*
\ National
College o

[reland

Investigating the validity of FPL data in determining player
performance and the most impactful players in the English
Premier League teams

MSc Research Project
MSc Data Analytics

Nishant Meena
Student ID: x21221839

School of Computing
National College of Ireland

Supervisor: Vitor Horta

\‘
National College of Ireland \ National

MSc Project Submission Sheet COllegGOf
c Project Submission Shee
Ireland
School of Computing
Student .Nishant Meena........cccoieii i
Name:
Student ID: ..X21221839. . ittt st b ettt eae e en s
Programme ... MSc Data Analytics............ Year: ..2023.......... .
Module: ... MSC ReSearCh ProjecCt........ccoioiiiiiieei et e
Supervisor: ViItOr HOM@. .o e
Submission
Due Date: 14-08-2023. .t s e
Project Investigating the validity of FPL data in determining player
Title: performance and the most impactful players in the English Premier
League teams.
Word
Count: = ... 1002....cciie, Page Count.................. 11,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: = ... Nishant Meena..........cccooviiniiiiiine e
Date: = 13/08/2023...ciieieeee e,

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Nishant Meena
Student ID:x21221839
MSc Research Project in Data Analytics
14™ August 2023

1. Introduction

This manual's goal is to highlight the project's technical side, which includes
system requirements and programming snippets that are not mentioned in the
main report. The essential system requirements used are covered at the outset of
this document, along with a discussion of how the methodology is put into
practice.

1.1 System Requirements

e Hardware spec
1. System Manufacturer: Apple Inc.
2. Operating System: macOS
3. Processor: Apple M1 chip, 8-core CPU with 4 performance cores
and 4 efficiency cores
4. Memory: 8GB unified memory

e Software spec
1. Jupyter notebook
2. Google colab
3. Microsoft Excel

2. Project Development

Data preparation is achieved in multiple stages, between Excel, jupyter notebook
and google colab. The screenshots have been included in the manual to make
everything clear.

2.1 Data Preparation

This project focuses on two datasets: The first dataset was obtained from a
github repository! which has all the FPL data starting from 2016 season to the
latest season. All the game week data has been uploaded on this github

L https://github.com/vaastav/Fantasy-Premier-League/tree/master

repository. The second dataset was scraped from the website called
understat.com, using the documentation available online 2. The first dataset
contains the stats of the players for each game week from game week 1 of
2016 season to game week 38 of 2021 season as seen in fig 1.

[) AutoSave @ oFF () B 9v

Home Insert Draw Page Layout Formulas Data Review View Automate DataFX Q Tell me) Comments @ Share |
E 'DV & Calibri (Body) vz VAR E=E . ab v General < O [F‘/V E/V @Emsert v 3 v é? . p . [j
(155 , = 4 % Delete v v I
Pt g | BT UV|EY[SvAY [ESE|EZ B @ %0 BB | S | g | Oy TS Se | e

@ Possible Data Loss Some features might be lost if you save this workbook in the comma-delimited (.csv) format. To preserve these features, save it in an Excel file format. Save As...
E49493 5 fx Southampton

A 8 ® D 3 F G H 1) K L ™M N 0 P Q A
1 season_x name position team x _ assists bonus bps clean_sheetscreativity element fixture | ¥ |goals_conce(goals_scorecict_index influence kickoff_time minutq
2 0201617 Aaron Cresswell DEF 0 0 0 0 0 454 10 0 0 0 0 2016-08-15T19:00:00Z
3 1201617 Aaron Lennon MID 0 0 6 0 03 142 3 0 0 09 8.2 2016-08-13714:00:00Z
4 2201617 Aaron Ramsey MID 0 0 H 0 49 16 8 3 0 3 2.2 2016-08-14T15:00:00Z
5 3201617 Abdoulaye DoucourV® MID 0 0 0 0 0 482 7 0 0 0 0 2016-08-13T14:00:00Z
6 4201617 Adam Forshaw MID 0 0 3 0 13 286 6 1 0 03 2 2016-08-13T14:00:002
7 5201617 Adam Lallana MID 1 2 33 0 337 205 8 3 1 142 51.2 2016-08-14T15:00:00Z
8 6 2016-17 Adriv*n San Miguel del Castillo GK 0 o 16 o J 450 10 2 I 3 29.8 2016-08-15T719:00:002
9 7201617 Alex Iwobi MID 1 0 12 0 175 2 8 3 0 34 16.6 2016-08-14T15:00:002
10 8201617 Alex McCarthy (3 0 0 0 0 0 101 7 0 0 0 0 2016-08-13T14:00:002
1 92016-17 Alex Oxlade-Chamberlain MID 0 0 23 0 65 18 8 1 1 65 39.4 2016-08-14T15:00:00Z
12 10 201617 Andreas Pereira MID 0 0 0 0 0 263 9 0 0 4 0 2016-08-14T12:30:002
13 11201617 Andrew Robertson DEF 0 0 1 0 18 152 4 1 0 17 14.8 2016-08-13711:30:002
14 12 201617 Andre Gray FWD 0 0 3 0 23 68 1 1 0 43 0 2016-08-13714:00:00Z
15 13 201617 Andros Townsend MID 0 0 17 0 328 120 2 1 0 102 23.2 2016-08-13T14:00:00Z
16 14 201617 Andy Carroll FWD 0 0 7 0 17 468 10 2 0 32 10.6 2016-08-15T19:00:002
17 15 2016-17 Angelo Ogbonna DEF J o 0 o 0 456 10 o 0 o 0 2016-08-15T19:00:002
18 16 201617 Anthony Martial FWD 2 3 35 0 373 267 9 1 0 104 38.8 2016-08-14T12:30:00Z
19 17 201617 Arthur Masuaku DEF 0 0 19 0 14 505 10 2 0 18 16.4 2016-08-15T19:00:002
20 18 201617 Ashley Bames FWD 0 0 0 0 0 70 1 0 0 0 0 2016-08-13714:00:002
21 19 2016-17 Ashley Young DEF J o J o 0 260 9 o 0 o 0 2016-08-14T12:30:002
2 20 2016-17 Bamidele Alli MID 0 0 6 0 169 398 3 1 0 3 2.2 2016-08-13714:00:00Z
23 212016-17 Benjamin Chilwell DEF 0 0 0 0 0 496 4 0 0 0 0 2016-08-13711:30:002
2 22 2016-17 Ben Davies DEF 0 0 0 0 0 386 3 0 0 0 0 2016-08-13T14:00:002
25 23201617 Ben Foster 6K 0 3 32 1 10 430 2 0 0 34 23.6 2016-08-13T14:00:002
26 24201617 Ben Gibson DEF 0 0 6 0 01 278 6 1 0 17 10.4 2016-08-137T14:00:002
27 252016-17 BenMee DEF 0 0 15 0 06 56 1 1 0 23 18.8 2016-08-13714:00:002
28 26 2016-17 Branislav Ivanovic DEF 0 0 15 0 129 7 10 1 0 7.2 18.4 2016-08-15T19:00:002
29 27201617 Callum Wilson FWD 0 0 1 0 108 49 9 3 0 15 0 2016-08-14T12:30:002
30 28 2016-17 Calum Chambers DEF [o 26 o 05 1 8 a4 1 76 48.8 2016-08-14T15:00:002
3 292016-17 Cameron Carter-Vickers DEF 0 0 0 0 0 501 3 0 0 0 0 2016-08-13714:00:00Z
2 30 2016-17 Charlie Austin FWD 0 0 2 0 1 314 7 0 0 1 0 2016-08-13714:00:00Z
3 311201617 Cheikhou Kouyatv@ ™MD : o o 7 0 125 459 10 2 0 33 18.6 2016-08-15T19:00:002

fig 1 FPL dataset

For the second dataset which includes secondary stats (xG and xA) was scraped
with the help of the understat documentation. However, to scrape the players
stats for each season player id was required which was obtained by running the
below mentioned code in figure 2. Further, it is important to know that in
English Premier League (EPL), three clubs are relegated (demoted) to lower
league and three clubs from the lower leagues are promoted to EPL each
season. For the same reason an array of list of teams was manually created to
get all the player ids, as seen in figure 2.

2 https://understat.readthedocs.io/en/latest/contributing/contributing.html

+ Code + Text Reconnect v A
o import pandas as pd
import asyncio

from understat import Understat

async def fetch team data(session, team_name)
understat = Understat(session)
players = avait understat.get_league_players(
"epl",
2018,
team title=team name

)
return players
async def main():
list_teams = ['Manchester United','Chelsea’, 'Tottenham Hotspur','Manchester City','Liverpool','Arsenal','Everton','Southampton','AFC Bournemouth',' West Bromwich Albion',
'West Ham United','Leicester City','Stoke City','Crystal Palace','Swansea City','Burnley','Watford','Hull City','Middlesbrough','Sunderland', 'Newcastle United',
'Brighton & Hove Albion','Huddersfield Town','Wolves','Cardiff City','Sheffield United','Aston Villa','Norwich City', 'Leeds United','Leeds United','Brentford'] # !
list df = (]
async with aiohttp.ClientSession() as session:
tasks = [fetch team data(session, name) for name in list_teams]
team data = await asyncio.gather(*tasks)
for team name, data in zip(list_teams, team data):
for player in data:
player["tean"] = team name
player_name = player['player name"].replace(" ", "_").lower()
player|["player name"] = player_name
list_df.append(player)
df = pd.DataFrame(list_df)

return df

Run the main coroutine using the “await® keyword
result_df = await main()

Now you can work with the result df DataFrame
print(result_df)

fig 2 Code to obtain the players ids

The next step in scraping the data was to obtain the required stats for the all the
players. The focus was to get the ‘xG” and ‘XA’ stats, but the date and seasons
were also the fetched as these columns are required to merge with the original
FPL dataset, the snippets of the code can be seen in figure 3 below. After which
the dataframe is saved to a csv file which is used to merge with the original
dataset for second experiment. To merge the scrapped dataset, few changes
were made to the name and date column of the FPL dataset to merge the
datasets, figure 4. This code removes any numerical characters from the name
of the players, in the second line of code, any spaces, dashes, are replaced with
underscore, all the non-English characters are converted to their closest
English equivalent and finally all the names were converted into lower case.
Another change which was made was to extract the date from the kickoff time
available in the FPL dataset, as the kickoff time includes date and time of the
fixture. The date was extracted and was converted into YYYY-MM-DD to
match it with the scraped stats from understat.com, the snippet can be seen
below.

° import json

import pandas as pd

from bs4 import BeautifulSoup

from urllib.request import urlopen

import unidecode

def scrape(id,namel):
scrape_url = f"https://understat.com/player/{id}"
page_connect = urlopen(scrape_url)
page_html = BeautifulSoup(page_connect, "html.parser")
page_html.findAll (name="script")
json_raw_string = page_html.findAll(name="script")[4].string
print(json_raw_string)
start_ind = json_raw_string.index("\\")
stop_ind = json_raw_string.index("')")
data = json_raw_string[start_ ind:stop_ind]
data = data.encode("utf8").decode("unicode_escape")
data = json.loads(data)
df = pd.DataFrame(data)
dk = df[['xG', 'xA', 'date', 'season']].sort_values(by='date', ascending=False)
dk['team _id'] = id
dk['name'] = namel
return dk

[1] combined_df = pd.DataFrame()
for index, row in result df.iterrows():
try :
first _name = row|['player name']
id_value = row['id']
print(f"Name: {first_name} , ID: {id_value}")
combined _df = pd.concat([combined_df, scrape(id_value,first name)], ignore_index=True)
except Exception as e:
print (f"Exception occurred: {e}")
continue

fig 3 Code to scrape the players stats using player IDs

Importing the dataset

In [92]): data = pd.read_csv("/Users/nishant/Desktop/Semester 3/Research Project/FPL.csv")

In [93]: data['full name'
data['full name'
data['full name'
data['full name'

data.name.str.replace(' \d+','")

data['full name'].str.replace(" ", "_").str.replace("-", " ").str.replace(' \d+',6''")
data['full name'].apply(lambda x: unidecode.unidecode(x))

data['full name'].str.lower()

In [108]: data['datel'] = pd.to_datetime(data['kickoff time']).dt.strftime('$Y-%m-%d')

In [109]: data.head()

Out[109]:
nus bps clean_sheets creativity ... total_points _balance _in ,_out value was_home yellow_cards GW full_name date1
2016-
0 0 0 00 .. 0 0 0 0 55 False (VN aaron_cresswell (g 4o
2016-
0 6 0 03 .. 1 0 0 0 60 True 0 1 aaron_lennon 08-13
0 5 0 49 .. 2 0 0 0 80 True 0 1 aaron_ramsey 20194
08-14
0 o 0 0.0 0 0 0 0 50 F 2016-
0 .. alse 0 1 abdoulaye doucoure g 1
0o 3 0 13 .. 1 0 0 0o 45 True 11 adam forshaw 2016

fig 4 Changes made to FPL dataset name and date column

This csv file was saved to local hard disk, which was imported for the second
experiment, after which it was merged with the original FPL dataset using the

merge function and was joined based on the player’s name and the date on
which the game was played between the clubs, the snippet of the code can be
seen below in figure 5.

Scrapped data from understat

In [110]): xa_xg _df = pd.read_csv('/Users/nishant/Downloads/xa_xg (2).csv')

In [111]): xa_xg_df['namel'] = xa_xg_df['name’'].str.lower()

In [112]: xa_xg_df.head()

Oout[112]:
xG

xA date season team_id

name name1

0.057879
0.378141
0.000000
0.000000

A& W N = O

0.027140

0.043560 2023-05-14
0.000000 2023-05-07
0.313846 2023-05-03
0.000000 2023-04-16
0.000000 2023-03-05

2022 1740
2022 1740
2022 1740
2022 1740
2022 1740

paul_pogba paul_pogba

paul_pogba paul_pogba

paul_pogba paul_pogba

paul_pogba paul_pogba

paul_pogba paul_pogba

In [113]: merged dfl = data.merge(xa_xg_df, left on=['full name', 'datel'], right_on=['namel', 'date'],
suffixes=('_left', '_right'))
In [114]: merged_dfl.head()
Out[114]:
x assists bonus bps clean_sheets creativity .. GW full_name date1 xG XA date season team_id name_right name1
2016- 2016-
\ 0 0 6 0 03 .. 1 aaron_lennon 08-13 0.000000 0.000000 08-13 2016 593 aaron_lennon aaron_lennon
2016- 2016-
\ 0 0 5 0 49 .. 1 aaron_ramsey 08-14 0.076822 0.000000 08-14 2016 504 aaron_ramsey aaron_ramsey
2016- 2016-
\ 1 2 33 0 33.7 ... 1 adam_lallana 08-14 0.452121 0.177337 08-14 2016 486 adam_lallana adam_lallana
i 1 0 12 0 175 . 1 alex_wobi 2 0000000 0.072123 206" 2016 500 alex_iwobi alex_iwobi
08-14 08-14
i 0 0 14 0 18 .. 1 andrew_robertson 29'¢" 0000000 0.000000 20'S: 2016 1688 andrew robertson andrew robertson

fig 5 Merging the secondary stats with FPL dataset.

The dataset contained some unnecessary columns which were removed like the
column ‘Unnamed: 0’ as it same as the number of rows and the ‘kickoff time’
as it was not required for our project. The code can be seen in figure 6.

In [416]:

In [417]:

Data Cleaning

#removing the unnecessary column

data = data.drop(['Unnamed: 0', 'kickoff time'], axis = 1)

#selecting only the players with more than 20 minutes in the match

data = data[data.minutes>20]

fig 6 Cleaning of the dataset

Then the missing values were checked if there were any, it was found out that
from season 2016 to 2018 the team names were not available in the dataset an
the same were added with the help of Microsoft Excel as seen in figure 7.

AutoSave @ oFF

Home Insert Draw Page Layout Formulas Data Review View Automate DataFX Q@ Tell me

?Dv & Calibri (Bodly) vi12 v AN A

Past E@v : A

aste v H v v
g B I U SV 4

S

General v

so/l\l

1
11
il
I

==

- .0 .00
@ v % 9 60 =0

€ Possible Data Loss Some features might be lost if you save this workbook in the comma-delimited (.csv) format. To preserve thes:

E31 - Ix
A B C D E F G H

1 season_x name position team_x assists bonus bps

2 0 2016-17 Aaron Cresswell DEF West Ham United 0 0 0
3 1 2016-17 Aaron Lennon MID Everton 0 0 6
1 2 2016-17 Aaron Ramsey MID Arsenal 0 0 5
5 3 2016-17 Abdoulaye Doucourv© MID Watford 0 0 0
5 4 2016-17 Adam Forshaw MID Middlesbrough 0 0 3
7 5 2016-17 Adam Lallana MID Liverpool 1 2 33
3 6 2016-17 Adriv°n San Miguel del Castillo GK West Ham United 0 0 16
k] 7 2016-17 Alex lwobi MID Arsenal 1 0 12
0 8 2016-17 Alex McCarthy GK Southampton 0 0 0
1 9 2016-17 Alex Oxlade-Chamberlain MID Arsenal 0 0 23
2 10 2016-17 Andreas Pereira MID Manchester United 0 0 0
3 11 2016-17 Andrew Robertson DEF Hull City 0 0 14
4 12 2016-17 Andre Gray FWD Burnley 0 0 -3
5 13 2016-17 Andros Townsend MID Crystal Palace 0 0 17
6 14 2016-17 Andy Carroll FWD West Ham United 0 0 7
7 15 2016-17 Angelo Ogbonna DEF West Ham United 0 0 0
8 16 2016-17 Anthony Martial FWD Manchester United 2 3 35
9) 17 2016-17 Arthur Masuaku DEF West Ham United 0 0 19
0 18 2016-17 Ashley Barnes FWD Burnley 0 0 0
1 19 2016-17 Ashley Young DEF Manchester United 0 0 0
2 20 2016-17 Bamidele Alli MID West Ham United 0 0 6
3 21 2016-17 Benjamin Chilwell DEF Burnley 0 0 0
4 22 2016-17 Ben Davies DEF Manchester United 0 0 0
5 23 2016-17 Ben Foster GK Tottenham Hotspurs 0 3 32
6 24 2016-17 Ben Gibson DEF Leicester City 0 0 6
7/ 25 2016-17 Ben Mee DEF Burnley 0 0 15
8 26 2016-17 Branislav Ivanovic DEF Chelsea 0 0 15
9 27 2016-17 Callum Wilson FWD Bournemouth 0 0 -1
0 28 2016-17 Calum Chambers NFF Middleshrough 0 0 26

fig 7 Team names added in Excel.

The season’s name in the FPL dataset were mentioned as 2016-17, 2017 —18
which was changed to 2016, 2017 respectively to increase the readability and to
ease of use the code snippet is shown in figure 8.

In [421]: #Changes made to the season to increase readability and to make use case easier
import pandas as pd

Sample DataFrame
sample = {'season': ['2016-17', '2017-18', '2018-19', '2019-20', '2020-21']}
df = pd.DataFrame(data)

Extract the year from the 'season' column
data['season'] = data['season_x'].str.split('-').str[0]

Display the DataFrame

data = data.drop(['season x'],axis = 1)
Aaka

fig 8 Transforming the season column to increase readability and use case.

2.2 Data Training and Feature Selection

After doing the introductory exploratory data analysis (EDA), the dataset
was split into training and testing dataset, where the season from 2016 to 2020
was for training the dataset and season 2021 as testing dataset as seen in figure 9.

In [447]: train_data = data[data.season != '2021']
test_data = data[data.season == '2021'"]

fig 9 Training and testing dataset

Before training the models, a feature importance technique was applied called
Permutation feature importance, which gives the important features for building
our models. The snippet of the code and the graph can be seen in the figure 10.

In [436]: from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt

Initialize and fit a Random Forest model
forest_model = RandomForestClassifier(n_estimators=100, random state=42)
forest_model.fit(X train, y train)

Get feature importances
feature_importances = forest_model.feature importances_

Sort features by importance
sorted_indices = feature_ importances.argsort()[::-1]

Plot feature importances

plt.figure(figsize=(10, 6))

plt.bar(range(X_train.shape[1l]), feature_importances[sorted_indices])
plt.xticks(range(X_train.shape[l]), X_train.columns[sorted indices], rotation=90)
plt.title("Feature Importance")

plt.show()

Feature Importance

012 4

0.10 4

0.08

0.06 4

0.04 4

0.02 4

0.00 -

value
GW
threat
saves

fixture

assists
season

"]
Y 8
e =
o 2
5 c
€ E

aeativity
ict_index

was_home

dean_sheets
opponent_team
team_h_score
goals_scored
penalties_saved

fig 10 Permutation feature importance

Based on the result of feature importance, the important features were included
and rest of the features were removed before training of the model.

3. Modeling

Both the experiment involves building three models: Linear Regression, Random
Forest and XGBoost. At first snippets of first experiment model building can be
seen then after merging the xG and xA stats second experiment snippets are
shown below:

Linear Regression (First Experiment)

After selecting the features based on feature importance, the models
were build based only on these features for both the experiments in all
the three models.

: from sklearn.linear model import LinearRegression

Initialize the Linear Regression model
LR_model = LinearRegression()

Select relevant features

features = ['minutes', 'goals_scored',6 'assists', 'clean_sheets', 'GW', 'was_home', 'value', 'threat', 'team h score'
, 'saves','penalties_saved', 'opponent_team','influence','ict_index', 'fixture', 'creativity', 'season']

X_trainLR = train_data[features] # Features for training

y_trainLR = train_data['total_points'] # Target variable for training
X_testLR = test_data[features] # Features for testing
y_testLR = test_data['total_points'] # Target variable for testing

Train the benchmark model
LR model.fit(X_trainLR, y_trainLR)

Predict using the benchmark model
LR_prediction = LR_model.predict(X_testLR)

Calculate Mean Squared Error for the benchmark model
LR mse = mean_squared_error(y_testLR, LR_prediction)

Calculate Root Mean Squared Error (RMSE)

LR_rmse = np.sqrt(LR_mse)

#R square value for Linear Regression

from sklearn.metrics import mean_squared_error, r2_score
r2LR = r2_score(y_testLR, LR prediction)

Calculate Mean Absolute Error

maeLR = mean_absolute_error(y_testLR, LR_prediction)
print(f"Mean Absolute Error:", maeLR)

print("Linear Regression Mean Squared Error:", LR _mse)
print("Linear Regression Root Mean Squared Error:", LR_rmse)
print("Linear Regression R-Square value:", r2LR)

fig 11 Linear Regression (Exp 1)

Random Forest (First Experiment)

from sklearn.linear model import LinearRegression

Initialize the Linear Regression model
LR_model = LinearRegression()

Select relevant features

features = ['minutes', 'goals scored', 'assists', 'clean_sheets','GW', 'was_home','value','threat','team h score
, 'saves','penalties_saved', 'opponent_team','influence','ict index','fixture','creativity','season']

X_trainIR = train_data[features] # Features for training

y_trainIR = train_data['total points'] # Target variable for training

X _testIR = test_data[features] # Features for testing

y_testLR = test_data['total points'] # Target variable for testing

Train the benchmark model
LR model.fit(X_trainLR, y_trainIR)

Predict using the benchmark model
LR _prediction = LR_model.predict(X_testLR)

Calculate Mean Squared Error for the benchmark model
LR mse = mean_squared error(y_testLR, LR prediction)

Calculate Root Mean Squared Error (RMSE)

LR_rmse = np.sqrt(LR_mse)

#R square value for Linear Regression

from sklearn.metrics import mean_squared error, r2_score
r2IR = r2_score(y_testLR, LR prediction)

Calculate Mean Absolute Error

maeLR = mean_absolute_error(y_testLR, LR prediction)
print(f"Mean Absolute Error:", maeLR)

print("Linear Regression Mean Squared Error:", LR_mse)
print("Linear Regression Root Mean Squared Error:", LR_rmse)
print("Linear Regression R-Square value:", r2LR)

fig 12 Random Forest (Exp 1)

XGBoost (First Experiment)

In [465]:

XGBoost

import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor

Select relevant features

features = ['minutes', 'goals_scored', 'assists', 'clean_sheets','GW', 'value','threat', 'team h_score'
'saves', 'penalties_saved', 'opponent_team', 'influence', 'ict_index','fixture', 'creativity']
X_train_XG = train_data[features] # Features for training

y_train_XG = train_data['total points'] # Target variable for training

X_test_XG = test_data[features] # Features for testing

y_test_XG = test_data['total points'] # Target variable for testing

Convert categorical 'season' column to numerical using one-hot encoding

X = pd.get_dummies(X, columns=['season'], drop first=True)

X = pd.get_dummies(X, columns=['was_home'], drop first=True)

Create an XGBoost model
model = XGBRegressor(n_estimators=100, learning_rate=0.1, max depth=3, objective='reg:squarederror', random state=42)
You can adjust parameters as needed

Train the model on the training data
model.fit(X_train_XG, y_train_XG)

Predict on the test data
y_predXG = model.predict(X_test_XG)

fig 13 XGBoost (Exp 1)

Linear Regression (Second Experiment)

In [156]: from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
Initialize the Linear Regression model
LR_model = LinearRegression()

Select relevant features

features = ['minutes', 'goals_scored', 'assists', 'clean_sheets',6 'GW','was_home', 'value', 'threat','team h_score'
, 'saves','penalties_saved', 'opponent_team', 'influence','ict_index','fixture','creativity', 'season’,
'xG']

X trainLR = train_data[features] # Features for training

y_trainLR = train data['total_points'] # Target variable for training

X_testLR = test_data[features] # Features for testing

y_testLR = test_data['total_points'] # Target variable for testing

Train the benchmark model
LR _model.fit(X_trainLR, y_trainLR)

Predict using the benchmark model
LR _prediction = LR_model.predict(X_testLR)

Calculate Mean Squared Error for the benchmark model
LR_mse = mean_squared_error(y_testLR, LR _prediction)

Calculate Root Mean Squared Error (RMSE)

LR _rmse = np.sqrt(LR_mse)

#R square value for Linear Regression

from sklearn.metrics import mean_squared_error, r2_score
r2LR = r2_score(y_testLR, LR prediction)

Calculate Mean Absolute Error

maeLR = mean_absolute_error(y_testLR, LR_prediction)
print(f"Mean Absolute Error:", maeLR)

print("Linear Regression Mean Squared Error:", LR_mse)
print("Linear Regression Root Mean Squared Error:", LR _rmse)
print("Linear Regression R-Square value:", r2LR)

fig 14 Linear Regression (Exp 2)

xA'

’

Random Forest (Second Experiment)

import pandas as pd
from sklearn.ensemble import RandomForestRegressor # For regression tasks

Select relevant features

features = ['minutes', 'goals_scored', 'assists', 'clean_sheets',6 'GW', 'was_home','value','threat','team h score'
, 'saves','penalties_saved', 'opponent_team', 'influence','ict_index','fixture', 'creativity', 'season’,
'xG', 'xA']

X_train_RF = train_data[features] # Features for training

y_train_RF = train_data['total_points'] # Target variable for training

X _test_RF = test_data[features] # Features for testing

y_test_RF = test_data['total points'] # Target variable for testing

Create a new RandomForest model
model = RandomForestRegressor(n_estimators=100, random state=42) # You can adjust parameters as needed

Train the model on the training data
model.fit(X train_RF, y_ train_RF)

Predict on the test data
y_predRF = model.predict(X_test_ RF)

fig 15 Random Forest (Exp 2)

XGBoost (Second Experiment)

In [159]: import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor

Select relevant features

features = ['minutes’', 'goals_scored', 'assists', 'clean_sheets',6'GW','value','threat','team h_ score'
, 'saves','penalties_saved', 'opponent_team','influence','ict_index','fixture', 'creativity', 'xG' , 'xA']
X_train_XG = train_data[features] # Features for training
y_train_XG = train_data['total_points'] # Target variable for training
X_test_XG = test_data[features] # Features for testing
y_test_XG = test_data['total_points'] # Target variable for testing

Convert categorical 'season' column to numerical using one-hot encoding
X = pd.get_dummies (X, columns=['season'], drop first=True)

X = pd.get_dummies (X, columns=['was _home'], drop first=True)
Create an XGBoost model
model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, objective='reg:squarederror', random state=42)

You can adjust parameters as needed

Train the model on the training data
model.fit(X_ train_XG, y_train_XG)

Predict on the test data
y_predXG = model.predict(X_test_XG)

fig 16 Random Forest (Exp 2)

After building the model the best model was selected for prediction of
points, which was Random Forest of first experiment. The below
mentioned code snippet (figure 17) was used to show the best 11
players based on the predicted points. The user will be asked to enter
the game week and the name of the English Premier League club for
which they required the best performing players.

Prompt the user to input the football season
selected GW = int(input("Enter the Game Week (between 1-38): "))

Filter the DataFrame for the selected season (assuming you have a DataFrame named data_ test)
selected_season_df = data_test[data_test['GW'] == selected_GW]

Prompt the user to input the team name
selected_team = input("Enter the Team Name: ")

Filter the DataFrame further for the selected team
selected season_df = selected_season_df[selected_season df['team'] == selected team]

Sort the DataFrame by predicted total_ points in descending order
selected_season_df = selected_season_df.sort_values(by='predictions', ascending=False)

Initialize an empty dictionary to store selected players and their predicted points
selected players = {}

Loop through the sorted DataFrame to select unique players
for index, row in selected_season_df.iterrows():
player name = row['name']
predicted_points = row['predictions']
gw = selected GW
if player name not in selected_players:
selected players[player name] = {}
selected_players[player name][gw] = predicted_points
if len(selected_players) == 11: # Stop when 11 unique players are selected
break

Print the selected players along with their predicted points
print("Top 11 unique players from", selected team, "with maximum predicted points for Game Week
for player, gw_points in selected players.items():
print(player)
for gw, points in gw_points.items():
print("- Predicted Points:", points, "- GW:", gw)

Enter the Game Week (between 1-38): 25
Enter the Team Name: Man City

Top 11 unique players from Man City with maximum predicted points for Game Week 25
Raheem Sterling

- Predicted Points: 18.75 - GW: 25
Ederson Santana de Moraes

- Predicted Points: 8.07 - GW: 25

Phil Foden

- Predicted Points: 8.01 - GW: 25

Kyle Walker

- Predicted Points: 6.89 - GW: 25
Rdben Santos Gato Alves Dias

- Predicted Points: 6.64 - GW: 25
Nathan Aké

- Predicted Points: 5.69 - GW: 25
Fernando Luiz Rosa

- Predicted Points: 4.04 - GW: 25
Ilkay Gilindogan

- Predicted Points: 3.62 - GW: 25
Oleksandr Zinchenko

- Predicted Points: 3.34 - GW: 25
Bernardo Mota Veiga de Carvalho e Silva
- Predicted Points: 2.85 - GW: 25
Riwvad Mahyran

fig 17 code for best players in a team for a particular game week

