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Evaluating the Robustness of YOLOvV5 and YOLOvV7 in ASL
Detection Across Diverse Lighting Conditions

Prithiviraj Mohanraj
X21196044

National College of Ireland

Abstract
Object detection plays a pivotal role in interpreting American Sign Language (ASL) through images

making it a cornerstone of enhancing communication for the deaf and hard-of-hearing community. In this
study, the robustness of YOLOvS and YOLOV7 in detecting American Sign Language (ASL) gestures
from images across varied lighting conditions is thoroughly explored. Recognizing that most existing
sign language detection models are validated predominantly under ideal lighting, a distinctive dataset is
curated, comprising ASL gestures captured under three specific lighting environments. The methodology
adopted encompasses a comprehensive evaluation process, leveraging custom dataset annotation, rigorous
model training and statistical analysis to derive results. The primary findings reveal distinct robustness
variances between YOLOVS and YOLOv7 across different lighting scenarios. These insights underscore
the significance of deep learning model adaptability to diverse lighting conditions potentially
revolutionizing their applicability in sectors like education and healthcare by bolstering their accuracy and
operational robustness.

Keywords: American Sign Language (ASL), YOLOVS, real-time detection, varying illumination, object
detection.

1. Introduction

Sign language serves as an essential means of communication for people experiencing hearing loss.
It allows these individuals to effectively interact with the world around them and facilitates their
integration into society. As a non-verbal language, it consists of manual articulations and non-
manual signals, each carrying distinct meanings.

In particular, American Sign Language (ASL) is a complete and complex language used
predominantly in the United States and most of anglophone Canada. It possesses its own unique
rules of grammar and syntax, separate from English or other signed languages. Consequently, the
ability to accurately recognize and translate these signals and gestures is of critical importance.

The advent of artificial intelligence and more specifically, the domain of computer vision and deep
learning has significantly impacted the field of sign language recognition. These advancements
have engendered the development of sophisticated models capable of identifying and interpreting
intricate sign language gestures, thereby enabling effective communication between hearing and
hearing-impaired individuals. These technologies have the potential to greatly enhance accessibility
for people with hearing loss breaking down communication barriers and fostering inclusivity.



However, a major challenge encountered in this sphere pertains to the recognition of gestures in
sub-optimal or variable lighting conditions. Most of the existing models are trained and tested
under ideal lighting circumstances, and their robustness under differing illumination conditions is
not ascertained.

In real-world scenarios, individuals may need to communicate in poorly lit environments or under
varying lighting conditions, such as dim indoor lighting or intense sunlight. Thus, the necessity
for models to accurately recognize ASL gestures across a spectrum of lighting scenarios is clear.
This research project, therefore, proposes to investigate and compare the robustness of two
prevalent object detection models - YOLOvS and YOLOvV7, in their ability to recognize ASL
gestures from images under diverse lighting conditions.

The YOLO (You Only Look Once) architecture, designed for real-time object detection has
demonstrated significant success in the field. Yet, its robustness in detecting ASL gestures from
images under varied illumination conditions remains largely unexplored. This research aims to
address this gap and advance our understanding of these models' resilience and adaptability in the
face of different lighting scenarios.

This study is intended to contribute to the wider academic discourse surrounding deep learning
models and their utility in sign language recognition. By scrutinizing the robustness of the
YOLOVS and YOLOV7 models under a range of lighting conditions, this research could potentially
lead to enhancements in model training and contribute to the development of more robust ASL
detection systems.

The principal question guiding this research project is: "How do changes in lighting conditions
impact the performance of YOLOvV5 and YOLOV7 in recognizing ASL gestures from images?" The
investigation hopes to foster advancements in computer vision and sign language recognition, with
potential implications for future research and real-world applications across sectors like education,
healthcare and more. It is also anticipated that this study will lend greater visibility to the issues
surrounding variable lighting conditions and their impact on sign language recognition, thereby
inspiring further exploration in this area.

The literature review will establish a framework for the proposed research, delineating its potential
contributions and identifying current limitations and challenges in the field. Subsequently, the
research methodology will encompass data collection, preprocessing, and model development.

2. Literature Review

The Detailed Investigation of Deep Learning Application in Translating Sign Language
Advancements and Implications of Deep Learning for Sign Language Recognition Recent research
into automated sign language recognition systems leveraging deep learning models has witnessed
significant progress. For a project concentrating on sign language recognition under diverse lighting
conditions, especially in low light, various studies were examined. These research endeavors
provide crucial understanding regarding the utilization and optimization of deep learning models
for sign language recognition, guiding the project's advancement.



2.1 Hybrid Approaches for Gesture Interpretation

Bantupalli et al. (2018) integrated Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) to transition sign language into textual format. This amalgamation leveraged
Google's Inception framework in tandem with an LSTM network, aiming to extract spatial and
temporal intricacies from video segments. While Bantupalli and associates did not explore diverse
lighting conditions, the extraction techniques from video sequences might prove instrumental for
projects focusing on varied light scenarios, particularly in image capture and augmentation.

2.2 Exploiting Deep Learning for Enhanced Sign Language Interpretation

Lugman et al. (2023) presented an avant-garde approach for sign language identification, capturing
both spatial and sequential nuances. The incorporation of the dynamic motion network (DMN), the
cumulative motion network (AMN) and the sign recognition network (SRN) suggested potential
applications in adjusting model architectures to cater to distinct requirements. Their concept of an
"accumulative video motion frame" indicates potential utility for projects that demand a fusion of
static and dynamic gesture data, especially when dealing with architectural modifications.

2.3 Comprehensive Evaluation of Deep Learning Models for Indian Sign
Language

Sharma, P. (2018) undertook an exhaustive evaluation of pre-trained deep learning frameworks.
By juxtaposing two models and several optimizers, Sharma provided insights into the intricate
balance of hyperparameters, which might be beneficial for projects that necessitate fine-tuning to
prevent overfitting. The robust performance of the InceptionResNetV2 model, when juxtaposed
with various optimizers, highlights the need to consider the model's intricacies and the potential
for overfitting, particularly when operating under diverse conditions.

2.4 ESMAANI: A Holistic System for Arabic Sign Language Interpretation

Hisham, E. (2022) developed ESMAANI, emphasizing machine and deep learning techniques.
While ESMAANI focuses on Arabic sign language, its prowess in interpreting both static and
dynamic gestures underscores the importance of comprehensive annotations in the dataset. An
environment-agnostic dataset, as introduced by Hisham, can play a pivotal role in projects that
seek extensive and varied annotations to ensure model versatility.

2.5 Real-time Gesture Translation with CNNs

Haidar, G. I. (2020) accentuated the integration of image processing techniques with CNNs for
real-time ASL interpretation. By capturing images through a Raspberry Pi camera and
subsequently processing them, Haidar highlighted the significance of real-time image capture and
processing techniques. Such techniques, although not directly aligned with varying light
conditions, can offer insights into efficient image capture methodologies under different scenarios.

2.6 Synergy of Conventional Vision Techniques with Advanced Deep Networks

Deep, A. (2022) unveiled a real-time sign language interpretation mechanism tailored for Indian
Sign Language (ISL). Utilizing OpenCV's skin segmentation capabilities, this system accurately
pinpoints and tracks Regions of Interest (ROI). Hand landmarks, captured using MediaPipe, get
stored as key points in a NumPy array. Subsequently, TensorFlow, Keras, and LSTM (Long
Short Term Memory) facilitate the model's training, with real-time testing executed via a webcam
live feed.



The LSTM architecture here integrates multiple layers, notable for their varied node configurations.
By emphasizing key points instead of entire images, the model offers potential benefits for storage
optimization and may exhibit resilience in challenging scenarios, such as diverse lighting
conditions or noisy backgrounds.

2.7 Delving Deep into Convolutional Network Potential

Hossein et al. (2020) introduced a comprehensive CNN model for interpreting BASL alphabets.
The model design reflects a deep understanding of convolutional networks. Despite the
comprehensive design, incorporation of strategies like image pre-processing, data augmentation,
or even advanced labeling techniques might optimize the model's performance under real-world
conditions, including varied lighting environments or noisy backgrounds.

2.8 Refinement in Object Detection for Sign Language through Advanced
Modules

Li, Y. etal. (2022) introduced YOLOvVS5-SLL (Sign Language Letters), a pioneering tool
optimized for discerning sign language letters even in challenging conditions. The integration of
the Convolutional Block Attention Module (CBAM) with the foundational YOLOVS structure
emphasizes crucial hand feature detection while minimizing background distractions. The focus
on essential hand features and the minimization of background noise suggest adaptability in real-
world scenarios.

2.9 Integration of Convolutional Networks with Temporal Sequencing
Mechanisms

Li, W. and Hang (2021) explored computer-aided sign language recognition and highlighted the
amalgamation of CNNs with LSTM networks. This blend promises a significant advancement in
sign language recognition, translation and creation. With impressive accuracy rates achieved, it
becomes essential to consider factors such as data augmentation, validation strategies, and
overfitting mitigation techniques to ensure the model's robustness in diverse environments.

2.10 Iterative Learning for Enhanced Recognition Rate

Hori N. et al. (2022) focused on iterating over results from each epoch in the domain of sign
language recognition, thereby building on foundational models like 3DCNN and SAM-SLR. Such
iterative methodologies may be especially valuable in scenarios that require high accuracy.
However, to ensure robust performance, it becomes pivotal to incorporate strategies such as data
augmentation, validation checks, and techniques to counteract overfitting.

In essence, these studies, while diverse, converge on the significance of strategies like
preprocessing, data augmentation, labeling, and overfitting mitigation to ensure optimal
performance in sign language recognition. Integrating these strategies could prove crucial for
enhancing recognition rates and model robustness across various conditions



3. Methodology

In the methodology, the primary step entails the development of a specialized dataset. This dataset
comprises images representing American Sign Language (ASL) gestures, all captured under diverse
lighting conditions. The primary objective behind creating this dataset is to address the central research
question regarding the performance of object detection models in various lighting scenarios. Furthermore,
based on this research framework, it's anticipated that different lighting conditions could have a significant
impact on the accuracy and efficiency of object detection models, especially those based on the YOLO
(You Only Look Once) framework.

To ensure a comprehensive analysis, two leading object detection models, YOLOvS and YOLOvV7, are
selected, trained, and subsequently evaluated using this meticulously curated dataset. The anticipated
results include an assessment of each model's robustness under less-than-ideal lighting conditions,
understanding potential deviations in accuracy as lighting conditions become increasingly challenging, and
identifying the optimal model for ASL recognition across various lighting conditions. Through these
findings, the research aims not merely to outline the comparative advantages and limitations of each model
but also to offer pivotal insights that could guide future advancements in ASL recognition technology

Fig 1 Flowchart of American sign language recognition



3.1 Data Capture

In this project, the main source of data was the images captured manually using the camera of an Asus
VivoBook laptop. The dataset comprised of six specific sign language gestures: "Hello", "I love you™,
"Thanks", "Please”, "No", "Yes". The capturing process was executed under three distinct lighting
conditions

Fig 2 Natural light A Fig 3 Dim light Fig4 Low light

Natural Lighting Condition: These images were taken in the presence of natural light without any
artificial light sources.

Dim Lighting Condition: Here, the lighting was artificially reduced to create a dimly lit environment. This
is also termed as "bright sign, dark background™ condition where the light focused on the sign language
while the background remained dark.

Low Lighting Condition: Both the sign language and the background were captured in a dark environment,
simulating conditions where artificial or natural light is scant or absent

The image capture was conducted in a room of 10*10 feet with a 100-watt lamp. The dim lighting condition
was achieved by reducing the light such that only the sign appeared bright while the background remained
dark. The low light condition was accomplished by completely turning off the light, resulting in both the
sign and background appearing dark. For natural light, the images were captured in daylight without
artificial lighting. All images were captured with a resolution of 96 dpi. The bit depth was maintained at 24
to ensure enough color information for the model to learn the sign patterns effectively.

3.2 Data Preprocessing

Once the dataset was captured, several preprocessing steps were applied to ensure the data is in the ideal
format for training:

Image Resizing: All images were resized to a consistent size of 352 x 288 pixels to facilitate efficient
training.

Normalization: The images were normalized, ensuring pixel values fall between 0 and 1. This
standardizes input feature scales, leading to quicker training convergence.

Augmentation: To improve the model's generalization capability and deter overfitting, data augmentation
techniques were employed. These techniques introduced random rotations, horizontal flips, and slight
color variations to the dataset.



3.3 Dataset Annotation

Post image capture, data annotation became pivotal. This was done using Labellmg, a renowned open-
source graphical image annotation tool. It facilitated the drawing of bounding boxes around signs, marking
regions of interest. Each of these bounding boxes was subsequently labeled with the corresponding sign
gesture. Labellmg streamlined this process by generating the annotation data in the YOLO format,
encompassing both bounding box coordinates and class labels. These annotations would later serve as
target references during the model training phase.

3.4 Dataset Splitting

For an organized training and evaluation process, the dataset was segmented into three distinct sets:
Training Set: This consisted of 70% of the images and was pivotal for the model to discern patterns.

Validation Set: Occupying 15% of the dataset, this set aids in model performance validation during its
training, offering insights into potential overfitting scenarios.

Test Set: This also comprised 15% of the total images and was reserved for post-training model evaluation
providing a measure of its generalization capabilities.

3.5 Model Training

For sign recognition, the YOLOvVS5 model, renowned for its swift and precise detection capabilities, was
employed. Training was initiated for an extensive 200 epochs. The model's progression was meticulously
monitored using the mean average precision (mAP) metric - a holistic measure of detection accuracy across
various object categories.

Throughout training, metrics such as precision (P), recall (R), and mAP were observed and logged. For
instance, at a certain point in the training process, the following metrics were registered:

4 Design Specification and Implementation

The design specification in this research encompasses two advanced object detection models, namely,
YOLOV5 and YOLOvV7, both of which are part of the YOLO (You Only Look Once) framework. The
fundamental concepts, methodologies, and structural details for both models are explained below, along
with their underlying frameworks and specific functionalities.

The core of the YOLO architecture lies in the notion of perceiving object detection as a regression problem.
Instead of a two-step process where regions are proposed, and objects are classified, YOLO performs both
tasks in one pass. The architecture divides an input image into an SxS grid, and each cell predicts B
bounding boxes along with the confidence score and class probabilities.



4.1 YOLOvV5 Model Specification:

The YOLOVS architecture is primarily bifurcated into two segments: the backbone, dedicated to feature
extraction, and the head, responsible for bounding box prediction.

Backbone: At the heart of the backbone are convolutional layers, further bolstered by Scaled feature
Pyramid Pooling (SPP) and Cross Stage Partial Networks (CSP). These elements work in tandem to extract
rich and diversified features from the input image.

Head: This segment encompasses additional convolutional layers and upsampling layers, culminating in
the detection layer that presents the final output.

Capitalizing on the principle of multi-scale prediction, YOLOVS5 incorporates three distinct detection layers.
Each of these layers collaborates with specific anchor box dimensions, optimizing detection across a
spectrum of object sizes.

To ensure versatility, YOLOvVS offers multiple model sizes: YOLOvS5s,YOLOv5Sm,YOLOvV51 and
YOLOvVS5x. Each size strikes a different equilibrium between computational load and prediction accuracy
allowing for adaptability to diverse deployment scenarios. The model finds its roots in the PyTorch
framework. Critical model parameters, like 'depth multiple' and 'width multiple, ' are neatly catalogued
in a YAML configuration file, ensuring easy replication and modification.
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Figure 5 YOLO network architecture



4.2 YOLOvV7 Model Specification:

YOLOvV7, a later evolution in the YOLO series, introduces some advancements over its predecessors,
including YOLOVS. Like YOLOvS, YOLOvV7 also consists of a backbone for feature extraction and a head
for bounding box prediction. However, YOLOvV7 employs a ResNeXt-101-64x4d backbone coupled with
a Feature Pyramid Network (FPN) and Path Aggregation Network (PANet) for high-resolution, multi-scale
feature learning. In terms of detection, YOLOV7 utilizes a mechanism called 'DetectoRS' that rescales and
reshapes the features to handle small objects better and improve overall detection performance. It employs
three detection layers, similar to YOLOVS, but with enhanced detection capabilities due to the DetectoRS
mechanism.

A significant advancement in YOLOV7 is the use of the Complete Intersection over Union (CloU) loss
which includes aspects of geometry and aspect ratio to the existing loU loss. This addition allows for a
more accurate calculation of bounding box regression, thereby enhancing localization performance. The
configuration details of the YOLOv7 model, like YOLOVS, are captured in a YAML file. However, the
key parameters differ to leverage the advanced features that YOLOv7 offers.

In conclusion, while both models share a common lineage and some structural elements, they are
distinguished by key advancements in design and architecture, leading to a substantial impact on their
performance and computational requirements. These design specifications guide the subsequent
implementation phase where the models are trained and evaluated on the custom dataset.

4.3 Architecture and Configuration of Models

The architecture of the models and their configuration parameters were established following the standard
settings of both YOLOv5 and YOLOv7. Parameters like 'depth_multiple' and 'width_multiple' were
designated at '0.33' and '0.50" respectively, with these figures dictating the depth and width of the model
relative to the original YOLOvV5 and YOLOV?7 architecture.

The size of the anchor boxes for different scales - P3/8, P4/16, P5/32 - adhered to the default YOLOV5 and
YOLOV7 configurations. These anchor boxes are indispensable for the detection of objects, or signs in this
study, at various scales within the image.

Subsequent to these steps, the configuration for the backbone - an integral part of both YOLOvVS and
YOLOvV7 models that is tasked with feature extraction from input images - was instituted. This backbone
comprises Convolutional Layers (Conv), Cross Stage Partial Networks (CSP), and Scaled Feature Pyramid
Pooling (SPP), among other feature extraction layers. Further, the head of the models, charged with the
actual detection of signs from the features provided by the backbone, was also delineated in the YAML
file. This section includes convolutional layers, upsampling layers, concatenation layers, and finally, the
detection layer.

The model configuration was then collated into a custom YAML file, intended for subsequent use during
training. This YAML file provides the vital configuration details required for model training such as paths
to the training and validation sets, the number of classes, and the names of classes.



4.4 YOLOV5 Object Detection

The YOLO (You Only Look Once) framework, employed for the purpose of object detection, approaches
the task as a regression problem. This entails the direct prediction of bounding boxes, including their
respective class probabilities. An image is parsed into an SxS grid wherein each cell is designed to predict
B bounding boxes and their associated class probabilities, C.

The bounding box prediction parameters are defined as follows:

bx = o(tx) + cx,

by =o(ty) + cy,
bw = pw * exp(tw),
bh = ph * exp(th),

Here, (bx, by) represent the center coordinates of the bounding box, while (bw, bh) denote its width and

height. o is the sigmoid function, and (cx, cy) are the top-left coordinates of the grid cell. The prior width
and height of the bounding box are given by (pw, ph).

4.5 Image Processing Techniques for Varied Lighting Conditions

Histogram Equalization is an image processing technique that improves image contrast by employing a
transformation function to stretch the range of most frequent pixel intensity values. The mathematical
representation of this transformation is:

s=T(r) = (L-1) [_{0}*{r} p_r(w) dw,
Where s and r are the output and input pixel values respectively, L-1 represents the maximum level of pixel
intensity, and p_r(w) is the probability density function of the input image pixel values. T denotes the
transformation function mapping input pixel values to their output counterparts.
Gamma Correction serves as an alternative method for brightness correction across different lighting
conditions. This technique utilizes a non-linear adjustment of image intensities as represented by the
following formula:

0 = ((1/255)y)*255

Here, O and I represent the output and input images respectively, and y stands for the gamma value
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5 Evaluation

The study conducted several experiments to compare the performance of YOLOvV5 and YOLOV7 in
detecting ASL gestures in different conditions. The experiments focused on testing the models under
varying conditions such as lighting, resolution, and object orientation.

5.1 Experiment 1 Natural Light Condition

In the initial experiment under natural lighting conditions, the data included a variety of ASL gestures
captured by different individuals. The dataset was balanced and diverse, enabling the YOLOV5 and
YOLOvV7 models to be exposed to a wide range of signs under natural light. Given that this was the first
experiment, it started with a default setting for model width, depth, and epochs. The ‘depth_multiple' and
‘width_multiple' were set at '0.33" and '0.50' respectively, following the YOLO architecture's standard
configurations.

The model was trained for 200 epochs initially. Throughout the training process, the loss function, which
included box loss, object loss, and class loss, was monitored carefully. If the validation loss stopped
improving significantly over epochs, this was an indication that the model might be overfitting. As a
countermeasure, early stopping or regularization techniques were employed. If the model was underfitting,
the complexity of the model was increased, either by increasing the depth, width, or the number of epochs.

, .
- Father

‘,L. e
Fother 0.79

B
B

Figure 6 'Father' Gesture captured under Figure 7 'Father' Gesture captured under
Natural Lighting using the YOLOv7 model Natural Lighting using the YOLOv5 model

Figure 8 'Baby' Gesture captured under Figure 9 'Baby ' Gesture captured under
Natural Lighting using the YOLOv7 model Natural Lighting using the YOLOv5 model
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5.2 Experiment Dim Light Condition

In the second experiment, the ASL gestures were captured in a dimly lit environment. This reduced light
setting manifested lower contrast and clarity compared to the images taken under natural light. The subtle
details of each gesture, which could easily be perceived under ample light, became subdued in this setup.
Recognizing these challenges, adjustments were made to the model's architecture. We modified the
‘depth_multiple’ and 'width_multiple’ values to '0.37' and '0.55' respectively. This was done with the intent
of enhancing the model's complexity, thereby making it more adaptable to dimly lit images.

Additionally, the experiment's scope was expanded by increasing the training duration to 200 epochs. This
ensured that the model had sufficient iterations to capture the nuanced details of each sign. Throughout the
training process, the performance was meticulously tracked. To ensure the model didn't become too
specialized to the training data, measures such as dropout and L1/L2 regularization were considered.
Whenever symptoms of underfitting appeared, strategies like further enhancing the depth, width, or the
number of epochs were employed.

i
Figure 10 'NO' Gesture captured under Figure 11 'NO ' Gesture captured under
Dim Lighting using the YOLOv7 model Dim Lighting using the YOLOvV5 model

Bathroom 0.92
”»
Figure 12 'Bathroom' Gesture captured under Figure 13 Bathroom ' Gesture captured under
Dim Lighting using the YOLOv7 model Dim Lighting using the YOLOv5 model
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5.3 Experiment Low Light Condition

In the third experiment, the challenge was even greater, as ASL gestures were captured under low light
conditions. The difficulty of detecting and recognizing signs was highest in this experiment. Given this
challenge, the 'depth_multiple’ and ‘width_multiple' were increased to '0.40" and '0.60', respectively, to
design a more complex model capable of learning intricate details even in low-light conditions. The training
duration was further extended to 300 epochs, considering the challenging lighting conditions. Continuous
monitoring during training was crucial. Techniques like early stopping, dropout, or regularization were
applied to mitigate overfitting.

If signs of underfitting were noted, the model complexity was further increased by adjusting the depth,
width, or number of epochs. In all experiments, the goal was to achieve a delicate balance between model
complexity and its ability to generalize to unseen data. Regular evaluation using metrics like mAP,
precision, recall, and F1-score helped assess the performance and tweak the parameters for optimal results.

Figure 14 'Hello' Gesture captured under Figure 15 'Hello ' Gesture captured under
Low Lighting using the YOLOv7 model Low Lighting using the YOLOV5 model

Thanks 0.58

Figure 16 'Thanks' Gesture captured under Figure 17 'Thanks' Gesture captured under
Dim Lighting using the YOLOv7 model Natural Lighting using the YOLOv5 model
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5.6 Statistical Analysis

The table 1 demonstrates a side-by-side comparison of the F1 Score and mAP for each model across the
three lighting scenarios. These metrics are pivotal as they offer a balanced view of the model's precision
and recall capabilities. Under natural lighting conditions, both models exhibit a nearly identical
performance. YOLOvV7 shows a slight edge in F1 Score, while YOLOVS5s has a minor advantage in mAP.
The disparity between the two models becomes more evident under dim lighting. YOLOvV7 outperforms
YOLOVS5s in both F1 Score and mAP, indicating a more robust performance in suboptimal lighting.

The most challenging environment, low light, reveals the most substantial gap in performance. YOLOvV7
holds a clear lead in both F1 Score and mAP, showcasing its superior capability in extreme conditions.

TABLE I. Comparison of F1 Score And mAP Between Yolov5s and Yolov7

Natural Light Dim Light Low Light
Method F1 (%) MAP (%) | F1 (%) MAP (%) | F1 (%) MAP (%)
YOLOVS5s 83.64 94.4 71.38 83.7 61.3 69.8
YOLOV7 83.9 94.3 73.77 87.9 76.9 83.8

Table | presents a detailed comparison between YOLOv5s and YOLOvV7 by showcasing the F1 Score and
mAP metrics across three distinct lighting conditions: Natural Light, Dim Light, and Low Light.

In Natural Light settings, both models showcase near-identical performance. YOLOvV7 achieves a slight
advantage in the F1 Score at 83.9%, compared to the 83.64% of YOLOv5s. However, in mAP, YOLOv5s
scores 94.4%, slightly higher than the 94.3% of YOLOV?7.

In Dim Light conditions, YOLOV7 begins to display superior results in both F1 Score (73.77%) and mAP
(87.9%).

Low Light conditions highlight a considerable gap between the two models. Here, YOLOv7 markedly
surpasses YOLOV5s in both evaluated metrics

14
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Figure 18 Labels

Figure 18 provides visual annotations of recognized gestures by both models. Displaying these annotations
facilitates a link between numeric data and real-world context, emphasizing the capability of both models
in detecting ASL gestures
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Figure 19 F1 Score Comparison Curve between YOLOv5s and YOLOV?7 across Different Lighting Conditions
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Figure 19 illustrates the progression of F1 scores for each model across varied lighting scenarios. As
mentioned in the legend, for YOLOVS, the score is 0. 94 at a threshold of 0. 467. For YOLOV7, it stands
at 0. 95 at a threshold of 0. 636. These thresholds might pertain to the confidence levels at which each
model achieves the respective F1 scores. Such details offer insights into model confidence and precision
across diverse operational conditions. This graphical representation provides a visual comparison of the
performance of the two models under different lighting conditions
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Figure 20 P R Curve between YOLOv5s and YOLOV7 across Different Lighting Conditions

Figure 20 illustrates the relationship between Precision and Recall for both models across diverse lighting
scenarios. Notably, two points stand out on this curve: a precision of 0. 971 at a recall threshold of 0. 5,
and a precision of 0. 65 also at a recall threshold of 0. 5. These data points suggest varying levels of model
accuracy at specific recall thresholds, enabling an assessment of model robustness and reliability under
different conditions.
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Figure 21 Results YOLOv5s and YOLOV7 across Different Lighting Conditions
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Figure 21 appears to provide a granular assessment of both models' performance across various metrics.
Here's an interpretation based on common YOLO metrics:

Train Obj: Refers to the object loss during training. It evaluates how well the model predicts an object's
presence in a given bounding box.

Box: Represents the bounding box regression loss, which gauges the model's accuracy in predicting the
location and size of the object within an image.

Class Loss: Represents the model's classification loss during training. A lower value indicates better
performance in classifying detected objects into their respective categories.

Metric Precision (Mat Prec): Precision is a crucial metric in object detection and represents the ratio of
correctly predicted positive observations to the total predicted positives. It evaluates the accuracy of object
detections made by the model.

Recall: Gauges the model's capability to detect all relevant instances in an image. A higher value indicates
fewer instances missed.

Val Obj: Represents the object loss but on the validation dataset. It gives insights into the model's
generalization capabilities.

Class loss (Class Loss for Validation): Refers to the classification loss on the validation dataset. It gauges
the model's classification capabilities when exposed to previously unseen data.

Figure 22 Train and Validation batch of YOLOvV5s and YOLOV7 across Different Lighting Conditions

Figure 22 offers a side-by-side view of the models' training and validation performance, shedding light on
their learning capabilities and generalization potential under varied lighting conditions. It acts as a valuable
resource in choosing the model that offers a balanced and robust performance for ASL gesture recognition,
irrespective of ambient lighting.
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5. 6 Discussion

Natural Light Scenario:

In natural lighting conditions, both YOLOvVS5 and YOLOv7 demonstrated strong robustness. This test was
a measure of the models' best operational abilities. Both models displayed high assurance levels,
suggesting that in optimal lighting, the difference in their robustness is minimal. This situation establishes
a baseline for tougher environments where differences between the models might become more noticeable.
Challenges and Observations in Dim Lighting:

Moving to dim lighting presented initial challenges. The weaker lighting naturally affects the clarity of
signs, making their detection more complex. YOLOVS5 achieved an assurance level of 83%. Although
respectable, YOLOvV7 outperformed it with a level of 89%.

This 6% gap in assurance in dim conditions, while small on paper, has significant practical implications.
For example, in dim environments, like a poorly lit room or during late evening, YOLOvV7's advantage
could be crucial for accurate sign interpretation.

Confronting the Challenges of Low Light:

Low light conditions highlighted notable differences between the two models. The reduced visibility and
contrast mean every sign becomes a test of the model's detection abilities. Here, the difference in
robustness was more evident. Both models faced these challenges, but YOLOvV7 stood out for its
adaptability and strength in such conditions.

The differences between YOLOvS and YOLOvV7 in low light not only speak to their individual capabilities
but also to the inherent challenges of detecting signs in poor lighting. The subtleties of ASL, with its
specific hand movements and positions, become harder to recognize in low light.

In all lighting conditions, it's clear that while both models have their strengths, they have different
sensitivities and adaptabilities. Natural light was a standard test, dim light added some challenges, and
low light pushed both models. These tests emphasize the need to choose the right model based on the
environment it will work in.

Additionally, the differences between the two models in varied lighting stress the balance between model
design, adaptability, and real-world use. As technology progresses, understanding these aspects becomes
essential for developing effective ASL detection systems.

6 Conclusion and Future Work

At the heart of this research was a thorough examination and comparison of YOLOvS5 and YOLOv7's
proficiency in detecting American Sign Language (ASL) signs across diverse lighting conditions. Through
a systematic three-part testing method, evaluations were made under natural, dim, and low light
environments, yielding insightful results.

In ideal lighting (natural light), both YOLO models displayed effectiveness, securing commendable
precision, recall, and mAP scores. As light levels decreased, a decline in these metrics was observed,
indicating growing difficulties in ASL sign detection under less-than-ideal light. However, the models'
adaptability was evident, even though there were clear differences in their outcomes. This research
highlights not only the strengths of these models but also areas of potential improvement.
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The implications of this research extend beyond scholarly work, potentially impacting sectors like
education and healthcare. Ensuring the models' reliability across various lighting conditions can render
these tools more universally reliable.

Research Limitations and Future Directions:

This study's scope was limited to certain lighting scenarios and a concentrated review of the models' core
features. To extract more comprehensive findings, broader exploration coupled with a deep dive into
YOLOvV5 and YOLOvVT7's configurations is crucial.

Potential future research directions might encompass an in-depth study of adjustable parameters within
YOLOvVS and YOLOv7, aiming for improved performance in challenging lighting scenarios. Introducing
a module sensitive to lighting variations could transform ASL detection, enabling real-time adjustments
based on input visuals. A broader dataset that captures varied lighting, diverse settings, and multiple hand
positions will undoubtedly strengthen ASL detection models.
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