~

\" National
College
Ireland

Sentiment Analysis of Hindi Song Lyrics
using a BiLSTM Model with BERT
Embeddings Configuration Manual

MSc Research Project
Data Analytics

Jay Milind Kulkarni
Student 1D: x21173176

School of Computing
National College of Ireland

Supervisor: Mr. Abdul Shahid

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Jay Milind Kulkarni
Student ID: x21173176
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Mr. Abdul Shahid
Submission Due Date: 14/08/2023
Project Title: Sentiment Analysis of Hindi Song Lyrics using a BiLSTM
Model with BERT Embeddings Configuration Manual
Word Count: 877
Page Count: [T]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Jay Milind Kulkarni

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Sentiment Analysis of Hindi Song Lyrics using a
BiLSTM Model with BERT Embeddings

Configuration Manual

Jay Milind Kulkarni
x21173176

1 Introduction

This configuration manual is a guide for the research implementation of “Sentiment Ana-
lysis of Hindi Song Lyrics using a BiILSTM Model with BERT Embeddings”. The detailed
steps for the procedures followed for System and environment setup, Data loading, Data
Process, and Modeling are discussed. Also, code snippets are appended as per code file
sequences. There are a total of four Python files; the first one is “EDA.ipynb” which
contains code logic for Explanatory Data Analysis, and the remaining three files are for
each model and the file names are after each model respectively.

2 System Configuration

Hardware and Software requirements for conducting the research are specified in this
section

2.1 Hardware Specifications

e Operating System: Windows 11
e HP Envy

e RAM: 16 GB

e 256 GB SSD

2.2 Software Specifications

e Python Version 3.10.12
e Google Colab

e Overleaf

Python was chosen as the programming language for implementing this research pro-
ject. All the processes such as Data loading, Data Cleaning, Exploratory Data Analysis,
Model Building, and evaluation were implemented using Python.

1

3 Data Collection

The dataset was downloaded from Kaggle and it’s called “Hindi Songs Lyrics With
Artists” [[] Below Figure [1] is a snapshot of the website.

= Q, search
Create ~
‘rﬁ ARJUN RAMOJI - UPDATED A YEAR AGO - 1 New Notebook
® Home
@ compenon Hindi Songs Lyrics With Artist
Inal ooONgs LYyrics I rtists
M Datasets |
& Models
<> Code
Data Card Code (0) Discussion (0)
X Discussions
© Leam About Dataset
v More

This dataset contains Hindi lyrics of various songs with their artists' names and music types i.e. sad,
romantic, party.

Figure 1: Kaggle Website Dataset Snapshot

4 Research Project Code

There are totally four Python files that were created in this project, the first one is named
EDA after Exploratory Data Analysis, and the other files are named after each model.

5

1.

EDA. ipynb: This file consists of code for data pre-processing and EDA visualiza-
tions.

. BERT-BilSTM Model With Stopwords.ipynb: This is the first model where the

stopword removal step was skipped to analyze the impact of stopwords on the
model.

BERT-BiISTM Model Without Stopwords.ipynb: In this code stopword removal
along with parameter changes were introduced.

BERT-BilSTM Model Without Stopwords and K-Fold Cross Validation.ipynb: This
is the final file which is the last model which performed better than the other two
models.

Python packages and Libraries Used

Following is the list of Python libraries used for this project:

"https://www.kaggle.com/datasets/arjunramoji/hindi-songs-1yrics-with-artists

https://www.kaggle.com/datasets/arjunramoji/hindi-songs-lyrics-with-artists

10.

6

. Pandas: Library used for data manipulation and analysis of tabular data.

. Collections: For this project counter package is used from this library for counting

elements.

. Wordcloud: Used for creating a word cloud of Hindi text data.

Matplotlib: This library is used for creating visualizations.

. Advertools: Hindi stopwords lists were extracted from the stopwords package of

this library.
Seaborn: Used for visualizations
Numpy: Library used for numerical computation of arrays or matrices.

Sklearn: This is an important library that is used for data processing, model selec-
tion, and evaluation.

Torch: A machine learning framework that has tensors and dynamic computational
resources.

Transformers: Library for BERT model for Natural Language processing.

Steps for Code Understanding and Execution

In this section steps for code from each python file are discussed.

6.1

1.
2.

EDA Code File
First step is to install advertools library using the command “pip install advertools”

Next import libraries such as pandas, collections, word cloud, matplotlib, ad-
vertools, and seaborn.

Google colab is used, so the dataset is stored in the drive and then this drive is
mounted and data is accessed.

© from google.colab import drive
drive.mount('/content/drive')

[»> Mounted at /content/drive

[1 df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/songs.csv')
df

index Song name type artist lyrics

0 1 Hict il SR IR romantic fFARFAR id i R W die 59 31 WR SRE §H. .
1 2 HaH3 qaHI party EIC8US 3{aH3 dahg Ik a1 80, 90 TX 100 I F...
2 3 ifeat sad LLG] 3 2 N sifgat ot o i sl e ..
3 4 ST ST AT romantic feidT A, [{1E STS, G HEd SRS Sft H o, oR Sl oft F Sy, g o .
4 5 SR <M € romantic ST g R Tl 81 Al R E 8 erR Rrerft gl
788 789 Rt party G fdeR B AT I TR g ot g sl e .
789 790 TR G romantic T HARR, 3 AR 31 ofa B Wit fearel He U U g Het o ...
790 791 TSI A FAGH romantic STefid R Tist ¥ ot gr 71 7fid SR SR A gl ..
AR BT marhe sty mm R TR IR e wRed sy W

Figure 2: Code for Mounting Drive and Accessing Dataset

4.

In the next step function to remove stopwords from lyrics data is written by using
a Hindi stopword list from advertools library.

[1 # Geting Hindi stopwords from advertools
hindi_text_stopwords = set(adv.stopwords['hindi’])

[1 # Function to remove hindi stopwords
def remove_hindi_stopwords (text):
words = text.split()
filtered_hindi_words = [word for word in words if word not in hindi_text_stopwords]
return ' '.join(filtered_hindi_words)

Final_df['lyrics'] = Final_df['lyrics'].apply(remove_hindi_stopwords)

[] sns.countplot(x='type', data=Final_df)
plt.title('Count of Songs in Each Type')
plt.show()

Figure 3: Stopwords Removal and Plotting Count

Once the data cleaning is done, now plots of class count and word counts are created
and Figure (3] is the snapshot of code for this.

The final step in the EDA file is to create a word cloud for the most common words
from the lyrics of each class.

© # Preprocessing hindi text and logic to find most common words for each class
grouped_text = Final_df_count.groupby('type')['lyrics'].apply(lambda x: ' '.join(x))
hindi_word_frequencies = {}
for class_name, lyrics in grouped_text.items()
words = lyrics.split()
most_common = [word for word, count in Counter(words).most_common(300)]
hindi_word_frequencies[class_name] = most_common

© # Generating word clouds for each class
for class_name, common_words in hindi_word_frequencies.items():

words_text = ' '.join(common_words)
wordcloud = WordCloud(
width=800,

height=800,
background_color="white",
font_path="/content/drive/MyDrive/Colab Notebooks/gargi.ttf', # Replace with the path to a Hindi font
contour_color="steelblue’
).generate (words_text)

plt.figure(figsize=(8, 8))
plt.imshow(wordcloud, interpolation='bilinear')
plt.title(f"Word Cloud for {class_name} Lyrics")
plt.axis('off')

plt.shou()

Figure 4: WordCloud with Most Common Words

6.2 BERT-BilSTM Model With Stopwords File

1.

Initial Stages until loading the data is same as EDA file and install “transformers”
library.

Next is to skip the step of removing stopwords logic and prepare the data for
creating BERT Embeddings.

Write a function for creating BERT embeddings.

Once the data is converted into word embeddings the predictor column “type” is
also converted into label using label encoders into values 0,1 and 2.

Preparing the data - BERT embeddings
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
bert_model = BertModel.from_pretrained('bert-base-multilingual-uncased')

Downloading (...)solve/main/vocab.txt: 100% | 572K/872k [00:00<00:00, 10.5MB/s]
Downloading (....)okenizer_config.json: 100% [R 25.0/28.0 [00:00<00:00, 1.06kB/s]
Downloading (... ive/main/config.json: 100% [N 625/625 [00:00<00:00, 27.0kB/s]
Downloading model.safetensors: 100% [672M/672M [00:04<00:00, 214MB/s]

def get_bert_embeddings(lyrics):
inputs = tokenizer(lyrics, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():

outputs = bert_model(**inputs)

return outputs.last_hidden_state.mean(dim=1)

Final_df['bert_embeddings'] = Final_df['lyrics'].apply(get_bert_embeddings)

Figure 5: Creating BERT Embeddings

[1 # Preparing the labels by Encoding 'type' column
label_encoder = LabelEncoder()
Final_df['label'] = label_encoder.fit_transform(Final_df['type'])

[1 Final_df

2
3

788
789
790
791

792

lyrics type bert_embeddings label

e A 2eR W HiG S 31 WR SRUIU §HG... romantic [[tensor(-0.2260), tensor(-0.4654), tensor(0.3... 1
3HADHS §FHS a9l 80, 90 TR 100 I ... party [[tensor(-0.2822), tensor(-0.5775), tensor(0.2... 0
3t oy Yy et 3t st fa s wifgar .. sad [[tensor(-0.2493), tensor(-0.3941), tensor(0.3... 2
SRS S H MY SR S S H S1Q. GH 3197 ... romantic [[tensor(-0.1516), tensor(-0.3722), tensor(0.2... 1
3R el Gt R W 81 eAR Rt §1.. romantic [[tensor(-0.2647), tensor(-0.3406), tensor(0.1.... 1

fifex &1 HEAT 39 W g ot gl | fonw party [[tensor(-0.2065), tensor(-0.2011), tensor(0.2.... 0
sn% 39 BT A %aﬁﬁazm m@a | en% ... romantic [[tensor(-0.1495), tensor(-0.3169), tensor(0.2... 1
Tiol 4@ o g o1 7fid SFR $R AT GI6T ... romantic [[tensor(-0.0878), tensor(-0.2994), tensor(0.2... 1

Iell Weell.. Tal ¥ Ul I¢ geel. I 9. party [[tensor(-0.2320), tensor(-0.4417), tensor(0.2... 0
.. 31.. BT 61 Gl.. GIIaTal Bl WeR T o... sad [[tensor(-0.3214), tensor(-0.4544), tensor(0.3... 2

Figure 6: Creating Label encoders

Converting lists to PyTorch tensors and create a DataLoader
train_data = TensorDataset(torch.stack(X_train), torch.tensor(y_train))
train_loader = Dataloader(train_data, batch_size=18, shuffle=True)

Build the BERT embeddings-BilLSTM model
class BERTBiLSTMModel(nn.Module):
def __init__(self, lstm_hidden_size, num_classes):

super(BERTBiLSTMModel, self).__init_ ()
self.bert_embeddings_dim = 768
self.lstm_hidden_size = lstm_hidden_size
self.num_classes = num_classes

self.lstm = nn.LSTM(self.bert_embeddings_dim, lstm_hidden_size, batch_first=True, bidirectional=True)
self.linear = nn.Linear(2 * lstm_hidden_size, num_classes)

def forward(self,

x):
1stm_out, _ = self.lstm(x)
1stm_out = lstm_out[:, -1, :]
logits = self.linear(lstm_out)
return logits

Figure 7: Buliding a BERT-BiLSTM Model

5. Next step is to divide the data into train and test data and convert to Pytorch
tensors and create a data loader and build a BERT-BIiLSTM model.

6. Finally, the built model is trained without introducing weights to classes.

Training the model on training data

[1

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
[1 model = BERTBiLSTMModel(lstm_hidden_size=128, num_classes=3).to(device)
[] criterion = nn.CrossEntropylLoss()

[1 optimizer = torch.optim.Adam(model.parameters(), 1lr=0.001)

[1 epochs = 50
for epoch in range(epochs):

model.train()

total_loss = @

for inputs, labels in train_loader
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logits = model(inputs)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()

print(f'Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader):.4f}')

Figure 8: BERT-BiLSTM Model Training

Epoch 1/58, Loss: 1.0082
Epoch 2/5@, Loss: ©.8296
Epoch 3/50, Loss: ©.7283
Epoch 4/58, Loss: ©.7004
Epoch 5/58, Loss: ©.6369
Epoch 6/50, Loss: ©.6487
Epoch 7/58, Loss: ©.5924
Epoch 8/50, Loss: ©.559@
Epoch 9/5@0, Loss: ©.5336
Epoch 18/5@, Loss: ©.5432
Epoch 11/58, Loss: ©.5716
Epoch 12/50, Loss: ©.5092
Epoch 13/5@, Loss: ©.4840
Epoch 14/5@, Loss: ©.5047
Epoch 15/568, Loss: ©.449¢
Epoch 16/5@, Loss: ©.4688
Epoch 17/5@, Loss: ©.4601
Epoch 18/5@, Loss: ©.3906
Epoch 19/58, Loss: ©.3756
Epoch 20/5@, Loss: ©.3594
Epoch 21/5@, Loss: ©.3399
Epoch 22/5@, Loss: ©.3425
Epoch 23/5@0, Loss: ©.3916
Epoch 24/5@, Loss: ©.2973
Epoch 25/5@, Loss: ©.2536
Epoch 26/58, Loss: ©.2625
Epoch 27/5@, Loss: ©.3524
Epoch 28/58. Loss: 8.2118

Figure 9: BERT-BILSTM Model Training

7. Once the model is built and trained, the next and final step is to evaluate the model.
Evaluation parameters are Accuracy, Precision, Recall, and AUC.

[1

Evaluating the model on the testing data

model.eval()

with torch.no_grad():
X_test_tensor = torch.stack(X_test).to(device)
y_test_tensor = torch.tensor(y_test).to(device)
y_pred_probs = torch.softmax(model(X_test_tensor), dim=1)
y_pred = torch.argmax(y_pred_probs, dim=1).cpu().numpy()

accuracy = accuracy_score(y_test, y_pred)

print(f'Accuracy: {accuracy:.4f}")

Accuracy: 0.5597
auc = roc_auc_score(y_test, y_pred_probs.cpu().numpy(), multi_class="ovr"')

print(f'AUC: {auc:.4f}')

AUC: ©.7768

conf_matrix = confusion_matrix(y_test, y_pred)

Figure 10: BERT-BILSTM Model Evaluation

conf_matrix = confusion_matrix(y_test, y_pred)

print(‘Confusion Matrix: ')
print(conf_matrix)
Confusion Matrix:

[[21 3 3]

[14 44 33]
[215 24]]

precision = precision_score(y_test, y_pred, average=None)
recall = recall_score(y_test, y_pred, average=None)

def calculate_individual_accuracy(confusion_matrix):
num_classes = len(confusion_matrix)
individual_accuracy = []
for i in range(num_classes):
individual_accuracy.append(confusion_matrix[i, i] / confusion_matrix[i, :].sum())
return individual_accuracy

Figure 11: BERT-BILSTM Model Evaluation

def calculate_individual_accuracy(confusion_matrix):
num_classes = len(confusion_matrix)
individual_accuracy = []
for i in range(num_classes):
individual_accuracy.append(confusion_matrix[i, 1] / confusion_matrix[i, :].sum())
return individual_accuracy

individual_accuracy = calculate_individual_accuracy(conf_matrix)

precision

array([0.56756757, 0.70967742, .4 1

recall

array([.77777778, ©.48351648, ©.58536585])

individual_accuracy

[0.7777777777777778, ©.4835164835164835, ©.5853658536585366]

Figure 12: BERT-BIiLSTM Model Evaluation

6.3 BERT-BIiISTM Model Without Stopwords

1. Initial steps are the combination of the EDA file and BERT-BiISTM Model With
Stopwords file i.e., data loading, stopwords removal, creating BERT embeddings
and tensors.

2. During the model-building stage few modifications are done for improving model
performances.

Build the BERT embeddings-BilLSTM model
class BERTBiLSTMModel(nn.Module):
def _init_ (self, lstm_hidden_size, num_classes, dropout_rate=e.2):
super(BERTBiLSTMModel, self)._ init_ (
self.bert_embeddings_dim = 768
self.lstm_hidden_size = lstm_hidden_size
self.num_classes = num_classes

self.lstm = nn.LSTM(self.bert_embeddings_dim, lstm_hidden_size, batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(2 * lstm_hidden_size, num_classes)

def forward(self, x):
1stm_out, _ = self.lstm(x)
1stm_out = lstm out[:, -1, :]
1stm_out = self.dropout(1lstm_out)
logits = self.linear(lstm_out)
return logits

Figure 13: BERT-BIiLSTM Model Buliding

3. Now the model is trained and class weights, learning rate, and weight decay are
introduced.

[1 # Training the model on training data
device = torch.device('cuda’ if torch.cuda.is_available() else 'cpu')

model = BERTBiLSTMModel(lstm_hidden_size=266, num_classes=3).to(device)

[] class_weights = torch.tensor([1.9, 1, 2.6]).to(device)

[1 criterion = nn.CrossEntropylLoss(weight=class_weights)

[] optimizer = torch.optim.Adam(model.parameters(), 1r=0.6001,weight_decay=0.601)
[1 scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=6.1)

Figure 14: BERT-BIiLSTM Model Training

epochs = 88
for epoch in range(epochs):
model.train()
total_loss = ©
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logits = model(inputs)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()

print(f'Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader):.4f}')

Figure 15: BERT-BIiLSTM Model Training

Evaluating the model on the testing data

model.eval()

with torch.no_grad():
X_test_tensor = torch.stack(X_test).to(device)
y_test_tensor = torch.tensor(y_test).to(device)
y_pred_probs = torch.softmax(model(X_test_tensor), dim=1)
y_pred = torch.argmax(y_pred_probs, dim=1).cpu().numpy()

accuracy = accuracy_score(y_test, y_pred)

print(f'Accuracy: {accuracy:.4f}')

Accuracy: ©.6639
loss = criterion(model(X_test_tensor), y_test_tensor).item()

print(f'Loss: {loss:.4f}')

Loss: 1.0644

auc = roc_auc_score(y_test, y_pred_probs.cpu().numpy(), multi_class='ovr')

Figure 16: BERT-BILSTM Model Evaluation

1 print(f'Auc: {auc:.4f}')

AUC: ©.7658
] conf_matrix = confusion_matrix(y_test, y_pred)
] print('Confusion Matrix:")

print(conf_matrix)

Confusion Matrix:
[[36 12 2]
[7 99 28]
[427 23]]

] precision = precision_score(y_test, y_pred, average=None)

] recall = recall_score(y_test, y_pred, average=None)

Figure 17: BERT-BILSTM Model Evaluation

def calculate_individual_accuracy(confusion_matrix):
num_classes = len(confusion_matrix)
individual_accuracy = []
for i in range(num_classes):
individual_accuracy.append(confusion_matrix[i, i] / confusion_matrix[i, :].sum())
return individual_accuracy

individual_accuracy = calculate_individual_accuracy(conf_matrix)

precision

array([0.76595745, ©.7173913 , ©.43396226])

recall

array([e.72 , ©.73880597, ©.42592593])

individual_accuracy

[e.72, ©.7388059701492538, ©.42592592592592593]

disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)

Figure 18: BERT-BIiLSTM Model Evaluation

6.4 BERT-BIiISTM Model Without Stopwords and K-Fold Cross
Validation

1. First few steps until BERT embeddings are the same as before for this file as well.

2. This is the last model where along with the class weights, k-fold cross-validation is
also introduced.

1

1

Build the BERT embeddings-BilLSTM model
class BERTBiLSTMModel(nn.Module):
def __init__(self, lstm_hidden_size, num_classes, dropout_rate=e.2):

super (BERTBiLSTMModel, self).__init_ ()
self.bert_embeddings_dim = 768
self.lstm_hidden_size = lstm_hidden_size
self.num_classes = num_classes

self.lstm = nn.LSTM(self.bert_embeddings_dim, lstm_hidden_size, batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(dropout_rate)
self.linear = nn.Linear(2 * lstm_hidden_size, num_classes)

def forward(self, x):

1stm_out, _ = self.lstm(x)
1stm_out = lstm_out[:, -1, :]
1stm_out = self.dropout(1lstm_out)
logits = self.linear(lstm_out)
return logits

X = Final_df['bert_embeddings'].tolist()
X = torch.stack(X)
y = Final_df['label’].values

num_classes = len(np.unique(y))

Figure 19: BERT-BIiLSTM Model Building

def train_model(X_train, y_train, X_val, y_val, lstm_hidden_size, num_classes, num_epochs=49):
model = BERTBiLSTMModel(lstm_hidden_size=1stm_hidden_size, num_classes=num_classes).to(device)
class_weights = torch.tensor([1.9, 1.8, 15]).to(device)
criterion = nn.CrossEntropylLoss(weight=class_weights)
#optimizer = torch.optim.Adam(model.parameters(), 1r=0.0001, weight_decay=0.001)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
optimizer = torch.optim.Adam(model.parameters(), lr=e.001)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)

train_data = TensorDataset(X_train, torch.tensor(y_train))
train_loader = Dataloader(train_data, batch_size=4, shuffle=True)

for epoch in range(num_epochs):

model.train()
total_loss = @
for inputs, labels in train_loader
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logits = model(inputs)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()

print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(train_loader):.4f}')

return model

Figure 20: BERT-BIiLSTM Model Training

10

) # setting k value for k-fold cross-validation
k =10
skf = StratifiedkFold(n_splits=k, shuffle=True, random_state=1111)

Initialize arrays to store evaluation metrics
all_roc_auc = []

all_precision = []

all_recall = []

all f1 =[]

all_accuracy = []

all_cm = np.zeros((num_classes, num_classes))

Perform k-fold cross-validation
for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
print(f"Fold {fold + 1}/{k}")

X_train, X_val = X[train_idx], X[val_idx]
y_train, y_val = y[train_idx], y[val_idx]

model = train_model(X_train, y_train, X_val, y_val, lstm_hidden_size=260, num_cl _classes, num_ep)

Evaluate on validation data
model.eval()
with torch.no_grad():
X_val_tensor = X_val.to(device)
y_val_tensor = torch.tensor(y_val).to(device)

Figure 21: BERT-BiLSTM Model Evaluation

y_val_pred_probs = torch.softmax(model(X_val_tensor), dim=1)
y_val_pred = torch.argmax(y_val_pred_probs, dim=1).cpu().numpy()

Initialize arrays to store ROC AUC scores for each class
roc_auc_scores = []

Calculate ROC AUC for each class

for class_idx in range(num_classes):
roc_auc = roc_auc_score(y_val == class_idx, y_val_pred_probs[:, class_idx])
roc_auc_scores.append(roc_auc)

precision = precision_score(y_val, y_val_pred, average=None)
recall = recall_score(y_val, y_val_pred, average=None)

fl = fl_score(y_val, y_val_pred, average=None)

accuracy = accuracy_score(y_val, y_val_pred)

cm = confusion_matrix(y_val, y_val_pred)

all_roc_auc.append(roc_auc_scores)
all_precision.append(precision)
all_recall.append(recall)
all_f1.append(f1)
all_accuracy.append(accuracy)
all_cm += cm

oo e o o o e o

Figure 22: BERT-BILSTM Model Evaluation

Calculate and print average metrics across folds
avg_roc_auc = np.mean(all_roc_auc, axis=e)
avg_precision = np.mean(all_precision, axis=e)
avg_recall = np.mean(all_recall, axis=e)

avg_fl = np.mean(all_f1, axis=e)

avg_accuracy = np.mean(all_accuracy)

avg_em = all_cm / k

Print average metrics
print("Average Metrics Across Folds:")
for i in range(num_classes):
print(f"Class {i} - Average AUC: {avg_roc_auc[i]:.2f}, Average Precision: {avg_precision[i]:.2f}, "
f"Average Recall: {avg_recall[i]:.2f}, Average Fl-score: {avg_fi[i]:.2f}")

print(f"Average Accuracy: {avg_accuracy:.2f}")

print the average confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(avg_cm, annot=True, fmt=".2f
plt.xlabel('Predicted")
plt.ylabel('Actual’)

plt.title('Average Confusion Matrix')
plt.show()

, cmap='Blues’, xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)

Figure 23: BERT-BILSTM Model Evaluation

11

	Introduction
	System Configuration
	Hardware Specifications
	Software Specifications

	Data Collection
	Research Project Code
	Python packages and Libraries Used
	Steps for Code Understanding and Execution
	EDA Code File
	BERT-BilSTM Model With Stopwords File
	BERT-BilSTM Model Without Stopwords
	BERT-BilSTM Model Without Stopwords and K-Fold Cross Validation

