~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Conor Moody
Student ID: 21201765

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Conor Moody
Student ID: 21201765
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Jorge Basilio
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 1,085
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Conor Moody

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Conor Moody
21201765

1 Introduction

The following document is to be used as a guide to set up the environment needed to run
the three models that were built to predict the Research & Development (R&D) spend
for the Annual Business Survey of Economic Impact (ABSEI) which is coordinated by the
Department of Enterprise, Trade & Employment. This manual will cover the environment
setup as well as the work needed to perform Data Transformation and Data Preparation,
as well as the Implementation of the Recurrent Neural Network, Feed Forward Neural
Network and Linear Regression models.

2 Dataset

The ABSEI dataset used for this analysis was a large CSV file containing restricted
information on Irish businesses. It was made available for this analysis but unfortunately
it was only accessible on a designated PC in the Department of Enterprise, Trade &
Employment. As such, the raw data used is not accessible for running outside of the
Department.

An advantage of the dataset being made available for this analysis was that previously
unavailable variables on R&D were accessible for the purposes of this project. This
allowed for the ability to build a model to predict the R&D spend for Irish companies.

The initial dataset was made up of 10,856 companies with 1,059 variables for each of
them. These 1,059 variables covered the data for each year that the survey was offered
(2000 to 2022 inclusive) for 185 questions.

3 Environment Setup

3.1 Hardware Requirements

The following are the recommended Hardware Requirements needed for the development
of this project:

e Processor: Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz
e Installed RAM: 16.0 GB
e Storage: 256GB SSD/1TB HDD Operating System.

e : System Type: 64-bit operating system, x64-based Operating System.

3.2 Software Requirements

This project was run using the following software:

e Python 3.11 - Installed on machine

e Juypter Notebook - Installed on machine

e Overleaf - Online

3.3 Libraries

Python has a number of libraries that it can harness in order to improve the processing
efficiencies. In particular, the 4 main libraries used in the project were:

e Pandas

e Numpy

e Tensorflow

e Sklearn

Within those 4 libraries, there were a number of packages used. There was also other
libraries that were needed at various stage, and all of the packages in Figure (1| below were
used during the project:

import
import

import re

import
import

pandas as pd
numpy as np

seaborn as sns
tensorflow as tf

from tensorflow.keras.models import load model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras import models, layers, utils
import matplotlib.pyplot as plt

datetime import datetime

tabulate import tabulate

from
from
from
from
from
from
from
from
from

sklearn
sklearn
sklearn
sklearn

sklearn

import metrics, preprocessing

.metrics import mean_squared_error, mean_absolute error, r2 score
.linear_model import LinearRegression

.preprocessing import StandardScaler

sklearn.
sklearn.

neural_network import MLPRegressor
preprocessing import MinMaxScaler

.model selection import train_test split

Figure 1: Imported Packages

3.4 Juypter Notebook

Jupyter Notebook was used to edit the Python code. Jupyter Notebook (shown in Figure
below) is a web-based Integrated Development Environment (IDE) and it was the most
popular IDE when data analysts were surveyed in 2022 (

: J u pyter Quit Logout

Files Running Clusters
Select items to perform actions on them Upload | New~ &

Oo ~ Wy Name ¥ Last Modified File size
[[3 Jupyter Workzone 32 minutes ago
O & MongoConnect ipynb a year ago 222 kB
O & NTLK ipynb a year ago 1.84 kB
O & PostgreSQL Install.ipynb a year ago 53.8 kB
O & Project - Statistics.ipynb a year ago 1.17 MB

Figure 2: Jupyter Notebook

3.5 Overleaf

The project report was written in Overleaf (shown in Figure 3| below), which is an online
LaTeX editor. This was chosen due to the effective ability of LaTeX to handle images
and tables for reports, as well as how it is much easier to organise the structure and
references of long documents.

Q@ submit [0 Layout ~ @B Chat

9 History

G Menu @

& share

Z Recompile ~ [& &

Upgrade @b Review

L1 S w

I figures

(LRI Visual Editor

component can work better for predicting R\& spend in the

Neural Netwok (RNN) has connections between nodes that can form cycles, which allows
information to persist and flow back into the network. By having this feedback loop it
enables RNN to have a hidden state which s able to capture temporal dependencies in
sequential data.

= logos

& text

hidden state which is able to capture temporal dependencies in Fi
sequential data. c
Gl BaseVariables_Small. JPG H 302) h

393 \begin{figure}[H] B
394+ \begin{center} x
395 \includegraphics [width=0.3\textwidth] {RNN_Arch. jpg}
396 \caption{RNN Architecture}

Ea] CompaniesRD.jpg 397
398 \end{center}

&) Arch.JPG

& Bib_extra.bib

il BusinessSectors.jpg
Figure 9: RNN Architecture

zal Correlation.JPG 300 \end{figure} One of the issues that RNNs can face is the vanishing gradient problem. This is when
g the gradients used to update the network become very small to the point of vanishing,
400 as they are back-propagated from the output o

il Design_Final.JPG

overcome the issues of vanishing gradient, | d for building
the models on this dataset. Cated Recurrent Unit was another type discussed in the

401 one of the issues that RNNs can face is the vanishing gradient

[l FFN_NewPrediction.JPG
Ea] FFNN_Architecture.JPG

[) Heatmap.jpeg

problem. This is when the gradients used to update the network
become very small to the point of vanishing, as they are back-

propagated from the output layers to the earlier layers. In order
was the type of
Gated Recurrent

to overcome the issues of vanishing gradient,

Literature Review, but it was not chosen as it can’t capture long-term dependencies as
well as LSTM.

The ability for LSTM maodels to effectively capture long-term dependencies is illustrated
in the architecture in Fig(I0. A simple RNN model would just have a single hidden state,
‘making it difficult o interpret long term dependencies. The LSTM model employed here
has a memory block containing 3 gates. The Forget gate removes any information no

& Litbib Unit was another type discussed in the Literature Review, but it Tonger needed. The input gate adds uscful information to the cell, and the output gate
was: notiichosen'as it cantt capturer Tonpterm dependanciesias yell extracts the useful information and sends it as the input to the next cell
Ea) LR_NewPrediction.JPG as LSTM.
402 \\

£al LSTM_Arch.JPG

[zl LSTM_Architecture.jpg

il LSTM_Loss_New.JPG

o . B 0 “
Forget gate removes any information no longer needed. The input

aate adds useful information to the cell. and the output aate v v

Figure 3: Overleaf

4 Data Transformation

The first Juypter Notebook file to be run is 'Data Transformation.ipynb’. This file takes
the original raw data, and performs the transformation using the Melt function in Python,

to reduce the dimensionality of the dataset and ensure that there is one variable for every
question in the survey. By performing this action on every question where there are
multiple years’ of data, the dataset is reduced to 185 variables, but there are now over
249,000 rows. This allows for the performance of time series analysis on the data, and a
code snippet for this section is shown in Figure [4] below.

In []: # CREATE A DATAFRAME FOR THE VARIABLES THAT MAKE UP THE 'STATUS' QUESTION, AND ISOLATE THE FINAL TWO CHARACTERS AS THESE HIC
df_Status = df.iloc[:, 17:32]

cls = []
print(df_Status.columns)
for ¢ in df_Status.columns:
cls.append(c[-2:])
df_Status.columns = cls
print(df_Status)
< >

In []: |# CREATE A DATAFRAME FOR THE VARIABLES THAT MAKE UP THE °WEIGHT' QUESTION, AND ISOLATE THE FINAL TWO CHARACTERS AS THESE HIC
df_Weight = df.iloc[:,32:55]

cls = []
for ¢ in df_Weight.columns:
cls.append(c[-2:])
df_Weight.columns = cls
print (tabulate(df_Weight, headers='keys®, tablefmt="psql'))
4 >

In []: |# CREATE A NEW DATAFRAME MADE UP OF THE MAIN VARIABLES AND THE NEW VARIABLES FROM THE STATUS DATAFRAME

df_MainStatus = pd.concat([df_main, df Status], axis=1)
print(tabulate(df_MainStatus, headers="keys', tablefmt="psgl"))

In []: # USE MELT COMMAND TO POPULATE NEW DATAFRAME WITH THE SELECTED VARIABLES AND CREATE NEW VARIABLES FOR YEAR AND STATUS, POPUL

dft_MainStatus = df MainStatus.melt(id vars=['BIS", 'cssid’, agency’,'nace’,’'origin’, 'globalregion’,"Sector’, 'B_Sector', "divi
var_name="Year",
value name="5Status")

print(tabulate(dft_MainStatus, headers="keys', tablefmt='psgl'))

< >
In []: # USE MELT COMMAND TO POPULATE NEW DATAFRAME WITH THE SELECTED VARIABLES AND CREATE NEW VARTABLES FOR YEAR AND WEIGHT, POPUL
df_MainWeight = pd.concat([df_main, df_Weight], axis=1)
dft_MainWeight = df_MainWeight.melt(id_vars=['BIS','cssid’,'agency’, 'nace’, 'origin’, 'globalregion’, "Sector','B_Sector','divi
var_name="Year",
value_name="Weight")
print(tabulate(dft_MainWeight, headers="keys', tablefmt="psqgl®))
< >
In []: # MERGE NEARLY CREATED DATAFRAMES TOGETHER, JOINING THEM ON THE BASE VARIABLES 50 AS TO NOT CREATE DUPLICATES
StatusWeight df = pd.merge(dft MainStatus, dft_MainWeight, how="outer', left_on=['BIS', 'cssid’,'agency’, 'nace’,’'origin’, glc
< >

Figure 4: Data Transformation

5 Data Preparation

Once the data is transformed, the 'Data Preparation.ipynb’ notebook needs to be run
next, and it is the process that worked on getting the data ready for modelling. The
dataset was reduced down to just Irish companies. Any non-numeric variables were also
removed. In order to properly predict a value for x25, it was important to remove any
records where no value for x25 was recorded. This reduced the number of records to
just over 29,500. Outliers were then removed as well, as they could overly impact the
modelling.

Another process that took place in the Data Preparation phase was to calculate the
appropriate number of years between R&D and the resulting New Product Sales ('x38a),
and move the values for x38a to the same year that the R&D took place. Figure [5| below
shows some of this work in the notebook.

In [48]:

In [41]:

In [42]:

In [43]:

In [45]:

In [46]:

CREATE A SUBSET OF THE DATA WITH JUST IRISH COMPANIES
df_Ire = df[df.origin == "Ireland"]

REMOVE ANY NON-NUMERIC DATA
df_Num = df _Ire.select_dtypes(include=['number'])

REDUCE THE DATASET AGAIN TO ONLY CONTAIN ROWS WHERE THERE IS5 A VALUE FOR X25
df x = df_Mum[df_Num.x25 > 8]

CALCULATE Q1 AND Q3 FOR REMOVING OUTLIERS
Q1 = df _x['x25'].quantile(®.25)
Q3 = df x["x25'].quantile(8.75)
COMPUTE INTERQUARTILE RANGE
IQR = Q3 - Q1

DEFINE LOWER AND UPPER BOUNDS FOR OUTLIERS
lower_bound = Q1 - (1.5 * IQR)
upper_bound = Q3 + (1.5 * IQR)

CREATE NEW DATAFRAME WITH ROWS CONTAINING OUTLIERS IN X25 REMOVED
df xo0 = df x[(df x['x25'] »= lower bound) & (df x['x25"] <= upper bound)]

J: | # FILL NA'S WITH @

df_x2 = df_xo.fillna(@)

CREATE VARIABLES NEEDED FOR THE LOOP
total t plus values = &
count = @

CREATE A LOOP TO FIND THE MAXIMUM VALUE FOR X38A AFTER AN OCCURENCE OF X25
for index, row in df_x2.iterrows():
Year_x25 = row['Year']
data_filtered_by_year = df_x2[df_x2['Year'] » Year_x25]
if not data_filtered_by_year.empty:
max_x38a_year = data_filtered by year.loc[data_filtered_by_year['x38a"].idxmax{)]["Year']
t_plus_value = int(max_x38a_year - Year_x25)
total_t_plus_values += t_plus_value
count += 1

In [47]:

GET THE AVERAGE OF EACH OF‘ THESE VALUES
average t_plus_value = total t plus_values / count

Figure 5: Data Preparation

6 Implementation

The output of the Data Preparation notebook is a file called "Model_Data.xlsx’, and this

file can be run on each of the models independently.

6.1 Feed Forward Neural Network

The code in Figure [6] below shows the production of the Feed Forward Neural Network.
Once the dataset is split, the input features are standardized. The model is built with
one hidden layer with 50 neurons. The ReLU activation function is used as well as the
Adam optimization algorithm. The training model is set to 3000 iterations and a random

seed for reproducibility is set.

Once the model is trained, x25 values are predicted for the test set, and the results

are evaluated.

In [9]: | # SPLIT THE DATASET INTO TRAINING AND TESTING DATASETS, WITH AN 80%/20% SPLIT
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

In [10]: # STANDARDIZE THE INPUT FEATURES FOR BETTER PERFORMANCE
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

In [11]: # CREATE A FEED-FORWARD NEURAL NETWORK WITH ONE HIDDEN LAYER
nn_model = MLPRegressor(hidden_layer sizes=(5@,), activation='relu’, solver='adam', max_iter=3000, random_state=42)

In [12]: | # TRAIN THE MODEL ON THE TRAINING SET
nn_model._fit(X_train_scaled, y train)

Out[12]: MLPRegressor(hidden_layer_sizes=(50,), max_iter=3000, random_state=42)

In [13]: # PREDICT X25 VALUES FOR THE TEST SET
y_pred = nn_model.predict(X test scaled)

In [14]: # CALCULATE MEAN SQUARED ERROR BETWEEN PREDICTED AND ACTUAL VALUES
mse = mean_squared_error(y_test, y_pred)

In [15]: # PRINT MEAN SQAURED ERROR
print(mse)

1493.0164949780149

Figure 6: Feed Forward Neural Network Code

6.2 Recurrent Neural Network with Long Short-Term Memory

The code below in Figure [7] shows the creation of the Recurrent Neural Network model.
It uses the ReLLU activation function, and the model is run on a previously set window
size. The window size dictates the number of time steps (in this case the number of years)
that the model will be trained on. Dropouts are used to prevent overfitting, and a Dense
(fully connected) layer with one neuron for regression output is also included.

Early Stopping is included to stop the model when validation loss has stopped im-
proving. The model is then trained, with epochs (full passes through the dataset) set to
be 100. Early stopping may mean this is not reached.

In [1@8]: # CREATE THE LSTM MODEL USING THE KERAS PACKAGE, WITH APPROPRIATE LAYERS AND PARAMETERS
num_features = X_train_windowed.shape[2]
model = Sequential()
model.add(LSTM(units=158, activation='relu’, return_sequences=True,
input_shape=(window_size, num_features)))
model . add(Dropout(@.2))
model.add(LSTM(units=158, activation="'relu'))
model . add(Dropout (8.2))
model.add(Dense(1))

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001 + le-7)
model.compile{optimizer=optimizer, loss='mse', weighted_metrics=[], run_eagerly=True,)

In [11]: # TRAIN THE MODEL ON THE TRAINING SET, USING EARLY STOPPING TO AVOID OVERFITTING
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss', patience=28)
history = model.fit(X train_windowed, y_ train_windowed,

epochs=168,

batch_size=32,
validation_split=0.2,
callbacks=[early stopping],
sample_weight=w_train_windowed)

Epoch 1/108

213/213 [] - 155 72ms/step - loss: ©.0190 - val loss: ©.0098
Epoch 2/108
213/213 [] - 155 71ms/step - loss: ©.06094 - val loss: 0.0077
Epoch 3/1080
213/213 [] - 155 72ms/step - loss: ©.0067 - val_loss: ©.8065
Epoch 4/1080
213/213 [] - 155 72ms/step - loss: ©.0062 - val_loss: ©.8045

Figure 7: Recurrent Neural Network Code

6.3 Linear Regression

The Linear Regression model was relatively simplistic by comparison to the other two,
and is shown in the code snippet in Figure [§ The Linear Regression function was used
to fit the training and test datasets, and the results were then evaluated.

CREATE A LINEAR REGRESSION MODEL AND FIT IT TO THE TRAINING DATA
model = LinearRegression()
model . fit({X_ train, y_train)

MAKE PREDICTIONS ON THE TEST SET
y_pred = model.predict(X_test)

In [3]: # EVALUATE THE MODEL 'S PERFORMANCE USING MEAN SQUARED ERROR AND THE R-SQUARED SCORE
mse = mean_squared_error{y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("Mean Squared Error:”, mse)
print("R-squared Score:", r2)

Mean Squared Error: 1848.463343137374
R-squared Score: ©.9402634658356032

In [4]: # CREATE A SCATTER PLOT TO GRAPH THE RESULTS
plt.figure(figsize=(12, 8))
plt.scatter(y_test, y_pred)
plt.xlabel{ True Values')
plt.ylabel(Predicted Values')
plt.title('Predicted vs True Values for x25°)
min_value = min{min(y_test), min(y_pred))
max_value = max{max(y_test), max(y_pred))
plt.plot([min_value, max_wvalue], [min_value, max_value], 'r--')

SAVE THE PLOT TO USE FOR THE REPORT
plt.savefig('predicted_vs_true_x25.png')

Figure 8: Linear Regression Code

7 Evaluation

Figure’s [9] [I0] and [11] below show the fitting of the predicted values to the actual values
in each model. Important metrics such as R2, Mean Squared Error, Mean Absolute Error
and Root Mean Squared Error are also calculated in order to evaluate the results of each
model.

Predicted vs True Values for x25

.
f"
o"
800
600
o
[
E
e
3
Z
5 400
L
=
200
1]
[200 400 00 800
Tue Values

In [19]: |# CALCULATE AND PRINT THE R-SQUARED VALUE
r2 = r2 _score(y_test, y pred)
print(f'R-squared: {r2}")

R-sguared: ©.9516698543428255

In [28]: # CALCULATE ROOT MEAN SQUARED ERROR
squared_differences = (y_test - y_pred) ** 2
mean_squared_error = np.mean{squared_differences)
root_mean_squared_error = np.sqri{mean_squared_error)
print(root_mean_squared_error)

38.639571620011715

Figure 9: Neural Network Evaluation

LSTM Model Prediction Performance (Inverse Transformed)

800 — Tue
—— Predicted

700

600

500

400

X25 Value

300

200

. L L

Time Steps

In [18]: |# CALCULATE THE R2 VALUE
r2 = r2_score(y_test_windowed, y_pred)
print(f'R-squared (R?) Score: {r2}')

R-sguared (R?) Score: ©.96345774@85894185
In [19]: |# CALCULATE THE MEAN SQUARED ERROR

mse = mean_squared_error(y_test_inv, y_pred_inv)
print({mse)

1232.2945382797511
In [20]: # CALCULATE THE MEAN ABSOLUTE ERROR

mae = mean_absolute_error(y_test_inv, y_pred_inv)
print({mae)

21.75538279548768

Figure 10: Recurrent Neural Network Evaluation

Predicted vs True Values for x25

Predicted Values
&
S

N

200

100

0 100 200 00 400 500 &0 700 800
Tue Values

In [5]: # CALCULATE MEAN ABSOLUTE ERROR
mae = mean_absolute_error(y_test, y_pred)
print(mae)

22.89045825858731

In [6]: # CALCULATE ROOT MEAN SQUARED ERROR
squared_differences = (y _test - y_pred) ** 2
mean_squared_error = np.mean(squared differences)
root_mean_squared_error = np.sqrt(mean_squared_error)
print(root_mean_squared_error)

42.99375935106599

Figure 11: Linear Regression Evaluation

References

Shafl, A. (2023), ‘How to use jupyter notebooks: The ultimate guide’.
URL: https://www.datacamp.com /tutorial /tutorial-jupyter-notebook

	Introduction
	Dataset
	Environment Setup
	Hardware Requirements
	Software Requirements
	Libraries
	Juypter Notebook
	Overleaf

	Data Transformation
	Data Preparation
	Implementation
	Feed Forward Neural Network
	Recurrent Neural Network with Long Short-Term Memory
	Linear Regression

	Evaluation

