"‘"‘- ‘
\ National
Collegeof

Ireland

Impact of Crude Oil on Indian Economy
Configuration Manual

MSc Research Project
Data Analytics

Ronit Kumar Pareta
Student ID: x21223645

School of Computing
National College of Ireland

Supervisor: Dr Ahmed Makki

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Ronit Kumar Pareta
Student ID: X21223645
Programme: Data Analytics Year: 2022-2023
Module: MSc Research Project
Supervisor: Dr Ahmed Makki
Submission Due
Date: 14-Aug-23
Project Title: Impact of Crude Oil Price on Indian Economy Configuration Manual
7 Page
Word Count: 731

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ronit Kumar Pareta
Date: 18-Aug-23

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Impact of Crude Oil Price on Indian Economy
Configuration Manual

Ronit Kumar Pareta
X21223645

1 Introduction

This configuration manual provides detailed guidelines for replicating the experimental
framework of the research study. It outlines the system requirements, software packages, and
machine configuration needed to reconstruct the predictive modeling pipeline. The
instructions cover the minimum essential setup to run the models as well as the optional tools
to extend the analysis. The steps aim to equip readers with the technical knowledge to
reproduce the modeling approach, evaluation techniques, and results analysis. The manual
serves as a practical supplement to the research methodology and implementation. Following
these configurations will facilitate seamless rebuilding of the computational environment
underpinning the study. It enables technical verification and extension of the data science
experiments performed.

In summary, this manual aims to specify the technical toolbox and system specifications
required to reproduce the machine learning experiments and results described in the thesis.
The step-by-step instructions empower readers to recreate the modeling environment and
evaluation processes.

2 Project Files
For my thesis, | used jupyter notebook as IDE to carry out the detailed analysis.
Experiment 1:

e | have uploaded the dataset related to crude oil and used yahoo finance api to fetch the
data for BSE stock index. Then Data cleaning, Data transformation, EDA, Modelling,
Evaluation and Result are done.

Experiment 2:

e | have uploaded the dataset related to crude oil and GDP. Then Data cleaning, Data

transformation, EDA, Modelling, Evaluation and Result are done.

Then same process is followed to carry out the experiment 3 and 4.

3 System Specification

The below image of device depicted is a system running Windows 10 Home Single Language
operating system on an Intel Core i5-8265U CPU with a clock speed of 1.60GHz and 1.80

GHz turbo frequency. The system has 8GB of installed RAM with 7.88GB usable. To carry
out the research this is optimal requirement, and it works well on this configuration.

Device specifications

Device name Ronit

Processor Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GH=z

Installed RAM 8.00 GB (7.88 GB usable)

Device ID DB908160-FDB9-4119-A35D-EBSECAICECAC

Product ID 00327-35140-92358-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch Mo pen or touch input is available for this display
Copy

Rename this PC

Windows specifications

Edition Windows 10 Home Single Language

Version 22H2

Installed on 02-Now-20

OS build 190453324

Experience Windows Feature Experience Pack 1000.19041.1000.0

Figure 1 System configuration

4 Software and Tools

To develop the outputs and the outcomes, the following prerequisites for the software and
libraries have been used:

 Programming Language - Python

* IDE — Jupyter Notebook

« Python Libraries/Modules:

Pre-processing- Numpy, Pandas

Feature Engineering - matplotlib, Plotly

Modelling and Evaluation - Sklearn, tensorflow, GPY

5 Download and Install

Jupyter Notebook, bundled with the Anaconda Python distribution, provides a common user-
friendly platform for development. The Anaconda dashboard features pre-installed packages
including Jupyter Notebook, as shown in Figure 2. To initiate Python code development in
Jupyter Notebook, first launch it from the Anaconda dashboard, then create a new Python
file. This streamlined process leverages the tools provided in the Anaconda distribution to
facilitate seamless Jupyter Notebook-based coding.

SaE
Jupyter
o

ORACLE

Cloud Infrastructure

§ a »

Anaconda e
book:

Figure 2 Anaconda Dashboard

6 Project Setup

Once Jupyter Notebook is launched from Anaconda, click new to open a Python script file.
The code cells can be run together or individually via runtime options. To install any required
packages, use the pip install package-name command. This allows loading the provided code
files in Jupyter and executing the cells in a flexible manner after configuring the environment
with necessary packages. The streamlined process enables running the implemented scripts in
Jupyter Notebook for replication and extension.

7 Importing Libraries

| have carried out the experiment 1,2, and 3 with same libraries and experiment 4 with
different setup because it requires only one machine learning modules while others have 4
models

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import plotly.graph_objects as go

import seaborn as sns

from sklearn.preprocessing import StandardScaler, MinMaxScaler
import GPy

from sklearn.preprocessing import PolynomialFeatures

from sklearn.gaussian process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBﬂ

from sklearn.metrics import mean_absolute error, r2_score, mean_squared_error

Figure 3 Experiment 4 imports.

import pandas as pd

import matplotlib.pyplot as plt

Import train_test_split

from sklearn.model_selection impeort train_test_split

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.preprocessing impert StandardScaler, MinMaxScaler
from sklearn.linear_model import LinearRegression

from sklearn.ensemble impert RandomForestRegressor

from sklearn.ensemble impert GradientBoostingRegressor

from sklearn.model_selection impert RandomizedSearchCV

from sklearn.model_selection impert GridSearchCV

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from sklearn.pipeline impert Pipeline

import plotly.graph_objects as go

import seaborn as sns

from tabulate import tabulate

Figure 4 Experiment 1,2, and 3 imports.

8 Importing Files
df_inflation = pd.read_csv('India_Inflation_Rate.csv')

df _inflation.head()

DATE India_Inflation_Rate

0 01-01-00 2.619048
1 01-02-00 3.614458
2 01-03-00 4830918
3 01-04-00 5.542169
4 01-05-00 5011933

Figure 5 Inflation data
df crude = pd.read_csv('DubaiCrude0il.csv')

Figure 6 Crude oil file
import yfinance as yf

bse sensex = yf.Ticker(""BSESN")
data = bse_sensex.history(start="2000-01-01", end="20821-12-31")

print(data)
Open High Low \

Date

2006-91-83 00:00:00+05:30 5209.540039 5384 .660156 5209.5480839
2006-91-04 00:00:00+05:30 5533.979980 5533.9799380 5376.438176
2006-01-85 00:00:00+05:30 5265.889844 5464 .358@98 5184.479986
2006-01-06 00:00:00+05:30 5424.209961 5489.859863 5391.338878
2008-01-87 00:00:00+05:30 5358.279785 5463 .250000 533@.580078

Figure 7 BSE Index data

df gdp = pd-read csv('Gdp _monthly.csv')

d¥ gdp.head()

DATE India_Gdp

0 01-01-2000 101.507990
1 01-02-2000 101.477515
2 01-03-2000 101.421633
< 01-04-2000 101.342571
4 01-05-2000 101.244041

Figure 8 GDP

df unemp = pd.read csv('india-unemployment-rate.csv')

df_unemp.head()

Date Unemployment Rate (%) Annual Change

0 31-12-2000 5.561 -0.18 NaN
1 31-12-2001 2.576 0.01 NaN
2 31-12-2002 2.530 -0.05 NaN
3 31-12-2003 5643 0.11 NaN
4 31-12-2004 5.629 -0.01 NaN

Figure 9 Unemployment

After fetching the data, further analysis is carried out.

9 Implementation Process

Null values and missing values are check in the data sets and then treated accordingly.
Renaming the columns for better understanding.

Checking outliers and removing them if they are not justifiable.

Normalising the data for better training of machine learning models.

Feature selection, selecting the only important variables.

Merging the relevant datasets.

10 Modeling

First, we split the data set into training and testing data. Then the model is trained on training
data and evaluated on test data.

1 | # Create MinMaxScaler objects
scaler_stock = MinMaxScaler()
scaler_crude_oil = MinMaxScaler()

Normalize the columns and update the DataFrame

merged_df['India Inflation Rate'] = scaler stock.fit transform(merged df['India Inflation Rate'].values.reshape(-1, 1))
merged_df['Crude_oil_price'] = scaler_crude_oil.fit_transform(merged_df['Crude_oil_price'].values.reshape(-1, 1))

. merged df.head()

DATE Crude oil_price India_Inflation_Rate

0 2000-01-01 0.052073 0.101500
1 2000-01-02 0.064157 0.167276
2 2000-01-03 0.067505 0.247660
3 2000-01-04 0.043093 0.294659
4 2000-01-09 0.072275 0.259622

: 'x = merged_df['Crude_oil_price'] # Features
= merged_df['India Inflation Rate'] # Target

: x.count(), y.count()

(276, 276)

. |# Splitting the dataset into training and testing set (88/28)
X_train, X test, y_train, y test = train_test split(x, y, test size = 8.2, random_state = 3@)

Figure 10 Feature selection and Splitting Data Process
After this process, we have trained the model using this data with hyperparameter tuning.

Expanded hyperparameter grids

rf_param_grid = {
'n_estimators': [186, 506, 1608],
'max_depth': [5, 1@, 15, 28, 25],
'max_features': ['auto', 'sqrt', "log2']l,
'min_samples split': [2, 5, 18],
'min_samples_leaf': [1, 2, 4]

F

gb_param_grid = {
'n_estimators': [168, 580],
'learning_rate': [©.01, ©.085, 9.1, 0.2],
'max_depth': [3, 5, &, 18],
'min_samples_split': [2, 5, 18],
'min_samples leaf': [1, 2, 4],
'loss': ['squared_error', 'absolute error’', 'huber']

¥

Randomized grid search

rf_random = RandomizedSearchCV(estimator=RandomForestRegressor(),
param_distributions=rf_param_grid,
n_iter=18, cv=5, verbose=2, random_state=z42)

gb_random = RandomizedSearchCV(estimator=GradientBoostingRegressor(),
param_distributions=gb param_grid,
n_iter=1®, cv=5, verbose=2, random_state=z42)

rf_random.fit(X_train, y train)
gb_random.fit(X_train, y_train)

Best models
best_rf_model
best_gb model

rf_random.best_estimator_
gb_random.best_estimator_

Figure 11 Random forest and Gradient boosting model

Create a linear regression model
linear_model = LinearRegression()

Create a pipeline with a StandardScaler and a linear model
pipeline = Pipeline([

('scaler', StandardScaler()),

('linear_model', linear_model)

D

Define the hyperparameters and their potential values
param_grid = {
'linear_model_ fit_intercept': [True, False]

¥

Create a GridSearchCV object
grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='neg_mean_squared_error')

Fit the grid search te your data
grid_search.fit(X_train, y_train)

Get the best hyperparameters and the best model
best_params = grid_search.best_params_
best_model 1lr = grid_search.best_estimator_

print("Best Hyperparameters:", best_params)
print("Best Model:", best_model 1lr)

Best Hyperparameters: {'linear_model_fit_intercept’': True}
Best Model: Pipeline(steps=[('scaler', StandardScaler()),
('linear_model', LinearRegression())])

Figure 12 Linear Regression

nn_model = Sequential([
Dense(64, activation='relu', input dim=X_train.shape[1]),
Dense(32, activationz='relu'),
Dense(1)

1)

nn_model.compile(optimizer="adam’, loss='mean_squared_error')
nn_model.fit(X_train, y_train, epochs=188, batch_size=32)

Figure 13 Neural Network model

#Create and train the Gaussian Process Regression model

kernel = GPy.kern.RBF(input_dim=1) # Radial basis function (RBF) kernel
model = GPy.models.GPRegression(X crude, Y unemp, kernel)
model.optimize() # Optimize the model hyperparameters

<{paramz.optimization.optimization.opt_lbfgsh at @x28déf3b2efd>

Figure 14 Gaussian Process Regression model

