
Configuration Manual

MSc Research Project

Data Analytics

Maria Migrova
Student ID: x21146021

School of Computing

National College of Ireland

Supervisor: Jorge Basilio

Industry Supervisor: Mihai Ilie

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Maria Migrova

Student ID: x21146021

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Jorge Basilio

Submission Due Date: 14/08/2023

Project Title: Configuration Manual

Word Count: 713

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Maria Migrova

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Maria Migrova
x21146021

14/08/2023

1 Introduction

The Configuration Manual encompasses software and hardware configurations, libraries,
and key code excerpts pertinent to each step of the implementation process. Its purpose
is to guide the replication of the research project titled ”Optimizing Data Collection Pro-
cess in the Autonomous Driving Industry Using Machine Learning.” This documentation
is designed to facilitate the precise reproduction of the project’s procedures, ensuring
accuracy and enabling further exploration of the study’s outcomes.

2 System Requirements

2.1 Hardware configuration

Table 1 presents the Hardware configurations, outlining the necessary components for the
project’s execution.

Table 1: Hardware Specification
Processor AMD Ryzen 7 2700X Eight-Core Processor
Clock Speed 3.70 GHz
RAM 32.0 GB

2.2 Software configuration

Table 2 presents the Software configurations.

Table 2: Software Specification
Software Type Software Name Version
Programming Language Python 3.8.5
Notebook Jupyter Notebook 6.1.4
Platform Tensorflow 2.6.0

1



2.3 Libraries and Packages

Table 3 describes the libraries and packages used in this project and their usage.

Table 3: Libraries Used and Descriptions
Library Version Description
os N/A Provides functions to interact with the op-

erating system, used for file and directory
operations.

cv2 4.5.3 OpenCV library for computer vision tasks
such as image processing and analysis.

pandas 1.3.3 Data manipulation and analysis library, used
for handling tabular data.

numpy 1.21.2 Numerical computing library, used for math-
ematical operations on arrays and matrices.

sklearn.model selection 0.24.2 Part of scikit-learn library, used for model
selection and evaluation.

tensorflow.keras.preprocessing.image 2.6.0 Part of TensorFlow library, used for image
data preprocessing.

tensorflow.keras.models 2.6.0 Part of TensorFlow library, used for building
and training models.

tensorflow.keras.layers 2.6.0 Part of TensorFlow library, provides layers
for building neural networks.

sklearn.preprocessing 0.24.2 Part of scikit-learn library, used for data pre-
processing and scaling.

tensorflow.keras.callbacks 2.6.0 Part of TensorFlow library, used for defining
custom callbacks during training.

tensorflow.keras.optimizers 2.6.0 Part of TensorFlow library, provides optim-
ization algorithms for neural networks.

matplotlib.pyplot 3.4.3 Used for creating visualizations such as plots
and graphs.

collections N/A Provides specialized data structures, used
for managing and manipulating collections
of items.

skimage 0.18.3 Part of sci-kit-image library, used for image
processing and computer vision tasks.

tabulate 0.8.9 Used for formatting tabular data, such as
displaying results in a table format.

json N/A Used for working with JSON data format.
openpyxl 3.0.7 Library for working with Excel files (xlsx),

used for data manipulation.
glob N/A Provides file path pattern matching, used for

file operations.
re N/A Regular expression library, used for pattern

matching and manipulation of strings.

2



3 Research Implementation

3.1 Data Preprocessing

(Figure 1) Represents the function specified for metadata extraction from multiple prean-
notation.json files.

Figure 1: Metadata Extract function to excel

(Figure 2) shows the function to resize images in the specific folder, this one resizes
all the images to 240 x 240 format using os and cv2 library.

3



Figure 2: Image resizing

(Figure 3) represents the augmentation script that was used to adjust contrast and
brightness on the images to create new augmented images.

4



Figure 3: Image Augmentation

4 Data Splitting

Here we can see the stratified sampling used in the project for all the models to split the
dataset based on all the classes.

5



Figure 4: Stratified Sampling and dataset split

5 Final Preprocessing for the models

(Figure 5) This code sets up image data generators for training and validation data. It
rescales pixel values, defines the batch size, and generates batches of images from data
frames, preparing them for a model. The target column is specified as ’combined label’
for classification tasks.

6



Figure 5: Final preprocessing of the data

6 Model creating

6.1 EfficientNetB1 Model

Figure 6: EfficientNetB1

7



This code creates a classification model using EfficientNetB1 architecture for scene sky-
cover prediction. It adds layers for global average pooling, dropout, dense, and output.
The model is compiled with ’adam’ optimizer and ’sparse categorical crossentropy’ loss.
A ModelCheckpoint callback is defined to save the best model based on validation accur-
acy. (Figure 6)

6.2 Simple CNN Model

Figure 7: CNN

This code defines a sequential convolutional neural network (CNN) model for image
classification. The model consists of convolutional and max-pooling layers, followed by
dense layers and dropout regularization. It’s compiled with the Adam optimizer and
sparse categorical cross-entropy loss. EarlyStopping and ModelCheckpoint callbacks are
used for monitoring and saving the best model during training. (Figure 7)

8



7 Model Training

Figure 8: Model Training

(Figure 8) code trains the previously defined CNN model using the provided data gener-
ators for training and validation. It specifies the number of training and validation steps
based on the length of the generators. The training process occurs over a maximum of
100 epochs. The EarlyStopping callback is utilized to prevent overfitting by monitoring
the validation accuracy and stopping training if it does not improve for a certain number
of consecutive epochs. The ModelCheckpoint callback saves the best model based on
validation accuracy during training.

9



8 Model Testing

Figure 9: Model Testing

This code applies the trained model to predict class labels on the test data using the
model.predict method. The predicted probabilities are then converted to class labels by
selecting the indices with the highest probabilities. The true class labels from the test
set are retrieved, along with the filenames of the test images. The model’s performance
on the test set is evaluated using the evaluate method, which calculates the test loss
and accuracy. The predictions, along with true and predicted labels, are printed for
each test image. Additionally, the code analyzes wrongly predicted labels by creating
a dictionary that stores the count of wrongly predicted labels. Finally, the labels and
their corresponding counts are extracted to analyze which classes were more frequently
misclassified. (Figure 9)

10


	Introduction
	System Requirements
	Hardware configuration
	Software configuration
	Libraries and Packages

	Research Implementation
	Data Preprocessing

	Data Splitting
	Final Preprocessing for the models
	Model creating
	EfficientNetB1 Model
	Simple CNN Model

	Model Training
	Model Testing

