ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Sunanda Pal
Student ID: x21195820

School of Computing
National College of Ireland

Supervisor: Vitor Horta

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing
Sunanda Pal

Recommendation System for Food Dishes in Specific Restaurants
Based on Sentiment Analysis

1563 15
... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Sunanda Pal

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1.

This research study adheres to a particular implementation setup, and the purpose of this
manual is to provide guidance about the overall establishment of the configuration. This
documentation offers in-depth insights into the software, hardware, and library setups
employed during the project's development. Moreover, it elaborates on the programming

Configuration Manual

Sunanda Pal
Student ID: x21195820

Introduction

approach and the steps required for executing the code.

2. System Configuration

This section describes the hardware and software specifications.

2.1 Hardware Configuration

The hardware specification is given below:

Windows Edition: Microsoft Windows 10 Home Single Language
Processor: AMD Ryzen 3 350U with Radeon Graphics 2.60 GHz
RAM: 8.00 GB (5.94 GB usable)

System Type: x64 based PC. 64-bit operating system.

Device specifications

HP Laptop 15s-grOxxx
Device name LAPTOP-P50106LG

Processor

Installed RAM
Device ID
Product ID
System type

Pen and touch

Figure 1: Device Specification

2.2Software Configuration

The software requirements of the study are given below:

Programming Language: Python 3.10.7

1

e IDE: Jupyter Notebook

3. Project Implementation
This section describes the implementation steps of the project.

3.1 Programming Environment Set-up

The execution environment for implementing it is initiated by launching the Jupyter
Notebook through the command prompt. The diagram below, on the left depicts the launch of
Jupyter Notebook. Once, it is launched, a new tab called ‘Home’ opens in the browser which
is shown in the diagram below on the right.

Figure 2: Execution environment: Jupyter Notebook launch (left) and Homepage of Jupyter
(right)

3.2 Data Collection

The dataset utilized in the research is downloaded from Yelp.com! website. The Yelp website
provides an openly accessible, versatile dataset sourced from real-world businesses, intended
for both personal and academic use. This dataset is available in JSON format and contains
around 6,990,280 reviews related to 150,346 businesses across 11 metropolitan cities. The
dataset consists of six JSON files: business, reviews, user, checkin, tip, and photo. For our
research purpose, only business, tip and review files are used. Data is downloaded in a zip
format which is later extracted.

3.3Python Libraries

The libraries used in this study and their versions are listed below:

Table 1: Python Libraries and versions

Library Version
seaborn? 0.12.1
pandas® 1.3.4

1 https:/iwww.yelp.com/dataset
2 https://seaborn.pydata.org/
3 https://pandas.pydata.org/

https://www.yelp.com/dataset
https://seaborn.pydata.org/
https://pandas.pydata.org/

matplotlib* 3.6.2
json® 0.9.6
numpy® 1.22.4
plotly’ 5.15.0
imageio® 2.9.0
folium® 0.14.0
scikit-surprise?® 1.1.1
nltk! 3.8.1

All the libraries are installed in Jupyter Notebook using pip command.

3.4 Data Loading, EDA and Data Selection

Once all the necessary libraries are installed and imported, data is loaded. In this case, the
original JSON files are stored in local directory and loaded first into the notebook. For the
sake of simplicity, the JSON files are then converted to CSV. It is done in a python3 file
named as “projectl_readjson.ipynb”. Then CSV files are loaded in another python3 file
“project2_businessEDA_merged.ipynb” for EDA purpose and a dataframe is created with
only necessary data from business, tip and review files. Here, data related to only restaurants
in a particular city is chosen where review count is high. It is then saved into a csv file called
“business_review_tip_merged.csv”.

Business.json

business_df = pd.read_json('E:\\NCI Coursework\\SEM 2\\RIC\\Dataset\\yelp\\yelp academic_dataset business.json',lines=z True)
business_df.head()

business_id name address city state postal_code latitude longitude stars review count is_open
Abby 1616 —
] Pns214eNsfO8kk83dixAGA Rappoport, Chapala Barbara CA 93101 34.426679 -M9.711197 5.0 7 0 {ByAppointmentOr
LAC,CMQ St Ste2
&7
The UPS Grasso - = {BusinessAcceptsCre
1 mpRx-BTATEA3YCZIAYPw Store Plaza Afion MO 83123 38551126 60.335685 3.0 15 1
Shopping
Center
2 {UFIWITKIKI_TANSVWINQQ Target Broschuay Tucson AZ 85711 32223236 -110.880452 35 2 0 {Bikepark
= 9 E‘\vg - 'BusinessAccef
TSV . St Honore 935 Race - = {RestaurantsDeliver
3 MTSWAMCQU7CHVjgossmw S T1OR0r & Phiscelpnia PA 19107 39.955505 75155564 4.0 80 1 P
Perkiomen "
4 MWMCS_WTAEOEUBKIGXDVIA Valley Wamu:DS11 Greenlane PA 18054 40338183 75471659 45 13 g EEEEEEIRE

Brewery

Figure 3: Data loading of business.json

4 https://pypi.org/project/matplotlib/

5 https://docs.python.org/3/library/json.html

8 https://numpy.org/

7 https://plotly.com/python/getting-started/

8 https://pypi.org/project/imageio/

9 https://python-visualization.github.io/folium/

10 https://surpriselib.com/#:~:text=Surprise%_20is%20a%20Python%20scikit, perfect?20control %200ver%20their%20experiments.
1 hitps:/iwww.nltk.org/

https://pypi.org/project/matplotlib/
https://docs.python.org/3/library/json.html
https://numpy.org/
https://plotly.com/python/getting-started/
https://pypi.org/project/imageio/
https://python-visualization.github.io/folium/
https://surpriselib.com/#:~:text=Surprise%20is%20a%20Python%20scikit,perfect%20control%20over%20their%20experiments
https://www.nltk.org/

#json to csv
business_df.to_csv('yelp_business.csv')
tip_df.to_csv('yelp_tip.csv')

review df.to csv('yelp review.csv')

Figure 4: Json files are converted to csv

Checking cities where business is high
plt.subplot(1,2,1)

plotTopFreq(foods_df, "categories”,18,"Top Business")
plt.subplot(1,2,2
plotTopFreq(foods_df,"city",1@,"Top cities")

Bui

Boise

rgers
7 Breakfast & Brunch Reno

pizza Philadelphia Saint Louis

Fast Food
Restaurants New Orleans
i "
< L
g American (raditi
& o
rg Bmpa Edmonton
Bars
Nightlife Tucson

Indianapolis
Food Sandwiches

Nashville

Figure 5: EDA of business types and cities

Merging business_review with tij ser_id’ with all colum g ing if not h
df merged final = df merged.merge(ti r_id', 'text']],
on=['business_id', 'user_id'])
df_merged_final.shape
(393866, 10)
df_merged_final.head()
raview_id user_id business_id stars review_text city categories name address text
Senvice was CajuniCrecle, E:;";:
crappy.and New Seafood. 509
0 Z00SLHDVXVZIMG7D4DMD2Q XVKE_HJZpwUITALDLIpNCY S2ZHOBYLXNKAAZ6pBAMBIA a0 tood was Crleans Restaurants, RE;HEIJ;HEV'[Canal St NaN
mediccre. | Breakfast .. Y
ar
Enjoyed my CajuniCredle, e
W fish out at a New Seafooa, 509
10 UgaPWi3g vOQpath, S2HOBYLUKAZGPBATETA 40 scewak Oreans Restaurams, gouetl canais NN
table Abi Breakfast 3
ar
| was happy Creale
hswasmy . COMYCEe House
2 WZBOXNZKEZIYOx_TPA 28UB. HobyL 30 M it pecmee, Restaant o 9} NaN
expenence el & Oyster
with N Bar
Had breakfast CajuniCregle, Hc';"s'g
g withthe famity New Seafood. 509
3 _ZowSEZIVPYT-DREpA 1QU DIROTW S2HOBY 50 N aquck Oreans Restauronts H:SI‘J;IE\: Canagn NaN
st Breakrast &
ar
The one thing - Creole
4 & 3e540j 12219 DBNKK2500; S2HoByLh 50 vaniedior o s st 52 NaN
= J -0 h Orleans Restaurants, Canal St
breakiast el & Oyster
wh Bar

Figure 6: Merging records from business, review and tip

3.5 Data Pre-processing

Next, data pre-processing is done to prepare the review text data suitable for feature
extraction. The output csv file of the second jupyter file is loaded and pre-processing steps
are performed. A python3 file “project3_preprocess.ipynb” is used. The result is store in
“token_pos_nolemm_df _new.csv” file. It has 11 columns where ‘business_id’ is restaurant
id, ‘user_id’ is id of user, ‘review_id’ is unique id of review, ‘text’ is the user comment, ‘city’
is the city of the restaurant, ‘categories’ is the cuisine, ‘name’ is the restaurant name,
‘address’ is the restaurant location, ‘text tokens’ is the tokens generated from ‘text’ and
‘ngrams’ is the 3-grams generated from the tokens.

merged_df . duplicated().sum() #no duplicates
#checking for null
mergad_df[" text'].isna()
1
1
1
1
als
1
1
1
1
387002 1

a
Name: text, Length: 387003, dtype: bool

nan_values= merged_df [merged_df[" text'].isna()]
values # no null values

business_id user_id review_id stars text city categories name address

Figure 7: Duplicate and null value check

Set the value of N for N-grams
N =3 # setting N to the desired value for the size of N-grams

Generate N-grams from the 'text_tokens' column
merged_df['ngrams'] = merged df['text_tokens'].apply(lambda tokens: list(ngrams(tokens, N)))

merged_df .head()

business_id user_id review_id stars text city categories name address texttokens ngrams
Caes, [located
locatea Nightlife, back [focated
New Cocklai 914 catahoula
0_FOMKIBUIOCKZIFSWW ~ 0025VJCPSAFDGbEMCXIoky 151UYC-2xe0ZApSEYyRIOQ 10 ofthe o New 1l piscopar 04 o catanouia)
e Peruvian, thought , (back
Res Tou
i Cafes
absolutely Nighilite, [absOMtEl. [iabsolutely,
_ - 5o lovelis New Cocital 914 ove, bar)
0_FOMKIBUQCKZIFSW 0G-QF457q_0Z_JKGNGXWIA pF1BENKDIQGIRLEOZsyCg 5.0 Oyeils New San PR ons e RS
though i Peruvian Weg), (bar.
e Res
so many Cafes
hotel bars Nightife. ot ell"g”;'r'sy [(many,
are New Cocktai 914] notel, bars).
0_FOMKIBUOCKZIFSWW OIgx-aiwASIBDErGIRA W2XFBUNPaOVsOkeH2Xybw 40 o B¢ New 5 PSCCR (o' SOUIRSS i o)
justa Peruvian, e soulless),
spot Res

Figure 8: Data-frame after tokenization, stop-word removal and n-grams

3.6 Feature Engineering

Feature engineering is one of the most crucial steps of the project. The data is loaded from
the output file of the preprocessing step. In first phase, a food dictionary is created and stored
in “food_dict_final” after refinement of food dishes. Then from the ‘text_tokens’ food items
are extracted and stored in a separate column named ‘food_names’. Ngrams are also filtered
and stored in column named ‘filtered_ngrams’. The name of the python3 file used here is
“project4_foodDictionaryFoodExtraction.ipynb”.

food_dictionary

['branch_water',
'pigweed’,
'pistachio_nut’,
'limeade’,
'spotted dick',
'serviceberry',
'lunch',
‘garlic',
'veggie',
'brewage’,
‘fillet',
"fruit_punch’,
'sirloin_tip',
'peanut_ocil’,
"bock”,
"corn_gluten',
'pork_tenderloin',
'rechewed_food",
'rock_candy ',

PR A

Figure 9: Food_dictionary creation

len(food_dictionary)

3583

food_dictionaryl = [‘sangaree',’costmary’, ‘pie_shell’, 'maconnais’, 'wedding_cake', 'buttermilk', ‘cacheu’, 'gin’, ‘pinwheel_rol
»

food_dictionary2= ['flame_tokay', 'coq_au_vin', 'dropped egg', 'merlot', 'picnic_shoulder', 'red_delicious', 'sauce_louis', 'sail
3

food_dictionary3= ['pine_nut', 'frozen_pudding', 'shandy', 'doughnut', 'frankfurter', 'cruller', 'pork_sausage', 'hallah', 'walc
»

food_dictionarya= ['salad’, 'falafel’, 'sauce albert', 'baking-powder biscuit', 'roast_beef', 'brisket', 'granadilla’, 'spanish_c

»

food_dictionaryS= ['muscadelle’, 'fillet’, ‘mahimahi', 'drop_biscuit®, 'pfannkuchen’, 'coconut’, 'camembert', 'wild_rice’, 'mines

»
food_dict_final= food_dictionaryl + food_dictionary2 +food_dictionary3 +food_dictionary4 + food dictionarys

len(food_dict_final)

2907

Figure 10: Food_dictionary after refinement

After those steps, a new csv file is created named “filtered_ngrams_dict_new.csv”. That is
used in another python3 file called “project5_ posExtraction” to do the later steps of feature
engineering such as POS tagging, making {food: description} where ‘food’ is dish and
‘description’ is word describing opinion of user and then getting positive and negative
sentiment score from sentiment analysis. “filtered pos tags” contains the POS tags,
“food_descriptions” contains the food and opinion pair, “sentiment_scores” has positive and
negative score for each food opinion and finally “average scores” has average of the
sentiment scores for each food item.

Perform POS tagging on the filtered N-grams
def pos_tag_ngrams(ngrams):
tagged_ngrams = []
for ngram in ngrams:
tagged_ngram = nltk.pos_tag(ngram)
tagged_ngrams.append(tagged_ngram)
return tagged ngrams

filtered_df['filtered_pos_tags'] = filtered_df['filtered_ngrams'].apply(pos_tag_ngrams)

filtered_df.head()

business_id user_id review_id stars text city categories name address text_tokens 1
i Cafes,
absolutely Nightlife, [absolutely' [(abs
love this New Cocktail 914 ‘love', ‘bar r
0 -0__ F9fmKiBuioCKztF5Ww 0G-QF457q_0Z_jKgh6xWiA pF1BBNKDrQgfixLEQIZsyCg 50 parl even Orleans Bars, Piscobar Union St T even’ (“gcfee
though i Peruvian, ‘th.
live_ Res.
what a
peautiful s [beautiiul, [('be
way to ightlre. ‘way'
1 0 FO9MKIBUIOCKZIFSWw 1DjkPbciTZ4SV_MS3TaeTQ MKLDHCphgl2SCTsLwF7iWg 50 makeuse . NEW Cookal oo 914 ‘make’
of Orleans . BaTS Union St "use'
eruvian, 'gOrgeUUS‘ T

gorgeuous Res

Figure 11: POS tagging

def extract_food_descriptions(grams, food_tokens):
food_descriptions = []
for gram in grams:
food_token = next{(token for token, tag in gram if token in food_tokens), Nene)
if food_token:
description = next((token for token, tag in gram if tag in ['NN', 'J3', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'] and
if description:
food_descriptions.append({food_token: description})
return food descriptions

filtered_df['food_descriptions'] = filtered_df.apply(lambda row: extract_food descriptions(row['filtered_pos_tags'], row[food_t¢

»

Figure 12: Food-description extraction

Define the function to get positive and negative sentiment scores for a word
def get_sentiment_scores(word):
synsets = list(swn.senti_synsets(word))
if not synsets:
return None, None

Consider the first synset as it generally represents the most common usage of the word
synset = synsets[@]

pos_score = synset.pos_score()

neg_score = synset.neg_score()

return pos_score, neg score

def process_row(row):
sentiment_scores = []
for pair in row['food descriptions']:
key = list(pair.keys())}[8]
value = list(pair.values())[©]
pos_score, neg_score = get_sentiment_scores(value)
sentiment_scores.append({ 'food': key, 'description': value, 'pos': pos_score, 'neg': neg_scorel})
return sentiment_scores

Apply the processing function to each row
filtered_df['sentiment_scores'] = filtered df.apply(process_row, axis=1)

Figure 13: Sentiment score generation

filtered_df.to_csv('filtered_sentiment_scores_new.csv')

filtered_df.head()

agories name address text_tokens ngrams food tokens filtered _ngrams filtered pos tags food_descriptions sentiment scores average_scores
Cafes,
lightlife, [‘absolutely’. [rabsolutely’ [(.. delicious, " . " o ,
- — y', [[i.. .). (delicicus, [{'coffee’: [{foed" 'coffee’, k0] (vt
~°g§§‘ Piscobar Uml?‘sg "’,‘Ife‘é“?:r:- love, 'bar). ESE;%';O]‘ (deﬁg;fgfs)- JJ). (coffee. NNJ|. ‘delicious?, ‘description [{fcg:t[j] ,;ggf?%-ofu{s-
IR, *p o (love! bar cofiee, d... [(de.. [coffee’: 'deliciou... delicious' : 3
Res..
Cafes) .
, ' ['beautiful', [('beautiful’ y \
lightlife, vy ! [(rooftop. ([{'popcom ool ! :
Cocktail Piscobar 914 .m\';z;.’ 'm;i’(:)'{j [popcom, popcorm), ([, [([SKESES&,:;NLS](' 'rooftop’} [foo%éspgrﬁ;:t%; [{food': ‘popcom’, 'pos'
Bars, Union St wse' (way' jambalaya] ~ popcorn, - ’[[(g {'popcom’ ‘rooftop’ 0.0, 'neg" 0.0}, ...
2ruvian, 'gorgeous’ : 'make' jambalaya... T ‘jambalay. o
Res..
"é:;‘r‘?g‘ e o I, order [[(-.). {order, NN), [{'b rder’} [{'food": 'b
A . ‘gem’, ‘gem’, ¥ : ., 7). (order, L ‘banana'’. ‘order’}, ‘food': 'banana’, : e .
Cocktail 914 B . | s [banana, banana), (order, y o . I [{food" 'banana’, 'pos'
Bars, FSCODAM i gt 'c,ocgmraeu?st" %'ejrtnjc smoothie] banana, {t’a”a'&g}dﬁn' ibabanat Om{.e;] d.ﬁfggrp“.o” 0.20833333333333334._
2[uvian, i ’ regl' ' smoothie)... o o e
Res.. v 9 T
Cafes, -
ligntlie. [gsgl\ [{'coor [(damn, good (l(damn, RB). [ffood" ‘cocktail
Cocktail 914 o ‘spot' . : (good, JJ), [{cocktail 'good?], s ~hS e [{food: 'cocktail, 'pos':
Bars, FISCOBAM ypion st regam'ﬁfﬁ?: regardiess’) [cocktal] CO‘:CE[S%POOQ (cocktail, NN)J, feockiail” ‘good?] “e?g"%lor‘ 0.5, 'neg" 0.0}]
2ruvian, . V7 ('spot, 'reg..) [g... 9 !
Res.. inside

Figure 14: Output of file “project5_posExtraction

Once, those mentioned steps are done, data-frame is stored in a file named
‘filtered_sentiment_score_new.csv’. There are few more steps of feature engineering left
which is done in the beginning of every ‘project6 files which are the files basically created
for applying collaborative filtering models. From the data loaded from
‘filtered_sentiment_score_new.csv’ file, only four attributes ‘user_id’, ‘business_id’, ‘stars’,
‘average_scores’ are taken and stored in rating_df dataframe.

Create an empty DataFrame 'rating_df'
rating_df = pd.DataFrame(columns=['user_id', 'business_id', "stars', 'average scores'])

rating_df['user_id']= filtered df['user_id']

rating_df['business_id']= filtered_ df['business_id']
rating_df['stars']=z filtered_df['stars']|

rating_df['average_scores']= filtered_df['average scores’]

rating_df.head()

user_id business_id stars average_scores

0 002sVJCpSdFDgb6mCx9okg -0_ FIMKiguioCKziFSWw 1.0 [{food" ‘gent, 'pos" 0.020833333333333332, ...

1 0G-QF457g_0Z_jKghBxWia -0_ FOinKi8uioCKziFSWw 5.0 [{'food': 'delicious', 'pos'": 0.0, 'neg” 0.0}
2 Olgx-atwAstiBDerGxXk2A -0_ F9MKISuioCKziIFSWw 4.0 [{'feod” 'vintage', 'pos'’ 0.3333333333333333..
3 1DjkPbctTZ4SY_MS3TaeTQ -0_ FOMKiBuioCKztFSWw 5.0 [{'food" 'drink’, 'pos": 0.09375. 'neg" 0.0}...
4 1EWRVVOdeWca3Of2fisv1Q -0_ FOmKiSuioCKztFSWw 5.0 [{'food": food', 'pos': 0.0, 'neg': 0.0625}, ...

Figure 15: Necessary data loaded in ‘rating_df’ data-frame

As ‘average scores’ has information about food iem, positive and negative score, they are
first unpacked and stored into separate columns. The attribute ‘stars’ is transformed through
‘min_max’ normalization and stored in ‘normalized_stars’.

1 | # Perform Min-Max normalization
min_rating = @ # min rating can be @
max_rating = rating_df['stars'].max() # max rating is 5

rating_df['normalized_stars'] = (rating_df['stars'] - min_rating) / (max_rating - min_rating)

: rating_df.head()

user_id business_id stars food total_score normalized_stars
0 002sVJCpSdFDgb6mCx9okg -0_ FOMKiBuioCKZIF5Ww 1 gem -0.208333 0.2
1 002sVJCpSdFDgb6mCx9okg -0_ F9TnKiBuioCKztFSWw 1 drink -0.062500 0.2
2 002sVJCpSdFDgbemCx9okg -0_ F9mKiSuioCKZIFSWwW 1 bit 0.125000 0.2
3 002sVJCpSdFDgb6mCxSokg -0 F9MKiSuioCKzIF5Ww 1 beverages 0.125000 0.2
4 0G-QF457q_0Z_jKghGxWiA -0_ F9mKiSuioCKziFSWw 5 delicious 0.000000 1.0

Figure 16: Min-max transformation of rating ‘stars’

Next, for every record a tuple of ‘food’ and ‘business is’ is created to generate
‘restaurant_food_pair’ and a ‘final rating’ is generated by taking average of
‘normalized_stars’ and and ‘total score’. Now, the data is prepared to be utilized in model
implementation.

3.7 Sampling of Data

Due to limited computational resource, the experiment is carried out in two ways. In one-
way, whole data is taken and in other way, only a small part of the data is taken. Hence,
sampling is done in file ‘project6_sampled CFknnBasic.ipynb’ with only 10000 records and
stored in ‘sampled_df.csv’ for further utilization.

Sampling of Data -Because of Memory Issue

Sample 10900 rows of the 'filtered df' DataFrame
sampled_df = filtered_df.sample(n=19006, random_state=42)

filtered_df.shape

(2286259, 6)

sampled_df.shape

(10000, 6)

sampled_df.to_csv('sampled_df.csv')

Figure 17: Data Sampling

3.8 Train-test Split

In both experimental approaches, the data is randomly split into training and test data in
80:20 ratio. AS for collaborative filtering models surprise library is used, the original data is
first loaded into surprise dataset and then the split is done. A ‘reader’ object is created too to
specify the rating scale which is 0-1 in this case.

Train test split

Create a Reader object to specify the rating scale (here, the total score ranges from @ to 1)
reader = Reader(rating_scale=(8, 1))

Load the data from the DataFrame into the Surprise Dataset
data = Dataset.load_from_df(sampled_df[['user_id', 'restaurant_food_pair', 'final_rating']], reader)

Split the data inte train and test sets
trainset, testset = train_test_split(data, test_size=®.2, random_state=42)

Figure 18: Train-test split

3.9 Model Implementation

Total four models are implemented. On sampled data, KNNBasic and KNNWithMeans and
on whole data, SVD and NMF are applied.

3.9.1 KNNBasic

First KNNBasic() with default setting is applied. Then 5-fold cross-validation and hyper
parameter tunning with GridSearchCV is applied as well. The python3 file name is
“project6_sampled_CFknnBasic.ipynb”.

KNNBasic

Create the KNNBasic algorithm
algorithm = KNNBasic() #msd similarity

Train the algorithm on the trainset
algorithm.fit(trainset)

Computing the msd similarity matrix...
Done computing similarity matrix.

<surprise.prediction_algorithms.knns.KNNBasic at @x2b3b57d69de:

predictions = algorithm.test(testset)

Figure 19: KNNBasic() with default setting

cross-validation

Perform cross-validation with the chosen algorithm
cv_results = cross_validate(algorithm, data, measures=z['rmse’, 'mae’'], cwv=5, verbose=True)

Computing the msd similarity matrix...
Done computing similarity matrisx.

Computing the msd similarity matrix...

Done computing similarity matrisx.

Computing the msd similarity matrix...

Done computing similarity matrix.

Computing the msd similarity matrix...

Done computing similarity matrisx.

Computing the msd similarity matrix...

Done computing similarity matrix.

Evaluating RMSE, MAE of algorithm KNNBasic on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE (testset) ©.153% @.1532 @.1584 ©.1513 2.1504 @.1518 2.0014
MAE (testset) @.1175 @.11%92 @.1146 @.1166 @.1148 @.1165 @.e917
Fit time 1.85 1.87 1.8@ 1.8 1.78 1.82 a.e3
Test time 2.04 e.e3 a.04 a.es e.04 e.4 e@.e1

et +he averans BMSE and MAF across +he ol ds

Figure 20: KNNBasic() with 5-fold cross-validation

Hyperparameter tunning

Define the parameter grid to search
param_grid = {

'k': range(10,58,1), # Number of neighbors to consider

"min_k': [1, 3, 5], # Minimum number of neighbors to consider

"sim_eptions': {
'name’: ['cosine', 'pearson', 'pearson_baseline', 'msd'], # Similarity metric to use ('cosine' or 'pearson')
'user_based': [True, False] # User-based or item-based (True or False)

¥

from surprise.model selection import GridSearchCV

Perform GridSearchCV to find the best combination of hyperparameters
grid_search = GridSearchCV(KNNBasic, param_grid, measures=['rmse', 'mae'], cv=5, n_jobs=-1)
grid_search.fit(data)

Figure 21: KNNBasic() with 5-fold cross-validation and hyper parameter tunning

3.9.2 KNNWithMeans

KNNWithMeans() is applied on the training data obtained from sampled dataset. After
running with default setting, 5-fold cross validation and optimization through hyperparameter
tunning is applied. It is executed in “project6_sampled CFknnWithMeans.ipynb” python file.

10

KNNWithMeans

Create the KNNWithMean algorithm
algorithm = KNNWithMeans()

Train the algorithm on the trainset
algorithm.fit(trainset)

Computing the msd similarity matrix...
Done computing similarity matrix.

<surprise.prediction_algorithms.knns.KNNWithMeans at @x15719b92580>

predictions = algorithm.test(testset)

Figure 22: KNNWithMeans() with default values

cross-validation

Perform cross-validation with the chosen algorithm
cv_results = cross_validate(algorithm, data, measures=['rmse', 'mae'], cv=5, verbose=True)

Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Evaluating RMSE, MAE of algorithm KMNWithMeans on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE (testset) ©.1527 ©.1531 9.1562 ©.1560 0.1491 ©0.1534 0.8026

MAE (testset) 0.1165 @.1163 ©.1191 ©.1287 ©.1148 ©.1175 ©0.e021
Fit time 2.e3 2.80 1.96 1.82 1.86 1.95 @.e6
Test time 0.04 0.83 9.03 9.04 0.e3 0.83 @.e0

Figure 23: KNNWithMeans() with 5-fold cross-validation

Hyperparameter tunning

Define the parameter grid to search
param_grid = {

'k': range(10,50,1), # Number of neighbors to consider

‘min_k': [1, 3, 5], # Minimum number of neighbors to consider

'sim_options': {
'name': ['cosine', 'pearson', 'pearson_baseline', 'msd'], # Similarity metric to use ('cosine' or 'pearson’)
'user_based': [True, False] # User-based or item-based (True or False)

from surprise.model_selection import GridSearchCV

Perform GridSearchCV to find the best combination of hyperparameters
grid_search = GridSearchCV(KNNWithMeans, param_grid, measures=['rmse', 'mae'], cv=5, n_jobs=-1)
grid_search.fit(data)

Figure 24: KNNWithMeans() with 5-fold cross-validation and hyperparameter tunning

3.9.3 SVD

On the complete dataset obtained after feature engineering, SVD algorithm is applied. In this
case also first the basic version, then 5-fold cross validation and finally hyperparameter
tunning using GridSearchCV with cross-validation is implemented. The file executed here is
“project6_CFsvd_full.ipynb”.

11

SVD

Use the SVD algorithm to build the model and train it on the training set
modell = SVD()
modell.fit(trainset)

<surprise.prediction_algorithms.matrix_factorization.SVD at ©x212a27132b@>

Make predictions on the test set
predictionsl = modell.test(testset)

Figure 25: SVD() with default values

SVD - 6 cross fold- RMSE and MAE

Choose the collaborative filtering algorithm (e.g., Singular Value Decompositien - SVD)
algorithm = SVD()

Perform cross-validation with the chosen algorithm
cv_results = cross_validate(algorithm, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

Get the average RMSE and MAE across the folds
average_rmse = cv_results['test_rmse'].mean()
TR S @Y, ek Tt Y T cnmam(l)
print("Average RMSE:", average_rmse)

print("Average MAE:", average mae)

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

RMSE (testset) ©.1457 ©.1465 ©.1464 ©.1464 @.1463 @.1463 ©.00e3
MAE (testset) ©.111% ©.1126 9.1125 ©.1124 ©.1125 ©.1124 @.ege2
Fit time 48.21 45.28 45.45 51.17 a47.71 47.56 2.15
Test time 2.58 2.46 1.7@ 2.57 2.50 2.36 @.34

Figure 26: SVD() with 5-fold cross-validation

SVD- crossfold - Hyper parameter tunning - GridSearchCV
from surprise.model_selection import GridSearchCV

param_grid = {

"'n_epochs': [5, 1@, 15], # Number of iterations of the optimization algorithm
"lr_all": [@.802, ©.005, 0.91], # Learning rate for all parameters
'reg_all': [@.1, ©.2, 8.4, 0.6] # L2 regularization term for all parameters

import joblib

joblib.parallel backend('loky')

Use the SVD class instead of the SVD object
algorithm_class = SVD

Perform GridSearchCV to find the best combination of hyperparameters
grid_search = GridSearchCV(algorithm_class, param_grid, measures=['rmse', 'mae'], cv=5, n_jobs=-1)

grid_search.fit(data) # Use the original 'date', not the trainset

Figure 27: SVD() with 5-fold cross-validation and hyperparameter tunning

3.9.4 NMF

A similar approach is followed for NMF as well. It is executed in
“project6_ CFnmf full.ipynb”. Figure 28 shows the basic nmf() model, whereas fig 29 shows
cross-validation on it and fig 30 depicts the optimization performed through hyperparameter
tunning.

12

NMF

Use the NMF algorithm to build the model and train it on the training set
modell = NMF()
modell.fit(trainset)

<surprise.prediction_algorithms.matrix_factorization.NMF at @x1c4838f%ac@>

Make predictions on the test set
predictionsl = modell.test(testset)

Figure 28: NMF() with default setting

NMF - 5 cross fold- RMSE and MAE

Choose the collaborative filtering algorithm NMF
algorithm = NMF()

Perform cross-validation with the chosen algorithm
cv_results = cross_validate(algorithm, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

Get the average RMSE and MAF across the folds
average_rmse = cv_results['test_rmse'].mean()
average_mae = cv_results['test_mae'].mean()
print("Average RMSE:", average_rmse)
print("Average MAE:", average_mae)

Evaluating RMSE, MAE of algorithm NMF on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE (testset) 9.1374 ©.1381 0.1378 ©.1379 ©.1379 ©.1377 0.0004

MAE (testset) 6.1057 0.1061 0.1854 ©.1855 ©.1e59 ©.1058 ©.0902
Fit time 123.7e 122.80 121.47 123.38 121.35 122.534 @.97
Test time 4.65 4.30 2.63 4.42 4.30 4.96 @.73

Figure 29: NMF() with 5-fold cross-validation

NMF- crossfold - Hyper parameter tunning - Grid SearchCV
from surprise.model_selection impert GridSearchCV

Define the parameter grid to search

param_grid = {
'n_factors': [10, 208, 3@], # Number of Latent factors
'reg_pu': [0.82, 8.85, 8.1], # Regularization term for user factors
'reg gi': [0.62, 9.85, 8.1] # Regularization term for item factors

import joblib
joblib.parallel_backend('loky")

Perform GridSearchCV to find the best combination of hyperparameters
grid_search = GridSearchCV(NMF, param_grid, measures=['rmse', 'mae'], cv=5, n_jobs=-1)

grid_search.fit(data) # Use the original ‘data’, not the trainset

Figure 30: NMF() with 5-fold cross-validation and hyperparameter tunning

3.10 Results and Evaluation

For every model, results are obtained in terms of RMSE and MAE. Those values are
compared for every model to chose the best one in each case.

13

3.10.1 KNNBasic

The RMSE and MSE value of the KNNBasic model trained on the best parameters are shown
in the below diagram. RMSE value achieved is 0.1517 and MAE achieved is 0.1164.

Get the best RMSE and MAE scores along with the best hyperparameters
best_rmse = grid_search.best_score['rmse']
best_mae = grid_search.best_score['mae']

best_params = grid_search.best_params['rmse'] # or 'mae' for the best hyperparameters

print("Best RMSE:", best_rmse)
print("Best MAE:", best_mae)
print("Best Hyperparameters:", best params)

Best RMSE: ©.1517896483818298
Best MAE: ©.11649174765768558
Best Hyperparameters: {'k': 18, 'min_k': 1, 'sim_options': {'name': 'cosine', 'user_based': Truel}

Figure 31: Result of hyperparameter tunned KNNBasic

3.10.2 KNNWithMeans

The diagram blow shows the best RMSE and MAE value obtained for optimized
KNNWithMeans model. They are 0.1532 and 0.1173 respectively and shown in fig 32.

Get the best RMSE and MAE scores along with the best hyperparameters
best_rmse = grid_search.best_score['rmse’]
best_mae = grid_search.best_score['mae']

best_params = grid_search.best_params['rmse’'] # or 'mae' for the best hyperparameters

print("Best RMSE:", best_rmse)
print("Best MAE:", best_mae)
print("Best Hyperparameters:", best_params)

Best RMSE: ©.15324264498628673
Best MAE: ©.11737535424312862

Best Hyperparameters: {'k': 10, 'min_k': 1, 'sim_options': {'name': 'cosine', 'user_based': True}}

Figure 32: Result of hyperparameter tunned KNNWithMeans

3.10.3 SVvD

For SVD also, the best RMSE and MAE value is obtained for optimized model with the best

combination of hyperparameters. The diagram below shows the result of RMSE and MAE
which are 0.1272 and 0.0957 respectively.

Get the best RMSE and MAE scores along with the best hyperparameters

best_rmse = grid_search.best_score['rmse']

best_mae = grid_search.best_score['mae']

best_params = grid search.best_params['rmse'] # or 'mae’ for the best hyperparameters

print(“"Best RMSE:", best_rmse)
print("Best MAE:", best_mae)
print("Best Hyperparameters:", best_params)

Best RMSE: 0.1272364689581841
Best MAE: ©.09571371173210%@5
Best Hyperparameters: {'n_epochs': 15, 'lr_all': 8.81, 'reg_all': @.56}

Figure 33: Result of hyperparameter tunned SVD

14

3.10.4 NMF

Optimized model of NMF has shown best value for RMSE and MAE for the best

combination of hyperparameters. The diagram below shows the result of it. RMSE value
obtained is 0.1304 and MAE value obtained is 0.0967.

Get the best RMSE and MAE scores along with the best hyperparameters
best_rmse = grid_search.best_score['rmse’]
best_mae = grid_search.best_score['mae']

best_params = grid_search.best_params['rmse'] # or 'mae' for the best hyperparameters

print("Best RMSE:", best_rmse)
print("Best MAE:", best_mae)

print("Best Hyperparameters:", best_params)

Best RMSE: ©.1384115176563282
Best MAE: ©.09673086844157211

Best Hyperparameters: {'n_factors': 3@, 'reg pu': 8.82, 'reg gi': @.82}

Figure 34: Result of hyperparameter tunned NMF

15

