

Configuration Manual

MSc Research Project

Msc Data Analytics

Rishika Poojari

Student ID: X20214201

School of Computing

National College of Ireland

 Supervisor: Rejwanul Haque & John Kelly

1

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

RISHIKA RAMESH POOJARI
……. ………

Student ID:

X20214201
………..……

Programme:

Msc Data Analytics
………………………………………………………………

Year:

2022-2023
…………………………..

Module:

Msc Research Project
…….………

Lecturer:

Prof. Rejwanul Haque & Prof. John Kelly
…….………

Submission
Due Date:

14.08.2023
…….………

Project Title:

Enhancing Retail Strategies: An Integrated Framework for
Market Basket Analysis using Apriori and MLP in Consumer
Behavior Modeling
…….………

Word Count:

3062 15
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Rishika Poojari
……

Date:

12.08.2023
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office

must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

2

Configuration Manual

Rishika Poojari

Student ID: X20214201

1 Introduction

The "Market Basket Analysis" notebook offers a comprehensive exploration and analysis of

consumer purchase patterns, aiming to unveil associations and co-occurrence relationships

among different products in a retail setting. Employing sophisticated data processing

techniques and modelling algorithms, this analysis provides invaluable insights into product

recommendations and strategic store placements.

With a focus on merging and analysing datasets related to product orders, aisles, and

departments, the notebook delves deep into the intricacies of data, revealing trends, and

behaviours that are often overlooked in traditional retail analytics. The results, derived from

this in-depth investigation, have the potential to shape effective marketing strategies, optimise

store layouts, and enhance the overall shopping experience for customers.

The journey from raw data collection to insightful visualisations and model evaluations is

meticulously detailed, ensuring clarity and reproducibility. This configuration manual is

designed to assist users in seamlessly navigating and executing the notebook, ensuring they

harness the full potential of the Market Basket Analysis.

2 Required Specifications

Hardware Specification

● Actual Specification:

○ Processor: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz 2.71 GHz

○ System Type: x64-based processor, 64-bit operating system

○ Memory: 32.0 GB RAM (31.9 GB usable)

○ Display: Normal LED Laptop Display

● Expected/Recommended Specification:

○ Processor: Multi-core CPU (e.g., Intel Core i7 or equivalent) for efficient data

processing.

○ Memory: Minimum 16GB RAM. 32GB or higher is recommended for

handling large datasets seamlessly.

○ Storage: Sufficient storage space (preferably SSD) to store datasets,

intermediate files, and results.

○ System Type: 64-bit operating system with a x64-based processor for

compatibility with modern software tools.

Software Specification

● Actual Specification:

○ Operating System: Windows 10 Pro (Edition) - Version 22H2, OS build

19045.3208, Installed on 8/10/2021

● Python Installation:

○ Windows/MacOS/Linux:

3

○ Navigate to the official Python website's download page:

https://www.python.org/downloads/

○ Download the latest version of Python for your operating system.

○ Run the downloaded installer.

○ For Windows: Ensure the "Add Python to PATH" option is checked before

proceeding with the installation.

○ Follow the installation prompts.

○ To verify the installation, open a command prompt or terminal and type python

--version. It should display the installed Python version.

● Jupyter Notebook Installation:
○ Installing via pip:

■ Open a command prompt or terminal.

■ Run the command pip install notebook.

■ After the installation, launch Jupyter Notebook by entering the

command jupyter notebook in the terminal or command prompt. This

will open a new tab in your default web browser with the Jupyter

Notebook interface.

○ Installing via Anaconda (recommended for new users):

■ Anaconda is a free distribution of Python and R for scientific computing

and data science. It includes many popular libraries out-of-the-box and

simplifies package management.

■ Navigate to the Anaconda distribution download page:

https://www.anaconda.com/products/distribution

■ Download the appropriate version for your operating system.

■ Run the downloaded installer and follow the installation prompts.

■ Once installed, you can launch Jupyter Notebook using the Anaconda

Navigator GUI or by typing jupyter notebook in a terminal or Anaconda

command prompt.

● Expected/Recommended Specification:

○ Operating System: Windows, macOS, or Linux - Ensuring compatibility with

Python and related tools.

○ Python Environment: Python 3.x. Ensure it matches the specific version used in

the notebook for maximum compatibility.

○ Notebook Environment: Jupyter Notebook or Jupyter Lab for interactive code

execution and visualization.

Library Dependencies

To successfully run the "Market Basket Analysis" notebook, ensure you have the following

libraries installed:

● warnings: Built-in module for warning control.

● pandas: Essential for data manipulation and analysis.

● numpy: For numerical operations and matrix computations.

● seaborn: Advanced data visualisation library based on matplotlib.

● matplotlib: Extensive library to create interactive, static or dynamic visualisations.

● mlxtend.frequent_patterns: For association rule mining, including apriori and

association_rules.

● tensorflow: Open-source platform for machine learning.

● tensorflow.keras: An advanced neural networks API that runs on top of TensorFlow.

● sklearn.model_selection: Module for splitting datasets and cross-validation.

https://www.anaconda.com/products/distribution

4

● sklearn.preprocessing: Module for data preprocessing techniques like LabelEncoder,

OneHotEncoder, and StandardScaler.

● tensorflow.keras.callbacks: For callbacks like EarlyStopping during training.

● sklearn.metrics: For evaluating models using metrics like roc_curve, auc,

confusion_matrix, and classification_report.

Ensure all these libraries are installed and up-to-date before executing the notebook.

You can install these libraries using pip, like:

This command includes the main libraries, but some submodules might be automatically

fetched with the primary library.

3 Data Collection
● If not already a member, create a free account on Kaggle.

● Access the Instacart Market Basket Analysis competition page.

● Click on the "Data" tab on the competition page.

● Press the "Download All" button to retrieve the entire dataset as a zip file.

● Unzip the downloaded file to access the individual CSV datasets, including data on

orders, products, aisles, and more.

● The data is provided by Instacart for competition purposes. Ensure you adhere to

competition rules or terms of use when using the data outside of personal projects.

Data Loading and Cleaning

The code reads multiple CSV files containing order, product, aisle, and department data into

individual dataframes. It then merges these dataframes into a comprehensive dataset. After

merging, the code performs initial data exploration, checks for duplicates and null values, fills

missing values in the 'days_since_prior_order' column with zeros, and finally saves the cleaned

and combined dataset as "Combined_Instacart_Data.csv".

5

4 Exploratory Data Analysis
The code visualises various aspects of the dataset, such as product frequencies, department

distributions, reorder ratios, and order timings, using bar plots, count plots, line plots,

heatmaps, and histograms to offer insights into shopping behaviours, product popularities, and

order patterns.

import warnings

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

plt.rcParams['figure.dpi'] = 300

warnings.filterwarnings("ignore")

sns.set(style="whitegrid")

Create the bar plot

plt.figure(figsize=(12, 6))

sns.barplot(data = top_10_product_frequency_count, x='product_name', y='frequency_count')

plt.xticks(rotation=90)

plt.xlabel('Product Name')

plt.ylabel('Frequency Count')

plt.title('Top 10 Products by Frequency Count')

Display the plot

plt.show()

plt.figure(figsize=(12, 6))

sns.countplot(data = merged_data,x = 'department',order =

merged_data['department'].value_counts().index, palette='viridis')

plt.title("Departments Distribution", fontsize=15)

plt.xlabel("Department", fontsize=12)

plt.ylabel("Count", fontsize=12)

plt.xticks(rotation=45, ha='right')

plt.tight_layout()

plt.show()

top_products =

merged_data[merged_data['reordered']==1]['product_name'].value_counts().sort_values(ascending=False)

[:10]

plt.figure(figsize=(10,5))

sns.barplot(x=top_products.index, y=top_products.values, color='skyblue')

plt.title('Top 10 Products with Highest Reorder Ratio')

plt.xlabel('Products')

plt.ylabel('Reorder Count')

plt.xticks(rotation='vertical')

plt.show()

grouped_df = merged_data.groupby(["department"])["reordered"].mean().reset_index()

plt.figure(figsize=(12, 8))

sns.pointplot(x='department', y='reordered', data=grouped_df, color='b')

plt.ylabel('Reorder ratio', fontsize=12)

plt.xlabel('Department', fontsize=12)

plt.title("Department-wise Reorder Ratio", fontsize=15)

plt.xticks(rotation='vertical')

Adjust transparency of the plot elements

plt.plot(grouped_df['department'], grouped_df['reordered'], 'bo-', alpha=0.8)

plt.tight_layout()

plt.show()

plt.figure(figsize=(12,8))

merged_data['department'].value_counts().plot(kind='bar', color='skyblue')

plt.title('Product Sales by Department')

plt.xlabel('Department')

plt.ylabel('Number of Products Sold')

6

plt.xticks(rotation=45)

plt.show()

"""

Bars: The bars represent the mean reorder ratio for each department. The height of each bar

indicates the average

proportion of items reordered in that particular department. The bars provide a visual comparison

between departments

in terms of their reorder ratio.

Error bars: The error bars are represented as vertical lines above and below each bar. They indicate

the variability or

uncertainty associated with the mean reorder ratio for each department. The length of the error bars

represents the

magnitude of the variability. The error bars provide insights into the confidence or reliability of

the mean reorder

ratio estimate."""

grouped_df = merged_data.groupby(["department"])["reordered"].mean().reset_index()

grouped_df['reordered_std'] =

merged_data.groupby(["department"])["reordered"].std().reset_index()["reordered"]

plt.figure(figsize=(12, 8))

sns.barplot(x='department', y='reordered', data=grouped_df, color='b')

plt.errorbar(x=grouped_df['department'], y=grouped_df['reordered'],

yerr=grouped_df['reordered_std'], fmt='none', color='k')

plt.ylabel('Reorder Ratio', fontsize=12)

plt.xlabel('Department', fontsize=12)

plt.title('Department-wise Reorder Ratio with Error Bars', fontsize=15)

plt.xticks(rotation='vertical')

plt.tight_layout()

plt.show()

weekday_names = {0: 'Sunday',1: 'Monday',2: 'Tuesday',3: 'Wednesday',4: 'Thursday',5: 'Friday',6:

'Saturday'}

Calculate the number of unique orders for each day of the week

orders_per_day = merged_data.groupby('order_dow')['order_id'].apply(lambda x: len(x.unique()))

Map numerical day of the week codes to week names

weekdays = [weekday_names[day] for day in orders_per_day.index]

Visualization

plt.figure(figsize=(12, 6))

plt.bar(weekdays, orders_per_day)

plt.xticks(rotation='vertical')

plt.ylabel('Order Count')

plt.xlabel('Day of Week')

plt.title('Number of Unique Orders by Day of Week')

plt.show()

weekday_map = {0:'Sunday', 1:'Monday', 2:'Tuesday', 3:'Wednesday', 4:'Thursday', 5:'Friday',

6:'Saturday'}

busiest_days = merged_data['order_dow'].map(weekday_map).value_counts().loc[weekday_map.values()]

Visualization

plt.figure(figsize=(10,5))

sns.lineplot(x=busiest_days.index, y=busiest_days.values)

plt.title('Busiest Days of The Week')

plt.ylabel('Number of Orders', fontsize=12)

plt.xlabel('Day of The Week', fontsize=12)

plt.xticks(rotation='vertical') # Add this line if the weekday labels are overlapping

plt.show()

plt.figure(figsize=(10,5))

sns.countplot(x='order_hour_of_day', data=merged_data, color='skyblue')

plt.title('Order Distribution Across the Day')

plt.xlabel('Hour of the Day')

plt.ylabel('Number of Orders')

7

plt.show()

plt.figure(figsize=(10, 5))

sns.histplot(data=merged_data, x='add_to_cart_order', bins=20, kde=True)

plt.title('Distribution of Add-to-Cart Order')

plt.xlabel('Add-to-Cart Order')

plt.ylabel('Count')

plt.show()

"""

The graph displayed is a set of bar plots, where each plot represents the distribution of products

across different aisles

within each department.

The graph provides insights into the volume of products within each department and how they are

distributed across various

aisles.

The graph allows to compare the distribution of products across aisles within each department. By

examining the heights of

the bars, we can identify the dominant aisles within a department based on the product count.

"""

colors = sns.color_palette("Set2") # Choose a different color palette

Get the unique departments

unique_departments = merged_data['department'].unique()

num_rows = len(unique_departments)

Plot departments volume, split by aisles

fig, axes = plt.subplots(num_rows, 1, figsize=(12, num_rows*4))

for i, department in enumerate(unique_departments):

 ax = axes[i]

 department_df = merged_data[merged_data['department'] == department]

 aisle_counts = department_df['aisle'].value_counts().sort_values(ascending=False)

 sns.barplot(x=aisle_counts.index, y=aisle_counts.values, ax=ax, palette=colors)

 ax.set_title(f'Department: {department}')

 ax.set_xlabel('Aisle')

 ax.set_ylabel('Product Count')

 ax.set_xticklabels(aisle_counts.index, rotation=45)

plt.tight_layout()

Display the plots

plt.show()

grouped_df = merged_data.groupby(['order_dow',

'order_hour_of_day'])['reordered'].aggregate("mean").reset_index()

grouped_df = grouped_df.pivot('order_dow', 'order_hour_of_day', 'reordered')

plt.figure(figsize=(12, 6))

sns.heatmap(grouped_df, annot=True)

plt.title("Reorder ratio of Day of week vs Hour of day")

plt.show()

5 Apriori Algorithm
The code identifies the top 100 frequently purchased products, transforms the data for

association rule mining, and then applies the Apriori algorithm to find frequent itemsets and

derive association rules based on the lift metric.

8

6 MLP without Association Rule
The code loads a preprocessed dataset, samples and balances it, encodes categorical features,

splits the data for training, validation, and testing, then defines, compiles, and trains a multi-

layer perceptron (MLP) model using TensorFlow/Keras, and finally saves the trained model.

9

Plotting the Accuracy and Loss Curve

The code visualises the accuracy and loss curves of the trained model over epochs and then

computes and plots the Receiver Operating Characteristic (ROC) curve along with its Area

Under the Curve (AUC) value.

10

Evaluation of the model

The code loads a saved neural network model, makes predictions on a test set, displays a

classification report, and visualises the results with a confusion matrix heatmap.

11

7 MLP with Association Rule
The code loads and preprocesses the dataset to balance it and filter for top products, applies the

Apriori algorithm to derive association rules, generates new features based on these rules,

prepares the data for machine learning, defines and trains a neural network model using the

TensorFlow/Keras framework, and then saves the trained model.

12

13

Plotting the Accuracy and Loss Curve

The code visualizes the accuracy and loss progression of the trained neural network over

epochs and computes and plots the Receiver Operating Characteristic (ROC) curve along with

its Area Under the Curve (AUC) value for model evaluation.

14

Evaluation of the model

The code loads a previously saved neural network model, makes predictions on the test set,

outputs a classification report, and visualises the results using a confusion matrix heatmap.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Ghemawat, S.

(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

Retrieved from https://www.tensorflow.org/

2. Chollet, F. (2015). Keras. Retrieved from https://keras.io/

3. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12, 2825-2830. Retrieved from https://scikit-learn.org/stable/

4. Waskom, M., Botvinnik, O., Ostblom, J., Lukauskas, S., Hobson, P., Gelbart, M., ... &

de Ruiter, J. (2021). Seaborn: statistical data visualization. Journal of Open Source

Software, 6(60), 3021. Retrieved from https://seaborn.pydata.org/

5. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3), 90-95. Retrieved from https://matplotlib.org/

6. McKinney, W. (2010). Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51-56). Retrieved

from https://pandas.pydata.org/

7. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,

D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825),

357-362. Retrieved from https://numpy.org/

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://seaborn.pydata.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://numpy.org/

	1 Introduction
	2 Required Specifications
	Hardware Specification
	Software Specification
	Library Dependencies

	3 Data Collection
	Data Loading and Cleaning

	4 Exploratory Data Analysis
	5 Apriori Algorithm
	6 MLP without Association Rule
	Plotting the Accuracy and Loss Curve
	Evaluation of the model

	7 MLP with Association Rule
	Plotting the Accuracy and Loss Curve
	Evaluation of the model

	References

