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1 Introduction

The Configuration Manual encompasses software and hardware configurations, libraries,
and key code excerpts pertinent to each step of the implementation process. Its purpose
is to guide the replication of the research project titled ” Optimizing Data Collection Pro-
cess in the Autonomous Driving Industry Using Machine Learning.” This documentation
is designed to facilitate the precise reproduction of the project’s procedures, ensuring
accuracy and enabling further exploration of the study’s outcomes.

2 System Requirements

2.1 Hardware configuration

Table 1 presents the Hardware configurations, outlining the necessary components for the
project’s execution.

Table 1: Hardware Specification
Processor AMD Ryzen 7 2700X Eight-Core Processor
Clock Speed | 3.70 GHz
RAM 32.0 GB

2.2 Software configuration

Table 2 presents the Software configurations.

Table 2: Software Specification

Software Type Software Name Version
Programming Language | Python 3.8.5
Notebook Jupyter Notebook | 6.1.4
Platform Tensorflow 2.6.0




2.3 Libraries and Packages

Table 3 describes the libraries and packages used in this project and their usage.

Table 3: Libraries Used and Descriptions

Library Version | Description

08 N/A Provides functions to interact with the op-
erating system, used for file and directory
operations.

cv2 4.5.3 OpenCV library for computer vision tasks
such as image processing and analysis.

pandas 1.3.3 Data manipulation and analysis library, used
for handling tabular data.

numpy 1.21.2 | Numerical computing library, used for math-
ematical operations on arrays and matrices.

sklearn.model _selection 0.24.2 | Part of scikit-learn library, used for model
selection and evaluation.

tensorflow.keras.preprocessing.image | 2.6.0 Part of TensorFlow library, used for image
data preprocessing.

tensorflow.keras.models 2.6.0 Part of TensorFlow library, used for building
and training models.

tensorflow keras.layers 2.6.0 Part of TensorFlow library, provides layers
for building neural networks.

sklearn.preprocessing 0.24.2 | Part of scikit-learn library, used for data pre-
processing and scaling.

tensorflow keras.callbacks 2.6.0 Part of TensorFlow library, used for defining
custom callbacks during training.

tensorflow.keras.optimizers 2.6.0 Part of TensorFlow library, provides optim-
ization algorithms for neural networks.

matplotlib.pyplot 3.4.3 Used for creating visualizations such as plots
and graphs.

collections N/A Provides specialized data structures, used
for managing and manipulating collections
of items.

skimage 0.18.3 | Part of sci-kit-image library, used for image
processing and computer vision tasks.

tabulate 0.8.9 Used for formatting tabular data, such as
displaying results in a table format.

json N/A Used for working with JSON data format.

openpyxl 3.0.7 Library for working with Excel files (xlsx),
used for data manipulation.

glob N/A Provides file path pattern matching, used for
file operations.

re N/A Regular expression library, used for pattern

matching and manipulation of strings.




3 Research Implementation

3.1 Data Preprocessing

(Figure 1) Represents the function specified for metadata extraction from multiple prean-
notation.json files.

lef extract_inmfc_from_jsondjson_data, json_file_name).
data = json.loads{json_data)
algorithm = Mone
sceng_environment = Mone
scene_sky_cover = None
sceng_climatic_conditions = None
scene_surface_conditions = None
scena_lighting = nNone
sCene_surface_type = None
scene_country = Nonme
soiling type = Mone

if data.get("type") == "response_videc data" and data.get{"content"):
content = data["content™]

# Check if Label _structures section exists
label structures = content.get({"label_structures", [1)
for structure in label structures:

algorithm = structure.get("algorithm")

break

# Check if sceme_gttributes section exists
scene_attributes = content.get({"scene_attributes", [1)
if scene_asttributes:
for attr in scene_attributes:
if "sawoL" in attr.get({"alsorithms", []):
values = attr.get("valu=z", [1}
if wvalues:
value = values[a].get{"nama")

if attr{"name”] == "scene_envirocnment":
scene_environment = walue

elif attr["name"] == "scene_sky_cover":
scene_sky_cover = wvalue

elif attr["name"] == "scene_climatic_conditions":
scene_climatic_conditions = walue

elif attr["name"] == "scene_surface_conditicns":
scene_surface_conditions = value

elif attr["name"] == "scene_lighting"™:
scene_lighting = value

elif attr["name"] == "scene_surface_tvpe":
scene_surface type = wvalue

elif attr["name"] == "scene_country®:

scene_country = wvalue

Figure 1: Metadata Extract function to excel

(Figure 2) shows the function to resize images in the specific folder, this one resizes
all the images to 240 x 240 format using os and cv2 library.



import os
import cw2

# Function to resize images in the specified folder and its subfolders
def resize_images(main_folder, cutput_folder, target_size={248, 248}):
# cregting the output folder ifF it doesn't exist
if not os.path.exists{output_folder):
os .makedirs {output_folder)

# creating a log File to keep track of skipped fFiles
log_file = os.path. join{output_feolder, 'skipped_files.txt')
with cpen{log file, 'w'} as log:

log.write("Files skipped due to errors: n®)

# Going through all subfolders and find imaoge files
for root, dirs, files in os.walk({main_folder):
for image_file in files:
# Checking if the file is an imoge
if image_file.lower().endswith{{'.png', '.jpg', '.Jjpeg"}):
# Reading the image using OpenCV
image_path = os.path.join{roct, image file)
img = cw2.imread{image_path}

# Checking if the image is valid
if img is None:
with open{lcg_file, "a'} as log:
log.write{image_path + '\n")
print{f"skipping {image_file} due to read error.")
continue

# Resizing the imoge to the target size
resized_img = cv2.resize(img, target_size, interpolation=cv2.INTER_AREA)

# getting the relative path of the image to the moin Folder
relative_path = os.path.relpath{rcot, main_folder)

# Cregting subdirectories in the output folder if they don't exist

output_subfolder = os.path.jein{output_folder, relative_path)

if not os.path.exists{output_subfclder):
os.makedirs{output_subfolder)

# Sguing the resized imoge to the output folder

output_path = os.path.join{output_subfolder, image file)

cv2. imerite(output_path, resized_img)

print(f"Image {image file} resized and saved tc {output_path}™)

# Asking the user for the path to the mgin folder containing subfolders with imaoges to be resized
main_folder = input{"Enter the path to the main folder: ™)

# Asking the user for the path to the output folder to sove the resized imoges
cutput_folder = input("Enter the path to the output felder: ")

# Resizing the imoges in the moin folder and its subfolders and sove them to the output folder
resize_images(main_folder, cutput_folder)

Figure 2: Image resizing

(Figure 3) represents the augmentation script that was used to adjust contrast and
brightness on the images to create new augmented images.



import os

import cva

import random

import pandas as pd

from skimage import exposure

# Function to gugment images in the specified folder and its subfolders
def augment_datai{main_folder, output_folder, augment_factor):
# Cregting the output folder if it doesn't exist
if mot os.path.exists{output_folder):
os.makedirs{output_folder)

# Logding the C5V file containing imoge Labels
labels_df = pd.read_csv(r"C:‘\Users\mmigrova‘\Desktepi\MastersiCode'\Dataset\image_metadata_mapping.csv™)

# Creating a dictiongory to store the mapping between image names ond their Labels
image_label_mapping = {}

# Going through oll subfolders and Find imaoge files
for root, dirs, files in os.walk({main_folder):
for image_file in files:
# Checking if the file is an imoge
if image_file.lower().endswith{{".png', '.jpg', ".Jjpeg’}):
# Getting the image name without the extension
image_name = os.path.splitext{image_file)[8a]

# Getting the corresponding Label from the DatoFrame
label_row = labels_df.loc[labels_df['Hame'] == image_name]
if not label_row.empty:
# getting the labels from the row {(gssuming columns ‘sceme_sky cover', ‘scene_climatic_conditions', etec.)
label_sky_cover = label_row['scene_sky_caver'].values[a]
label_climatic_conditions = label row['scene_climatic_conditions®].values[@]
label_surface_conditions = label row['scene_surface_conditions'].values[@a]
label_lighting_conditions = label row[*lighting conditicns'].values[&]

# Sguing the lobels in the image Label_mapping dictionary
image_label mapping[image_name] = {
'scene_sky_cover”: label sky_cower,
‘scene_climatic_conditions': label_climatic_conditicns,
'scene_surface_conditions®: label_surface_conditions,
'lighting_conditions': label lighting_conditions

H

# Loading the image using OpencV
image_path = os.path.join{roct, image_file}
img = cv2.imread{image_path)

# Performing dota ougmentation 'ocugment foctor® times

for 1 in rangs(augment_factor):
# Randomly selecting an oqugmentation techmigue
augmentation_technigue = random.choice(["brightness", "contrast"])

# Applying the selected qugmentotion techmigue
if augmentation_technigue == "brightness":

# Randomly adjusting the brightness of the imoge

alpha = random.uniform{a.3, 1.2)

augmented_img = exposure.adjust_gamma(img, gamma=alpha)
elif augmentation_technique == "contrast":

# rondomly adjusting the contrast of the image

beta = randem.uniform{e.3, 1.2}

augmented_img = cv2.convertScalesbs{img, alpha=beta, beta=2)

# saveing the ougmented image in the owtput folder with g new nome
output_image_name = f"{image_name]}_sugmented_{1}.png"”

Figure 3: Image Augmentation

4 Data Splitting

Here we can see the stratified sampling used in the project for all the models to split the
dataset based on all the classes.



# Filtering out invalid imoge Filenomes
metadata_df['Fath'] = metadata df['Name'].apply{lambda x: os.path.join{base_ image_directory, x))
metadata_df = metadata df[metadata_df["Path'].apply{lambda x: os.path.exists(x))]

# Create o combined Label based on oll four classes

metadata_df['combined_label'] = metadata df['scene_sky _cover'].astype(str) + "_"' + %\
metadata_df["scene_climatic_conditions"].astype(str) + '_" + \
metadata_df["scene_surface_conditions'].astype(str) + '_" + \

metadata_df["lighting conditions'].astype{str)

# Defiming the target columm
target_column = 'combined_label'

# Creating Label encoder
label_encoder = LabelEncoder()

# Encoding the target columm
metadata_df[target_column] = label_encoder.fit_transform{metadata_df[target_coclumn])

# splitting the dotaset inte 38% troining, 18% volidation, and 18% test
train_df, temp_df = train_test split(metadata_df, test_size-2.2, stratify-metadata_df[target cclumn], random state-=42)
validation df, testl df = train test split{temp df, test size-8.5, stratify-temp df[target_column], random state-42)

# Printing the sizes of each set

print("Train set size:™, len(train_df))
print("validation set size:", len{validation_df))
print("Test set size:", len(testl df))

# Saving the dotaframes inte separate sheets of an Excel fFile

excel_file path = 'E:/Valeo Woodspace datas/FINAL_DATASET/split_datal.xlsx'

with pd.ExcelWriter({excel_file path) as writer:
train_df.to excel{writer, sheet_name="train', index=False)
validation df.to_excel(writer, sheet_name='walidaticn', index=False)
testl_df.to_excel{writer, sheet_name="test', index=False)

# Printing the mapping of Labels to mmerical representations

label_mapping = label encoder.classes_

print("Label Mapping:")

print("Label Name‘\t| Numerical Label™)

print("-" # 2@}

for i, label name in enumerate(label mapping):
print(f"{label_name}‘\t| {i}")

# Counting the combinations

cembination_counts - metadata df["combined_label'].value_counts()
print("\nCombination Counts:")

print{combination_counts)

# Saving the dotaframes inte separate sheets of an Excel fFile

excel_file path = 'E:/Valeo Woodspace datas/FINAL_DATASET/split_data.xlsx®

with pd.ExcelWriter({excel_file path) as writer:
train_df.to excel{writer, sheet_name="train', index=False)
validation df.to_excel(writer, sheet_name='walidaticn', index=False)
testl_df.to_excel{writer, sheet_name="test', index=False)

Figure 4: Stratified Sampling and dataset split

5 Final Preprocessing for the models

(Figure 5) This code sets up image data generators for training and validation data. It
rescales pixel values, defines the batch size, and generates batches of images from data
frames, preparing them for a model. The target column is specified as 'combined_label’
for classification tasks.



# Creating an ImogeDatoGenerator
datagen = ImageDataGenerator(rescale=1./255)

# Creagting the data generators
#specifying the botch size
batch_size = 128

#instonce of ImogeDotoGenerator that gemerates botches of traiming dotfa for our model during training.
train_generator = datagen.flow_from_dataframe(

dataframe=train_df,

¥_col="Path',

y_col=target_column,

target_size-{248, 243),

batch_size=batch_size,

class_mode="raw",

subset="training'

)]

#instaonce of ImageDatoaGenerator that generates baotches of validation dota for evaluating our model during training.
validation_generater = datagen.flow_from_dataframe(

dataframe=validation_df,

X_col="Path",

v_col=target column,

target_size=(248, 243},

batch size=batch_size,

class_mode="raw"

)]

# Defiming the target column
target_column = 'combined label'

Figure 5: Final preprocessing of the data

6 Model creating
6.1 EfficientNetB1 Model

Creating the model

[14]: | # creating the finol model with the output Laoyer for scene sky cover

num_classes owtput = 2
base_model = EfficientnetBl(include_top=False, weights='imagenet®, input_shape=(2422, 228, 3))
¥ = layers.GlobalAveragePooling2D{) (base_mocdel.output)
X = Dropout{8.5}{x) # Adding dropout Llayer with dropout rate of 8.5
# Adding o dense Llayer

= layers.Dense{512, activation="relu")(x)

= layers.Dropout(@.9)(x) # Add dropout here

output = layers.Dense{num_classes_owtput, activation='sofimax', name="output')({x)
medel = Model(inputs=base_model.input, outputs=cutput)

[15]: | # compiling the model with appropriete loss function for scene_sky cover
medel. compile(
optimizer="adam',
loss="sparse_categorical_crossemtropy®, # Use 'sporse categorical_crossentropy' for imteger Labels
metrics=['accuracy’]

[1&8]: | # Defining the ModelCheckpoint collback
model_checkpoint = ModelCheckpoint
filepath="E:/Models/Efficientiet/model_checkpoint_{epoch:e2d}.hs', & Sowe the model with the epoch number
monitor="'val_accuracy', # Monitor validetion accuracy
save_best_cnly=True, # Save only the best model
save_weights_only=False, # Sgve the entire modsl, not just weights
mode="max', # Mwcimize the validation gccurocy
verbose=1 # Print messages when saving the modgsl

Figure 6: EfficientNetB1



This code creates a classification model using EfficientNetB1 architecture for scene sky-
cover prediction. It adds layers for global average pooling, dropout, dense, and output.
The model is compiled with 'adam’ optimizer and ’sparse_categorical _crossentropy’ loss.
A ModelCheckpoint callback is defined to save the best model based on validation accur-
acy. (Figure 6)

6.2 Simple CNN Model

#umber of classes in our classificetion problem
num_classes owutput = 8

#sequentiol model
medel = Sequential(}

# Adding o Convolutional layer with 32 filters, each of size (3, 3) using Rell octivation

# Input shape is (248, 248, 3), meaning images are 248x248 pixels with 3 color channels (RGB)
model. add(Conv2D{32, (2, 3), activaticn='relu", imput_shape={248, 248, 2)}))

medel. add(MaxPooling2D((2, 2}))

# Adding o MaxPooling Layer to downsample the image representation by taking the maximum walue in each 2x2 region
model. add(MaxPooling2D( (2, 2}))

# Adding another Convolutional Laver with &4 filters ond Rell octivation
medel. add(Conv2D{s4, (32, 3), activaticn='relu"})

# Adding another maxpPooling Layer
model. add (MaxPooling2D( (2, 23))

# Flottening the 20 imoge represemtation into g 10 vector
medel. add(Flatten()}

# Adding a Dense (fully comnected) Laver with 128 units and RellU activation

medel. add(Dense{122, activation="relu"})

# Adding @ Dropout Laver to rondomly deoctivote 58% of the neurons to prevent overfitting
medel . add{DPropout{@.5) )

# Adding the fingl Dense Layer with the number of units equal to the number of classes
# Using sofitmax activation for multi-closs classification
medel. add(Pense{num_classes_cutput, activation='scftmax'))

# compiling the model with the Adam optimizer ond sparse categorical cross-entropy Lloss
# Using accuracy as g metric to monitor during training
model. compile(optimizer="adam", loss="sparse_categorical_cressentropy', metrics=["accuracy'])

# Defining the Earlystopoing callback
early_stopping = Earlystopping(monitor='val_accuracy', patlience=5, restore_best_welghts=True)

# Defining the Modelcheckpoint cal lbock
model checkpoint = ModelCheckpoint(
filepath="E: /Models/Final_model/model_checkpoint_{epoch:e2d}.hs", #& save the model with the epoch number
monitor="val_accuracy', # Monitor volidetion cccuracy
save_best_only=True, # Sgve only the best model
save_weights_only=False, # Sgve the entire model, not just weights
mode="max', # Maximize the vglidation accurocy
verbose=1 # Print messages when saving the model

Figure 7: CNN

This code defines a sequential convolutional neural network (CNN) model for image
classification. The model consists of convolutional and max-pooling layers, followed by
dense layers and dropout regularization. It’s compiled with the Adam optimizer and
sparse categorical cross-entropy loss. EarlyStopping and ModelCheckpoint callbacks are
used for monitoring and saving the best model during training. (Figure 7)



7 Model Training

# Troiming the model with early stopping
history = model.fit(
train_generator,
steps per epoch=len(train_generator),
validation_data=validation generator,
validation_steps=len{validation_generator),
epochs=188,
callbacks=[early stopping,model checkpoint]

Figure 8: Model Training

(Figure 8) code trains the previously defined CNN model using the provided data gener-
ators for training and validation. It specifies the number of training and validation steps
based on the length of the generators. The training process occurs over a maximum of
100 epochs. The EarlyStopping callback is utilized to prevent overfitting by monitoring
the validation accuracy and stopping training if it does not improve for a certain number
of consecutive epochs. The ModelCheckpoint callback saves the best model based on
validation accuracy during training.



8 Model Testing

# Using the trained model to predict on the test datao
predictions = model.predict{test _generator)

# Converting predicted probabilities to class Labels
predicted labels = np.argmax{predictions, axis=1)

# Getting the true Labels from the test generator
true_labels = testl df[target_column].values

# Getting the fFilenames of the test imoges
test_filenames = testl df['Path'].walues

# Evaluating the model on the test set

test_loss, test accuracy = model.evaluate(test_generator)
primt({“Test Loss:", test loss)

primt(“Test accuracy:", test_accuracy)

# Printing the predictions along with true Labels and Filenames
for i in range(len(test filenames)):

filename = os.path.basename(test_filenames[i])

true_label = true_labels[i]

predicted label = predicted labels[i]

print(f“Filename: {filename}, True Label: {true_label}, Predicted Label: {predicted_label}")

# Create g dictionary to store the count of wrongly predicted Labels
wrongly_predicted counts = Counter()

for i in range(len(test filenames)):
true_label = true_labels[i] # Use true Labels instead of true_Labels_encoded
predicted label = predicted_labels[i]

if true_label != predicted_label:
wrengly _predicted counts[true_label] += 1

# Extract Label nomes and their corresponding counts
labels = list{wrongly predicted counts.keys{)})
counts = list{wrongly_predicted counts.values(})

Figure 9: Model Testing

This code applies the trained model to predict class labels on the test data using the
model.predict method. The predicted probabilities are then converted to class labels by
selecting the indices with the highest probabilities. The true class labels from the test
set are retrieved, along with the filenames of the test images. The model’s performance
on the test set is evaluated using the evaluate method, which calculates the test loss
and accuracy. The predictions, along with true and predicted labels, are printed for
each test image. Additionally, the code analyzes wrongly predicted labels by creating
a dictionary that stores the count of wrongly predicted labels. Finally, the labels and
their corresponding counts are extracted to analyze which classes were more frequently
misclassified. (Figure 9)
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