the selection of the most appropriate regression model
for the requirements of the DataCo Smart Supply Chain project, considering factors like
interpretability, performance, and handling of different data characteristics.

a. MAE & RMSE for Sales & Inventory Forecasting

Table 1. Comparison of Regression Model for MAE and RMSE

Comparison Table for Regression Model Scores

Regression_comparison #Printing dataframe

Regression Model MAE Value for Sales RMSE Value for Sales MAE Value for Quantity RMSE Value for Quantity

0 Lasso 1.3300 2.090 1.2500 1.430
1 Ridge 0.2600 0.470 0.3400 0.520
2 Light Gradient Boosting 0.5400 4.360 0.0004 0.004
3 Random Forest 0.2000 1.770 6.6100 0.005
4 eXtreme gradient boosting 0.1500 3.040 0.0001 0.006
5 Decision tree 0.0110 0.799 0.0001 0.010
6 Linear Regression 0.0005 0.001 0.3300 0520
W MAE Value for Sales EEE RMSE Value for Sales

Lasso
Ridge

2)
H 3
3 @

Decision tree
Decision tree

7
e
s
£
E
5
o
5
]
«

Regression Model

Light Gradient Boosting
extreme gradient boosting
Linear Regression

Light Gradient Boosting
Random Forest

eXtreme gradient boosting
Linear Regression

Regression Model

Figure 16. MAE and RMSE for Sales Forecasting

o

w

IS

w

~

Figure 17. MAE and RMSE for Inventory Forecasting
b. R?for Sales & Inventory Forecasting

Table 2. Comparison of Regression Model for MAE and RMSE

Regression Model R2 for Sales R2 for Quantity

Linear Regression

B MAE Value for Quantity
144 BEm RMSE Value for Quantity
12
1.0
0.8 4
064
0.4 4
1
02
o ‘ . —]
o M = w - M c 0.0 T T T T
a > £ o £ e o a @ = 2 o @
a K £ 4 £ E z a £y g [£ g
3 & 3 £ 8 c g k] 2 7 5 i =
3 & 5 g [g 2 3 c
@ £ a B = S © K-}
o s = y g @ 5 o 2
g c] a = H z £ 5
5 & El 3 2] g a
g g £ B o« B
H g : ° g
= £ = £
3 g C 3
5 3
3 x
" @ a
Regression Madel Regression Model

0 Lasso 0.999 0.021
1 Ridge 0999 0.868
2 Light Gradient Boosting 0.998 0.999
3 Random Forest 0.999 0.999
4 eXtreme gradient boosting 0.999 0.999
5 Decision tree 0.999 1.000
6 Linear Regression 0.999 0.869
1.0 A1 mm R2 for Sales 10 4 EEE R2 for Quantity
0.8 0.8 4
0.6 0.6 4
0.4 0.4
0.2 4 021
0.0 -
0.0 - o @ =] b =] @ =
o M @ % =3 il = o g £ = £ £ 2
i £ 3 g 5 2 5 E 2 :
2 £ = g 4 g H g a 5
& 5 o a =] [g i
= &] i & & 5
g 3 3 £
= Regression Model

Regression Model

Figure 18. R? for Sales & Inventory Forecasting

