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1 Introduction

This document contains the step by step process implemented in this project along with
the code snippets. It explains every experiments that is conducted in this project to
achieve the final accuracy.

2 Environment Setup

Table 1 shows the environment setup

Environment Jupyter Notebook
Coding Language Python

Table 1: Tools Used for this Project

3 Data Source

Data set for this project is taken from kaggle an open source data repository. Data is
about review from readers about books. There are two data sets for this project, one
data set with details of the book and other data set with rating and reviews for each
book by the readers.

4 Implementation

Figure 1 shows the necessary libraries imported for this project and Figure 2 shows the
code for data preparation that involves reading the two data sets, Performing basic data
cleaning task like duplicate removal and null values removal. Data is then filtered from
the book details data set to keep only reviews after 2017. Extracting opinions is based on
the recent reviews from the readers so last six years data is considered for this project.
Then the two data sets is assigned to variables for merging. After that the two data sets
is merged together to form a single data frame with required columns.

Figure 3 shows the sampling of the records so that the data will not be biased towards
a rating and only the required columns are taken and the columns are renamed in the
final dataframe



#Importing the required modules

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import re

import nltk

import string

import contractions

from nltk.sentiment import SentimentIntensityAnalyzer

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

from nltk.stem import WordNetlLemmatizer

from gensim import corpora, models

from wordcloud import WordCloud

from nltk.tokenize import word tokenize, sent tokenize
from bs4 import BeautifulSoup

from nltk.tokenize.toktok import ToktokTokenizer

from nltk.stem import LancasterStemmer,WordNetLemmatizer
import warnings

warnings.filterwarnings("ignore™)

from textblob import TextBlob

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy score, precision score, recall score, fl score, confusion _matrix
from sklearn.preprocessing import LabelBinarizer

from sklearn.linear_model import LogisticRegression,SGDClassifier
from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import SVC

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
import gensim

from gensim import corpora

import pyLDAvis.gensim _models as gensimvis

Figure 1: Importing Necessary Libraries

#Reading the csv file
df = pd.read_csv('Books rating.csv')

df 1 = pd.read_csv('books _data.csv', low _memory=False)

#Droping the Null Values

df_1 = df_1.dropna(how="all")

df_1 = df_1.dropna(subset=["'publishedDate"])
df = df.dropna(subset=["User_id'])

df = df.dropna(subset=["'review/summary'])

df = df.dropna(subset=["review/text'])

#Droping Duplicates
df.drop_duplicates(subset=["'review/summary', 'review/text’'], inplace=True)

#Filtering the data to get records from 2617

df_1["'publishedDate'] = pd.to_datetime(df_1['publishedDate’],format="%d-%m-%y"', dayfirst=True)
start_date = pd.to_datetime('01-01-2017")

end_date = pd.to_datetime('©1-12-2023")

df 1 = df_1[(df_1['publishedDate’'] >= start_date) & (df_1['publishedDate'] <= end_date)]

#Assigning dataframe to a new variable
Reviews = df
Books = df_1

#joining the two data frames
Book_Reviews = pd.merge(Books,Reviews, on = 'Title")

Figure 2: Data Preparation - 1



#fetching equal number of records for each rating te avoid bias
df_five = df_five[:8500]

df_four = df_four[:7500]

df_three = df_three[:9954]

df_two = df_two[:5581]

df_one = df_one[:7669]

#merging all the dataframes into single dataframne
Book_Reviews = pd.concat([df_one, df_two, df_three, df_four, df_five], axis=@)

#Reset index values
Book_Reviews.reset_index(drop=True, inplace=True)

#removing extra spaces in column names
Book_Reviews.columns = Book Reviews.columns.str.strip()

#Keeping only the required columns
Book_Reviews=Book_Reviews[['Title', ‘description’, 'User_id", 'review/score’, 'review/summary"’,\
‘review/text", "authors','categories’, 'publisher']]

#Renaming column names
Book_Reviews.rename(columns={"review/score’: 'Rating’, 'review/text': 'Review’, 'categories': 'Genre’, authors":"Author'\
, 'description’:'Description’, 'User_id':'User', 'review/summary':'Review Summary'},inplace=True)

Figure 3: Data Preparation - 2

Figure 4 shows the code for text cleaning process which involves conversion upper to
lower case, removal of special characters, removal of extra spaces, removal of punctuation’s
ete.

#funcation for normalizaing the text
def normalize_text (text):
text = text.lower()
text = contractions.fix(text)
return text

#Applying the normalize text function for reviews and review summary
Book_Reviews['Clean_Review'] = Book_Reviews['Review'].apply(normalize_text)
Book_Reviews['Clean Review Summary'] = Book Reviews[ 'Review Summary'].apply(normalize_text)

#Text cleaning function

def clean_text(text):
''"Make text lowercase, remove text in square brackets,remove links,remove punctuation
and remove words containing numbers.’'’
text = str(text).lower()

text = re.sub('\[.*?\]", "', text)

text = re.sub('https?://\S+|wa\.\S+*, ', text)

text = re.sub('<.*?>+', ', text)

text = re.sub('[%s]' % re.escape(string.punctuation), "', text)
text = re.sub('\n', '', text)

text = re.sub('\w*\d\w*', '', text)

return text

#Applying the text cleaning function for reviews and review summary
Book_Reviews['Clean_Review'] = Book_Reviews['Clean_Review'].apply(lambda x:clean_text(x))
Book_Reviews['Clean Review Summary'] = Book_Reviews['Clean Review Summary'].apply(lambda x:clean_text(x))

Figure 4: Text Cleaning

Once text is cleaned stop words are removed from the review text and Figure 5 shows
the code for stop word removal using the English language model. After stop words
removal, lemmetization is performed to retain the base form of a word. Figure 6 shows
the code for lemmetization.

After the lemmetization process, a new column is created called sentiment. It is
created based on rating column and to label them as negative, neutral and positive.
After label them with the sentiments, label encoding is performed to convert them into
numerical values as 0,1 and 2. Figure 7 shows the code for label encoding process. Figure
8 shows the sample data set after all the preprocessing steps.



#Function for removing special characters

def remove_special_characters(text, remove_digits=True):
pattern=r'["a-zA-z0-9\s]"
text=re.sub(pattern,'’',text)
return text

#Applying the special characters function for reviews, review summary and genre

Book_Reviews[ 'Clean_Review']=Book_ Reviews['Clean_Review'].apply(remove_special characters)

Book_Reviews[ 'Genre']=Book_Reviews[ 'Genre'].apply(remove_special_characters)

Book_Reviews['Clean Review Summary']=Book Reviews[ 'Clean Review Summary'].apply(remove_special characters)

#Asigning the stop word english corpus to a variable
#stop=set(stopwords.words( 'english'))
stopword_list=nltk.corpus.stopwords.words('english")

#Function for removing stop words
def remove_stopwords(text, is_lower_case=False):
tokens = tokenizer.tokenize(text)
tokens = [token.strip() for token in tokens]
if is_lower_case:
filtered_tokens = [token for token in tokens if token not in stopword_list]
else:
filtered_tokens = [token for token in tokens if token.lower() not in stopword_list]
filtered_text = ' '.join(filtered_tokens)
return filtered_text

#Defining the tokenizaer
tokenizer=ToktokTokenizer()

#Applying the stop word function for reviews and review summary
Book_Reviews[ 'Clean_Review']=Book_ Reviews['Clean_Review'].apply(remove_stopwords)
Book_Reviews['Clean Review Summary']=Book_ Reviews['Clean Review Summary'].apply(remove_stopwords)

Figure 5: Stop Words Removal

# Loading the English Language model
nlp = spacy.load('en_core_web_sm')

#Defining for lemmetization
def get_lemmas(text)
lemmas = []
doc = nlp(text)
for token in doc:
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != "PRON"):
lemmas . append(token. lemma_)
return lemmas

#Applying the lemmetization function for reviews and review summary
Book_Reviews['Clean Review' ]=Book Reviews['Clean Review'].apply(get_lemmas)
Book_Reviews['Clean Review Summary']=Book_Reviews['Clean Review Summary'].apply(get_lemmas)

#joining the tokenized words to form a sentence again
Book_Reviews['Clean_Review']= [ '.join(map(str, 1)) for 1 in Book_Reviews['Clean_Review']]
Book_Reviews['Clean Review Summary']= [' '.join(map(str, 1)) for 1 in Book_Reviews['Clean Review Summary']]

Figure 6: Lemmetization

lef map_to_sentiment(rating):
if rating >= 4:
return 'Positive’
elif rating == 3:
return 'Neutral’
else:
return 'Negative'

# Apply the function to create a new column with sentiment labels
Book_Reviews['Sentiment']= Book_Reviews['Rating'].apply(map_to_sentiment)

label_encoder = LabelEncoder()
Bock_Reviews['Sentiment'] = label encoder.fit_transform(Book Reviews['Sentiment'])

Figure 7: Label Encoding
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Figure 8: Preprocessed Sample Dataset

4.1 Experiment 1 - Count Vectorization and ratings as target
column

Once the preprocessing is done, X and Y variables are declared with independent and
dependent variable respectively where X is the cleaned review text column and Y is
the rating column. Feature extraction performed using count vectorization technique
and base models are implemented using Naive Bayes, Decision Tree and Random Forest.
Figure 9 shows the code for count vectorization on cleaned review text column and Figure
10 shows the example for implementation of base model using Naive Bayes algorithm.

x = Book_Rewviews['Clean_Review']
y= Book_Reviews[ 'Rating’]

#Defining function for text processing while convert them into vectors
def text_process(text):
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
return [word for word in nopunc.split() if word.lower() not in stopwords.words('english')]

Count vectorization on review column and running the model with rating as target variable

# Converting the word into vectors

vocab = CountVectorizer(analyzer=text_process).fit(x)
ré = x[e]

vocab® = vocab.transform([r@])

x = vocab.transform(x)

#Shape of the matrix:

print(“"Shape of the sparse matrix: ", x.shape)
#Non-zero occurences:

print("Non-Zero occurences: ",x.nnz)

# DENSITY OF THE MATRIX

density = (x.nnz/(x.shape[@]*x.shape[1]))*100
print("Density of the matrix = ",density)

Shape of the sparse matrix: (22855, 109@72)
Non-Zero occurences: 1459712
Density of the matrix = ©.858556171759336265

# splitting the dataset into test and train

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=08.2,random_state=101)
Figure 9: Count Vectorization and Rating as Target
Figure 10 shows the implementation code for decision tree model and Table 2 shows

the accuracy for all the three base models using count vectorization as feature extraction
technique and rating as target column



# Decision Tree

from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()

dt.fit(x_train,y_train)

preddt = dt.predict(x_ test)

print("Confusion Matrix for Decision Tree:™)

print(confusion _matrix(y_test,preddt))
print("Score:",round(accuracy score(y test,preddt)#*186,2))
print("Classification Report:",classification_report(y_test,preddt))

Figure 10: Example code for Decision Tree model

Model Accuracy
Naive Bayes 49.32
Decision Tree 33.91

Random Forest 45.87

Table 2: Experiment 1- Accuracy

4.2 Experiment 2 - Count Vectorization and Sentiments as tar-
get column

In experiment 2, count vectorization is implemented as feature extraction technique and
models are implemented with sentiment class as target column. Figure 11 shows the code
implementation for experiment 2 and Table 3 shows the accuracy of all the three models
and it can be seen that Naive Bayes algorithm performs the best.

Count vectorization on review column sentiment class as target column and running the
models

: x_1 = Book_Reviews['Clean_Review']
y_1= Book_Reviews['Sentiment']

: | # Converting the word into vectors
vocab_1 = CountVectorizer(analyzer=text_process).fit(x_1)
rg 1 = x_1[@]
vocab®_1 = vocab_1.transform([r@_1])

: ' x_ 1 = vocab_1.transform(x_1)
#Shape of the matrix:
print(“Shape of the sparse matrix: ", x_1.shape)
#Non-zero occurences:
print("Non-Zero occurences: ",x_1.nnz)
# DENSITY OF THE MATRIX
density = (x_1.nnz/(x_1.shape[@]*x_1.shape[1]))*100
print("Density of the matrix = ",density)

Shape of the sparse matrix: (39204, 1408791)
Non-Zero occurences: 2217989
Density of the matrix = ©.040184087777387295

: |# splitting the dataset into test and train
x_train,x_test,y_train,y_test = train_test_split(x_1,y_1,test_size=0.2,random_state=101)

Figure 11: Count Vectorization and Sentiment as Target



Model Accuracy
Naive Bayes 66.22
Decision Tree 48.46

Random Forest 62.57

Table 3: Experiment 2 - Accuracy

4.3 Experiment 3 - TF-IDF Vectorization and Sentiments as
target column

In experiment 3, TF-IDF is used as feature extraction technique and sentiment column
is used as target column. Models are implemented to predict the sentiment class. Figure
12 shows the implementation code for TF-IDF vectorization and Naive Bayes algorithm.
Table 4 shows the accuracy for all the three models and it looks like naive bayes performs
the best. Compaer to the previous experiment there is no big change in the accuracy of
the models.

TF_IDF Vectorization on review column and running the model with sentiment class as target
variable

1 tfidf_vectorizer = TfidfVectorizer()

x_1 = Book_Reviews['Clean_Review']
y_1= Book_Reviews['Sentiment']

: x_1 = tfidf_vectorizer.fit_transform(x_1)

: | # splitting the dataset into test and train
x_train,x_test,y_train,y_test = train_test_split(x_1,y_1,test_size=08.2,random_state=101)

: | # Multinomial Naive Bayes
from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB()
mnb.fit(x_train,y_train)
predmnb = mnb_predict(x_test)
print("Confusion Matrix for Multinomial Naive Bayes:")
print(confusion_matrix(y_test,predmnb))
print("Score:",round(accuracy_score(y_test,predmnb)*100,2))
print("Classification Report:",classification_report(y_test,predmnb))

Figure 12: TF-IDF Vectorization and Sentiment as Target

Model Accuracy
Naive Bayes 66.22
Decision Tree 48.46

Random Forest 62.57

Table 4: Experiment 3 - Accuracy

4.4 Experiment 4 - TF-IDF Vectorization and Sentiments as
target column and performed Over Sampling using SMOTE

In this experiment, same like previous TF-IDF vectorization is implemented and senti-
ment column set as target. Along with that over sampling using SMOTE is implemented
to balance the sentiments as there is slight imbalance when label encoding is performed
and to overcome that oversampling is performed to match the sentiment classes. Figure



13 shows the implementation code for performing over sampling using SMOTE and Fig-
ure 14 shows the hyperparameter tuning for Naive Bayes algorithm and it can be seen
that for alpha value 0.1 it has maximum mean test score.

from imblearn.over_sampling import SMOTE
import pandas as pd

x
¥

Book_Reviews['Clean_Revieuw']
Book Reviews['Sentiment']

# Initialize and fit the TfidfVectorizer
tfidf vectorizer = TfidfVectorizer(max_features=58000)
X_text_vectorized = tfidf_vectorizer.fit_transform(x)

# Apply SMOTE to oversample the minority classes
smote = SMOTE(sampling strategy='auto', random_state=42)
X_resampled, y resampled = smote.fit resample(X_text vectorized, y)

# Split the resampled data into training and testing sets
x_train, x test, y train, y test = train_test_split(X resampled, y_resampled, test size=8.2, random_state=42)

# Multinomial Naive Bayes

from sklearn.naive_bayes import MultinomialNB

mnb = MultinomialNB(alpha=8.5)

mnb.fit(x _train,y_train)

predmnb = mnb.predict(x test)

print("Confusion Matrix for Multinomial Naive Bayes:")
print(confusion_matrix(y_test,predmnb))
print("Score:",round(accuracy_score(y_test,predmnb)*100,2))
print(“Classification Report:",classification_report(y_test,predmnb))

Figure 13: Over Sampling

#Hyperparameter Tuning

alphas = [08.1, ©.5, 1.8, 1.5, 2.0]

param_grid = {'alpha": alphas}

# Create the Grid Search object

grid_search = GridSearchCV(mnb, param_grid, cv=5, scoring='accuracy')
grid_search.fit(x_train, y_train)

results_df = pd.DataFrame(grid_search.cv_results_)

# Extract only the hyperparameters and their corresponding mean test score
selected_columns = ['params’, 'mean_test score']

results_selected = results_df[selected_columns]

# Print the Grid Search results in a DataFrame

print("Grid Search Results:")

print(results_selected)

# Get the best hyperparameters found during the search

best_alpha = grid search.best_params_['alpha']

print("Best alpha:", best_alpha)

Grid Search Results:
params mean_test_score

8 {'alpha': 0.1} @8.691172
1 {'alpha': 8.5} @.691146
2 {'alpha': 1.0} @.685156
3 {'alpha': 1.5} @.678906
4 {'alpha': 2.8} 8.672474
Best alpha: 8.1

Figure 14: Hyperparameter Tuning for Naive Bayes

Table 5 shows the accuracy for the Naive Bayes model with the hyperparameter tuning
and over sampling of data. From this it can be seen that experiment 4 have the maximum
accuracy of 68.85 percentage compared to other experiments. Finally Multinomial Model
with alpha value of 0.1 is considered as the final model for the proposed methodology.
Figure 15 shows the confusion matrix for the Naive Bayes model and Figure 16 shows
the Classification report of Naive Bayes.
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Figure 15: Confusion Matrix of Naive Bayes

Confusion Matrix for Multinomial Naive Bayes:
[[2203 688 279]
[ 592 2100 523]
[ 308 600 2307]]

Score: 68.85

Classification Report: precision recall fl-score  support

5] 2.71 @.69 8.70 3178

1 2.62 @.65 0.64 3215

2 8.74 8.72 8.73 3215

accuracy 8.69 9600

macro avg 9.69 9.69 8.69 9600

weighted avg 0.69 0.69 08.69 9600

Figure 16: Classification report of Naive Bayes



4.5 Implementation of topic modelling using LDA (Latent Di-
richlet Allocation)

Topic modelling is implemented on negative and positive reviews to understand about the
opinions of the readers on different genres. Figure 17 shows the code implementation for
LDA and Figure 18 shows the implementation code for calculation of cosine similarity in
order to assign the extracted topics to each review and it is done by a look up table and
In Figure 18 it can be seen that lookup table is created for the extracted topics and topic
name is given to the each topic based on the key words. Figure 19 shows the frequency
of the words from each topics.

#Creating the dictionary
dictionary = corpora.Dictionary(Fiction['Clean Review Summary'])

# Each tokenized words has been assigned index value and thier count in corpus
doc_term_matrix = Fiction['Clean Review Summary'].apply(lambda x: dictionary.doc2bow(x))

corpus requires document term matrix

num_topics is used to define number of topics to create from corpus

id2word requires mapping of words

passes is used to define number of iterations

Lda = gensim.models.ldamodel.LdaModel

ldamodel Fiction = Lda(corpus=doc_term_matrix, num_topics=8, id2word=dictionary, passes=10,random_state=45)
clearfoutput{)‘

HoH

*#:

Figure 17: Implementation of LDA

Topic_Number Top_Keywords Topic_Name
0 0 [love, version, story, fiction, premise, movie. Rework and disconnection
1 1 [boring, edition, review, bore, dull, plot, fa Boring Story and plot
2 2 [series, reader, rise, fun, sun, quality, tell.. Writing and Finish
3 3 [way, lot, cliche, execution, repeat, edition,.. Long and Shallow
4 4 [write, end, disappoint, author, buick, drivel.. dull and disappointment
5 5 [story, finish, work, miss, try, lack, awful lame and mislead of characters
] 6 [want, ok, okay. format, return, think, error, Rework on finishing
7 7 [disappointment, lame, light, pointless, lead grammar and printing
8 8 [novel, time, waste, writer, plot, romance, co. Plot and content
9 9 [character. star. worth, money, effort, waste, ideas and narration

# Step 1: Convert 'Top Keywords' into a list of strings
topic_lookup_data[ 'Top_Keywords'] = topic_lookup_data['Top_Keywords'].apply(lambda x: ' '.join(x))

Fiction['Clean Review Summary'] = Fiction['Clean Review Summary'].apply(lambda x: " ".join(x))

vectorizer = CountVectorizer()
reviews_vectorized = vectorizer.fit_transform(Fiction['Clean Review Summary'])

topic_assignments = []
for review vector in reviews_vectorized:
similarities = cosine_similarity(review_vector, vectorizer.transform(topic_lookup data['Top_Keywords']))[@]

assigned_topic = topic_lookup data['Topic_Name'][similarities.argmax()]
topic_assignments.append(assigned_topic)

Figure 18: Cosine Similarity

4.6 Result

Figure 20 and 21 shows the frequency of each topic in the negative and positive reviews
and it can be seen that the negative and positive opinions are extracted from the reviews
about fiction genre.
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Figure 19: Topic and its Key words
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Figure 20: Negative Opinion - Fiction Genre

Most talked topics in reviews
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Topic Names

Figure 21: Positive Opinions - Fiction Genre
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