ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Prithiviraj Mohanraj
Student ID: X21196044

School of Computing
National College of Ireland

Supervisor: Vitor Horta.

‘——
National College of Ireland \ National

. o Collegeof
MSc Project Submission Sheet
Ireland
School of Computing
Student Name: Prithiviraj Mohanraj
Student ID: X21196044
Programme: Data Analytics
Year: 2022-2023
Module: MSc Research Project
Supervisor: Vitor Horta
Submission Due Date 18 /09 /2023
Project Title: Evaluating the Robustness of YOLOvV5 and YOLOV7 in ASL
Detection Across Diverse Lighting Conditions
Word Count: 1777
Page count: 10

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature.................. Prithiviraj Mohanraj.............ooiiiiiiii e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project m]
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own m]
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.
Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Prithiviraj Mohanraj
X21196044

1 Introduction

This manual offers comprehensive guidance for replicating the research project on ASL
gesture recognition. It covers the entire setup and execution process.

2 System Requirement

The research presented in this thesis was conducted using the following system
configurations:

2.1 Hardware Requirements

1 Device ASUS VivoBook Notebook 2
Name
2 Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz
3 RAM 16.0 GB (15.8 GB usable)
4 Type 64-bit operating system, x64-based processor

2.2 Software Requirements

Operating System: A 64-bit Windows operating system ensures compatibility with the listed
software and libraries.

Anaconda Navigator 3 for Windows: Anaconda provides an environment management
system which is necessary to prevent conflicts between library versions. It can be
downloaded from the official website.

Jupyter Notebook (Version 6.4.12): Within Anaconda, you can launch Jupyter Notebook,
the platform where Python scripts are executed interactively.

Python (Version 3.9): Our codebase is tested against Python 3.9 to ensure maximum
compatibility.

CV2 (OpenCV for Python): This library aids in image processing tasks and capturing
images via webcam. It can be installed using pip install opencv-python.

Augmentor: For data augmentation. It can be installed using pip install Augmentor.

Labellmg: An open-source graphical image annotation tool that is useful for drawing
bounding boxes and labeling images for our dataset

3.0 Data Preparation and Collection

3.1 Image Capturing

Directory Preparation: First, ensure you have the CollectedImages directory in your project
workspace. If it doesn't exist, manually create it or use the Python os library to generate it
programmatically.

import os
import cv2
import time
import uuid

IMAGE_PATH="'CollectedImages'
labels=['Hello', 'IloveYou', 'No', 'Please', 'Thanks', 'Yes','Father', 'Mother','Friend’','School"’, 'Bathroom', 'Baby’
number_of_images=20

for label in labels:

img_path = os.path.join(IMAGE_PATH, label)

os.makedirs(img_path)

cap=cv2.VideoCapture(@)

print('Collecting images for {}'.format(label))

time.sleep(5)

for imgnum in range(number_of_images):
ret, frame=cap.read()
imagename=os.path.join(IMAGE_PATH,label,label+ . "+ '{}.jpg".format(str(uuid.uuidi())))
cv2.imwrite(imagename, frame)
cv2.imshow(' frame',frame)
time.sleep(2)

if cv2.waitKey(1) & exFF==ord('q'):
break
cap.release()

Collecting images for Father
Collectine imaeges for Mother

Figure 1 Python script for ASL Gesture Data Collection
3.2 Initiating Image Capture:
The code snippet presented in Figure 1 is tailored to capture and store images of specific

American Sign Language (ASL) gestures. Here's a breakdown of what each section
accomplishes:

3.3 Initialization:

IMAGE_PATH='CollectedImages': This designates the directory where the captured images
will be saved.

labels=['Hello', 'lloveYou', 'No', 'Please’, "Thanks', 'Yes','
Father','Mother','Friend’,'School’,'Bathroom’,'Baby’]

These are the specific ASL gestures that the script is designed to capture. Each label
represents a unique gesture.

3.4 Data Capture Process:
For each label in the 'labels' list, the script performs the following steps:

A unique folder is created for the label using os. makedirs(img_path). This ensures
organized storage where images corresponding to each label are stored in separate folders.
The webcam is accessed using cap=cv2. VideoCapture(0). This allows the script to capture
real-time video feed.

The user is notified about the gesture to be captured with print('Collecting images for {}'.
format(label)).

A pause of 5 seconds (time. sleep(5)) gives the user time to get ready.

For each gesture, number_of images (which is set to 20) images are captured. For every
image:

The webcam captures a frame using ret, frame=cap. read().

The captured frame is saved with a unique name generated by combining the label and a
universally unique identifier (UUID). This ensures that each saved image has a distinct
name.

The frame is displayed in real-time to the user with cv2. imshow('frame', frame), allowing
the user to adjust or change gestures as required.

A 2-second pause (time. sleep(2)) is introduced between consecutive image captures, giving
the user a brief moment to reset or adjust.

The script provides an option to exit the capture process prematurely. Pressing the 'q' key
will break out of the image capture loop for the current label.
Clean Up:

Once all images for a particular label are captured, the webcam is released with cap.
release(), freeing up the camera resource for other applications or subsequent runs.

In essence, Figure 1 depicts a systematic process for gathering a rich dataset of various ASL
gestures, ensuring quality and consistency throughout the collection phase.

3.5 Data Augmentation

Understanding Augmentation: Data augmentation artificially enlarges the dataset by applying
minor transformations (like rotations, zooming, or flipping) on the original images, which
helps improve model accuracy and prevents overfitting.

Using Augmentor:

Installation: If not installed, use pip install Augmentor within your Python environment.
Pipeline Creation: For each gesture label directory in Collectedimages10, initialize an
Augmentor pipeline.

Augmentation Operations: Define the types of augmentations you want. For example,
random rotations, flips, or zooming.

Execution: Execute the pipeline to generate augmented images.

3.6 Image Annotation

Setting Up Labellmg:

Installation: Clone the Labellmg repository and set it up according to its official guidelines.
Launching: Once installed, launch Labellmg.

Annotation Process:

Directory Selection: In Labellmg, select the Collectedimages10 directory.

I%ounding Box Drawing: For each image, manually draw a rectangle around the gesture.

Box Labels

| difficult

[Use default label

File List

Zoom In

500 %

Zoom Out

X:337: Y: 286

Figure 2: Labellmg Tool Interface showcasing the bounding box annotation process for ASL gesture
images.

Label Assignment: After drawing the rectangle, assign an appropriate label to the bounding
box.

Saving Annotations: Labellmg will create XML files by default. Ensure you save the
annotations in YOLO format, which will produce a .txt file for each image.

4. Model Configuration and Training
4.1 Setting Up the Google Colab Environment

Before starting the model configuration and training process, Google Colab, a cloud-based
Python development environment that offers free GPU support, is utilized.

Accessing Google Colab: Visit Google Colab.

Creating a New Notebook: Click on "New Notebook" to start a fresh session.
Activating GPU: Navigate to Runtime > Change runtime type and select GPU from the
hardware accelerator dropdown. This ensures that the model training will utilize GPU
resources, speeding up the process considerably.

4.2 Cloning and Setting Up the YOLOV7 Repository

Repository Cloning: Clone the YOLOV7 repository by executing !git clone https://github.
com/WongKinYiu/yolov7 in a Google Colab cell. This command fetches all necessary files
and codebase required for YOLOvV7.

Entering the Directory: Navigate to the cloned directory using %cd yolov7.

Installing Dependencies: Install all required libraries and dependencies by running !pip install
-qr requirements. txt.

O M Sign_language_Generation_Using_YOLO v5 (1).ipynb ¢
-

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

lgit clone https://github.com/ultralytics/yolov5.git

%cd yolovs

Cloning into ‘yolov5'...

remote: Enumerating objects: 15845, done.

remote: Counting objects: 100% (76/76), done.

remote: Compressing objects: 100% (69/69), done.

remote: Total 15845 (delta 31), reused 33 (delta 7), pack-reused 15769
Receiving objects: 100% (15845/15845), 14.60 MiB | 31.94 MiB/s, done.
Resolving deltas: 100% (10845/10845), done.

/content/yolov5

Figure 3: Cloning the YOLOV7 repository from GitHub for the setup and initialization of the model
training environment.

4.3 Uploading and Preparing the Dataset

Dataset Upload: The dataset you've prepared, including images and annotations, should be
zipped and uploaded to Google Colab. Use the Colab file upload feature or drag-and-drop the
dataset zip (e.g., sdata.zip).

Unzipping the Dataset: Extract the uploaded dataset into the yolov7 directory using 'unzip
/content/sdata.zip -d /content/yolov7/.

4.4 YAML Configuration
The YAML (.yaml) file is essential for YOLQ's training process. It defines parameters like
the number of classes, class names, and paths to training and validation datasets.

Reading the YAML File: Load your predefined YAML file (data.yaml.txt) to determine the
number of classes using the provided Python script.

Customizing Model Configuration: Customize the default YOLOv5s model configuration to
match your dataset. This can include defining the number of classes, adjusting model depth,
width, or architecture. Use the given writetemplate function to modify and save changes.

4.5 Training the Model
Model Training: Start training by running the provided script, setting appropriate image size,
batch size, epochs, data paths, model configuration, initial weights, and naming conventions.

Image Size: --img 416 specifies the size of the input images for the model.

Batch Size: --batch 16 defines how many images are processed simultaneously.

Epochs: --epochs 200 sets the number of training cycles.

Data Path: '--data /content/data.yaml.txt' points to the YAML configuration file.

Model Configuration: --cfg ./models/custom_yolovss.yaml specifies the modified model
configuration.

Weights: 'yolov5s.pt' denotes the pre-trained weights used as the starting point.

Name: --name yolovbs_results gives a name to the training run for easier identification.
Cache: --cache speeds up the loading of images during training by caching them.

-img 416 --batch 16 --epoc 200 --data content/data.yaml.txt' --cfg ./models/custom_yol a3 --weights 'yolov5s.p

from params module arguments

n

1 3520 models.common.Focus 3

1 18560 models.common.Conv

1 19984 models.common.BottleneckCSP

1 73984 models.common.Conv

3 161152 models.common.BottleneckCSP

1 295424 models.common.Conv

3 6 models. common.BottleneckCSP

1 2 model ommon . Conv

il 656896 models.common.SPP :

1 1248768 models.common.BottleneckCSP 512, 512, 1, False]

1 131584 models.common.Conv [512, 256, 1, 1]

1 @ torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]

1 © models.common.Concat [1]

13 - 1 378624 models.common.BottleneckCSP [512, 256, 1, False]
209 - .

Figuré 4: Initiatin the trainihg' poéés‘s of the YOLO model on the curated ASL dataset

Monitoring with TensorBoard: To visually track and monitor the training process, activate
TensorBoard using the %tensorboard --logdir runs command. This will provide a dynamic
dashboard showing loss curves, accuracy, and other important metrics in real-time.

Visual Verification: After training, verify the model's learning by inspecting prediction
results on training data. The provided Python script renders ground truth labels alongside
model predictions for visual assessment.

Once the training is complete, you will have a trained model ready for testing and
deployment. Always remember to save the trained weights and configuration files for future
reference or further training.

5 Model Evaluation and Insights

In the pursuit of a robust and practical deep learning solution, training a model isn't enough. It's vital
to evaluate its performance and derive actionable insights, ensuring its applicability in real-world
scenarios.

5.1 Model Performance Metrics

Precision and Recall: Given the binary nature of object detection (the object is present or not),
precision and recall offer crucial insights. Precision measures how many detected items are relevant,
while recall captures how many relevant items are detected.

F1-Confidence Curve

1.0
— —— Baby
- —— Bathroom
—— Father
Friend
08 —— Hello
—— lloveYou
~——— Mother
— No
0.6 1 Please
School
- —— Thanks
= — Yes
all classes 0.97 at 0.640
0.4
0.2 1
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 5 F1 Score Curve

F1 Score and Mean Average Precision (mAP): The F1 score harmonizes precision and recall. mAP,
particularly crucial for object detection tasks, averages the maximum precision value across all recall

levels.
S

60 -

|

o
o
£
O
(2]

3
=

instances
= N w
o o) o
1 1 1 1
say -
B
3

Bathroom
Friend
Hello

w
S
c
©
£

Father
lloveYou
Mother
Please

height

0.4- a " -

Figure 6 Labels
7

el d6Faa82c-021
¥ ‘

Please

P'Iease : F B -\l ' =
q'-#é; “".E': . Please‘kﬂ 1

Figure 7 Train batch of YOLOvV5s and YOLOV7 across Different Lighting Conditions

School 61TbT13b5-2Cc74-T1eeH

School 0.9

Thanks 0.9

| e V1773

School 0.9

School Z2f33a307e-2Cc75-11ee-8 g i@ Aa490-0.

School 0.9
. -> v .

-

Figure 8 Validation batch of YOLOv5s and YOLOV7 across Different Lighting Conditions

5.2 Visualization of Results

Loss Curves: These graphs give insights into the model's learning process, depicting how the error
rates change over epochs. A falling curve symbolizes successful learning, while plateaus or increases
may hint at issues like overfitting.

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
1.0 1.0
0.10 0.0250 —e— results
-+ smooth 0:00 0.8
0.0225 2 0.8
0.08
0.0200 0.04 0.6 oi6
0.06
0.0175 0.4
0.4
0.0150 0.02
0.04 0.2
0.0125 0.2
0.00 0:0
0 200 0 200 0 200 0 200 0 200
val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.06 1.0
0.016 0.04 0.6
0.8 0.5
0.05 0.014 0.03
. 0.4
0.012 0.6
0.04
0.02 0.3
0.010 ' 0.4
0.2
0.03
0.008 0.01
0.2 0.1
0.006
0:02 0.00 0.0 0.0
0 200 0 200 0 200 0 200 0 200

5.3 Diagnostic Tools
TensorBoard: Beyond real-time training metrics, TensorBoard can compare metrics across multiple
runs, making model tweaking more data-driven.

TIMESERIES SCALARS IMAGES GRAPHS MR)}

O\ All Scalars Image Histogram

® X pinned Settings

train/yolov5s_results O ’in carg i I L GENERAL

Horiz

F1_curve T2 o

Step 199 Enable Ran
[:l Link by stef]

Card Width

Class-specific Analysis: By breaking down performance metrics by class, one can identify if the
model struggles with specific gestures or lighting conditions. This diagnostic is crucial for fine-tuning
and ensuring balanced performance.

5.4 Post-Evaluation Tweaks
Class Weights Balancing: If certain classes are underrepresented in the dataset, the model might
prioritize more abundant classes. Assigning class weights can mitigate this.

Augmentation Variations: If the model struggles with specific lighting conditions, consider
augmenting the training dataset with more examples in such settings.

Hyperparameter Tuning: Parameters like learning rate, batch size, and optimizer choice can be
revisited based on performance metrics.

References

Li, Y., Cheng, R., Zhang, C., Chen, M., Ma, J. and Shi, X., 2022, October. Sign language
letters recognition model based on improved YOLOV5. In 2022 9th International Conference
on Digital Home (ICDH) (pp. 188-193). IEEE.

Luo, W., 2022, July. Research on gesture recognition based on YOLOV5. In 2022 3rd
International Conference on Big Data, Artificial Intelligence and Internet of Things

Engineering (ICBAIE) (pp. 447-450). IEEE.

Rastgoo, R., Kiani, K. and Escalera, S., 2021. Sign language recognition: A deep survey.
Expert Systems with Applications, 164, p.113794.

Sahoo, A.K., Mishra, G.S. and Ravulakollu, K.K., 2014. Sign language recognition: State of
the art. ARPN Journal of Engineering and Applied Sciences, 9(2), pp.116-134.

Sharma, P. and Anand, R.S., 2021. Deep models and optimizers for Indian sign language
recognition.

Von Agris, U., Zieren, J., Canzler, U., Bauer, B. and Kraiss, K.F., 2008. Recent
developments in visual sign language recognition. Universal Access

https://link.springer.com/article/10.1007/s41666-022-00114-1

10

