~

National
College
Ireland

Configuration Manual: Enhancing Machine
Learning Performance using Feature
Engineering Techniques for Online Course
Recommendation System

MSc Research Project
Data Analytics

Srivatsav Kattukottal Mani
Student ID: x18145922

School of Computing
National College of Ireland

Supervisor: Dr. Anh Duong Trinh

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Srivatsav Kattukottai Mani
Student ID: x18145922
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Anh Duong Trinh
Submission Due Date: 14/08/2023
Project Title: Configuration Manual: Enhancing Machine Learning Perform-
ance using Feature Engineering Techniques for Online Course
Recommendation System
Word Count: 780
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual: Enhancing Machine Learning
Performance using Feature Engineering Techniques for
Online Course Recommendation System

Srivatsav Kattukottai Mani
x18145922

1 Introduction

This Configuration Manual lists together all prerequisites needed to reproduce the re-
search project "Enhancing Machine Learning Performance using Feature Engineering
Techniques for Online Course Recommendation System”.

This report is organized as follows,

e Environment configuration provided in Section 2.
e Information about data gathering is detailed in Section 3.

Data pre-processing including EDA are included in Section 4.

Data transforming techniques implemented are detailed in Section 5.

Details about ML models that were implemented are provided in Section 6.

Evaluation is explained in Section 7.

2 Environment Specification

Both the Hardware and Software configurations are detailed below.

2.1 Hardware Configuration

Hardware configurations of the system are as below Figure

Hardware Configuration
System Lenovo ThinkPad X390
0s Windows 10 Enterprise - 64-bit 08
Processor Intel{R) Core(TM) i7-8665U CPU @ 1.90GHz
RAM 16.0 GB (15.8 GB usable)
Hard Disk 235GB 5DD
Graphics Card Intel(R} UHD Graphics 620

Figure 1: Hardware configuration

2.2 Software Configuration

Software configurations of the system are as below Figure [2| Anaconda Navigator shown in
Figure [3| can be downloaded and installed from https://www.anaconda.com/download.
Python for windows can be downloaded and installed from https://www.python.org/
downloads/windows/. For visualization, MS Excel is used.

Software Configuration
os Windows 10 Enterprise - 64-bit 05
Anaconda Anaconda Navigator 2.4.2

Jupyter Notebook | Notebook 6.5.4
Python version Python 3.11.3

Figure 2: Software configuration

) ANACONDA NAVIGATOR p—

®

[< on [et <) (e e

@ Environments ° o o ° o o

N Learning % by 3 s

Dataspell Anaconda Notebooks CMD.exe Prompt Jupytertab Notebook Powershell Prompt

&% Community. ot

Run 2 cmd.exe terminal with your current | An exter

an IDE for explor vou
environment From Navigator activated | | and repr
eyt

(nstau) (Launen | Launch

ORACLE

Cloud Infrastructure

Oracle Data Science Service console_shortcut_miniconda
01

Notebooks

(‘instant

AFull Python IDE L L o ® L

drectly rom the
browser g

B

sowershell_shortcut_minicondz PyCharm Professional RStudio
001

Afull-Riedged IDE by JetBrai

Figure 3: Anaconda Navigator

The code can be run in Jupyter notebook. This will open Jupyter notebook in web
browser. The web browser will show the folder structure of the system, move to the folder
where the code file and dataset is located. Open the code file from the folder and to run
the code, go to Kernel menu and click Restart and Run All.

3 Data Collection

The dataset is taken from Kaggle which is a public repository as shown in Figure[d] Url of
the dataset used in this research: https://www.kaggle.com/datasets/khusheekapoor/
udacity-courses-dataset-2021. The dataset has details about online courses available
in Udacity during 2021.

https://www.anaconda.com/download
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.kaggle.com/datasets/khusheekapoor/udacity-courses-dataset-2021
https://www.kaggle.com/datasets/khusheekapoor/udacity-courses-dataset-2021

@) ruskee karoor - uppate 2 vears aco -z New Notebook & Download (20 k&) JR7]

Udacity Courses Dataset 2021

Data collected on Courses available on Udacity

DataCard Code (1) Discussion (1)

About Dataset Usability ©
824
Context License

2021 has seen a boom in the MOOCs due to the Covid-19 Pandemic. With the availability of numerous paid and free resources on the internet, Unknown
it becomes overwhelming for students to learn new skills. Therefore, this dataset can be used to create Recommender Systems and
recommend courses to students based on the Skills and Difficulty Level entered by the student. The Course Link is also provided, which canbe ~ Expected update frequency

offered by the Recommender System for easy access. Not specified

Content Tags

This dataset was scraped off the publicly available information on the Udacity website in September 2021 and manually entered in the case

Education
where the data was improperly scraped. It can be used in Recommender Systems to promote Udacity courses based on the Difficulty Level and
the Skills needed. Online Communities | Text
Acknowledgements Recommender Systems
The dataset was obtained from the publicly available information on the Udacity website. | do not own any information. Websites
i

Figure 4: Udacity dataset form Kaggle

4 Data Exploration

Figure |5 includes a list of every Python library necessary to complete the project.

#installing all Libraries
#¥matplotlib inline

import warnings
warnings.filterwarnings{“ignore™)

import pandas as pd

import numpy as np

import nltk

import string

import re

from nltk.corpus import stopwords
import spacy, gensim

import matplotlib.pyplot as plt

import seaborn as sns

from seaborn import heatmap

from scipy.stats import mode

from numpy.linalg import norm

from sklearn.model_selection import GridSearchCV

from sklearn.preprocessing import LabelEncoder

from sklearn.model selection import train_test_split

from sklearn.metrics import accuracy score, precision score, fl score,recall score
from sklearn.metrics.pairwise import cosine_similarity

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.neighbors import NearestMeighbors, KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.ensemble import AdaBoostClassifier

from tqdm import tqdm

Figure 5: Importing necessary Python Libraries

Figure [6] and [7] represents the block of code to import and read the data information.

udacity = pd.read_csv{'Udacity.csv')

udacity
Name School Difficulty Level Rating Link About
0 Data Engineer School of Data Science Intermediate 46 httpsywww.udacity.com//course/data-engineer-.. Data Engineering is the foundation for the new...
1 Data Scientist School of Data Science Advanced 47 https:/fwww.udacity.com//course/data-scientist... Build effective machine learning models, run d...
2 Data Analyst School of Data Science Intermediate 46 https://www.udacity.com/fcourse/data-analyst-n.. Use Python, SQL, and statistics to uncover ins..
3 C++ School of Autonomous Systems Intermediate 48 https:/fwww.udacity.com//course/c-plus-plus-na... Get hands-on experience by building five real-..
4 Product Manager School of Product Management Beginner 4.7 httpsi//www.udacity.com//course/product-manage.. Envision and execute the development of indust.
258 Front-End Interview Prep Career Advancement Intermediate None hitps://www.udacity.com//course/front-end-inte... Answer front-end technical and behavioral inte..
259 Full-Stack Interview Prep Career Advancement Intermediate None https://www.udacity.com//course/full-stack-int.. Answer common full stack and web security inte...

260 Data Structures 8 Algorithms in Swift Career Advancement Intermediate Mons https://www.udacity.com//course/data-structure... Review and practice the skills technical inter...

261 i0S Interview Prep Career Advancement Intermediate None https://www.udacity.com//course/ios-interview-.. Answer iOS5 and mobile development interview qu...

262 VR Interview Prep Career Advancement Intermediate None httpsy/www.udacity.com//course/ur-interview-p.. Learn how to tackle interview questions for te..

263 rows x 6 columns

Figure 6: Importing Udacity dataset

udacity.info()

<class 'pandas.core.frame.DataFrame’ >
RangeIndex: 263 entries, @ to 262
Data columns (total 6 columns):

Column Mon-Null Count

non-null
non-null
non-null
non-null

Difficulty Level
Rating
Link

5 About
dtypes: object(&)
memory usage: 12.5+ KB

PV TS -

Figure 7: EDA for checking Udacity info

4.1 Data cleaning

Udacity dataset is assigned to variable ‘data’ and Figure 8] and [9 shows the cleaning steps
are performed to renaming the feature column from School to University and removing
null values.

udacity.rename{columns = {'School’:'University'}, inplace = True)
udacity['Course’ J=udacity['Name']+" ‘+udacity['About']
udacity = udacity[['Course', "University']]

udacity
Course University
0 Data Engineer Data Engineering is the foundati... School of Data Science
1 Data Scientist Build effective machine learnin... School of Data Science
2 Data Analyst Use Python, SOL, and statistics t... School of Data Science

3 C++ Get hands-on expenence by building five r.. School of Autonomous Systemns

4 Product Manager Envision and execute the devel.. School of Product Management

258 Front-End Interview Prep Answer front-end tech.. Career Advancement
259 Full-Stack Interview Prep Answer common full s... Career Advancement
260 Data Structures & Algorithms in Swift Review a.. Career Advancement
261 05 Interview Prep Answer 105 and maobile devel... Career Advancement
262 VR Interview Prep Learn how to tackle intervie... Career Advancement

263 rows x 2 columns

Figure 8: Renaming Column School to University

data = udacity

data.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 263 entries, @ to 262

Data columns (total 2 columns):

Column Mon-Null Count Dtype
® Course 255 non-null object
1 University 263 non-null object
dtypes: object(2)

memory usags: 4.2+ KB

data.head()

Course University
0 Data Engineer Data Engineering is the foundati... School of Data Science
1 Data Scientist Build effective machine learnin... School of Data Science
2 Data Analyst Use Python, SOL, and statistics t.. School of Data Science

3 C++ Get hands-on expenence by building five r... School of Autonomous Systems

4 Product Manager Envision and execute the devel.. 5School of Product Management

data.isnull().sum()

Course a
University @
dtype: inte4

data.dropna(inplace=True)

Figure 9: Checking and dropping null values

5 Data Transformation

Figure and are functions to remove stopwords, clear the punctuations and de-
contract the words from the course details.

stop = set(stopwords.words('english')) #set of stopwords
sno = nltk.stem.SnowballStemmer('english') #initialising the snowball stemmer

#5temmer reduce a word to its word stem that affixes to suffixes and prefixes or to the root of word known as Lemma

def cleanpunc({sentence): #function to clean the word of any punctuation or special characters
cleaned = re.sub(r [Z|!|%"]|"[#]",r" " ,sentence)
cleaned = re.sub(r"[.[, [} ([\]/]1",r" ",cleaned)
return cleaned

print(“Stopwords:",stop)

Stopwords: {'to’, 'she®, ‘off’, 'between’', 'so', ‘wntil', “own’, ‘where®, 'the', "mightn't", ‘haven', ‘has', "hasn't", “does’,
‘over', 'we', 'mustn’, "wouldn't", "didn't", ‘his', ‘up', “their’, ‘ain’, 'him', 'isn’, "then', ‘wouldn®, ‘for', 'yourself', ‘'w
‘with', ‘"o, 'just', 'our', "shouldn't", ‘as', ‘he', 'me’, 'there’, 'mightn', "shan't", ‘once', ‘himself', 'ne’, 'too', 'from’,
‘below’, ‘whom', 'should’, "weren't", "isn't", ‘they', ‘which', 't', ‘ve', ‘when', 'ma', 'her', "haven't", 'not’, 'during’, 'in
oth', 'my’, "she's", 'more', 'wasn', 'this', 'yours', 'of', 'some', 'only', 'shan', 'them', 'd', 'few', "won't", 'all', ‘hadn’,
r', “had', "you'd", 'is', ‘'did', ‘weren’', "you're", 'its', 'most’, ‘these’', ‘do’', 'you', ‘under', ‘out', ‘nor', ‘against’', ‘aga

Figure 10: functions to remove stopwords and punctuations

def decontracted(phrase):
This function decontract words Llike it's to it is.

phrase = re.sub({r"n\'t",

my 1

not", phrase)
phrase = re.sub({r"\'re", are", phrase)
my 1 " "

phrase = re.sub({r"\'s", is", phrase)
phrase = re.sub(r"\'d", " would", phrase)
phrase = re.sub{r"\'11", " will", phrase)
phrase = re.sub{r"\'t", " not", phrase)
phrase = re.sub(r"\'ve™, " have", phrase)

my 1 14 L} 1

phrase = re.sub({r"\'m", am"”, phrase)

return phrase

Figure 11: functions to de-contract the words

Figure illustrate the code to clean the course details, each word, de-contracted and
cleaned. Figure [13|shows the course data before and after cleaning.

Here we are cleaning the data using functions define above, removing stopword and reducing words te there root words.

i=a
strl=""
final_string=[]

for sent in tqdm{data.Course.values):
filtered_sentence=[]
sent=cleanpunc(sent)
sent = decontracted(sent)
sent = sent.replace('XXxXxX', " ")
for w in sent.split()
for cleaned_words in cleanpunc(w).split():
if{{cleaned_words.isalpha()) & (len(cleaned_words)>2)):
if(cleaned_words.lower() not in stop):
s=(sno.stem(cleaned_words.lower())).encode(utfad")
filtered_sentence.append(s)
else:
continue
else:
continue

strl = b" ".join(filtered_sentence) #final string of cleaned words
final_string.append(strl)

i+=1

data["CleanCourse”] = final_string
data['CleanCourse']=data['CleanCoursze’].str.decode("utf-8")

100% | INNNENREI| 255/255 [00:00<00:08, 1220.68it/s]

Figure 12: Cleaning the course details

data.tail()

Course University CleanCourse
258 Front-End Interview Prep Answer front-end tech.. Career Advancement interview prep answer technic behavior inteni...

259 Full-Stack Interview Prep Answer common full s.. Career Advancement interview prep answer commen full stack web se..

260 Data Structures & Algorithms in Swift Review a.. Career Advancement data structur algorithm swift review practic s...
261 05 Interview Prep Answer 105 and mobile devel... Career Advancement io interview prep answer ic mobil develop inte..
262 WR Interview Prep Learn how to tackle intervie.. Career Advancement interview prep learn tackl interview guestion ...

Figure 13: Cleaned and Uncleaned Course details

Then, the cleaned course column is assigned to X and University is assigned to Y variables.
Figures [14] shows the code used to label encode the University column and dividing the
data into training and testing set. Here, 80:20 split ratio is used.

A=data["CleanCourse’']
y=data["University’]

le = LabelEncoder()
le.fit_transform(y)

el
Il

=
]

int{data.shape[@] - (data.shape[8]*8.2))

284

X train = X[:n]
y_train = y[:n]
X test = X[n:
y _test = y[n:]

el

X train.shape,X test.shape

I:{Elia-ﬂ-_, :I,. {51_. :I:I

Figure 14: Label Encoding and assigning train test split

The Figure illustrate the code to generate the function sent_to_words to split the
cleaned course data sentences to words on both X_train and X _test splits.

def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations

def lemmatization(texts, allowed_postags=["NOUN', *AD]", 'VERB', 'ADV']): #'NOUN", "ADJI", 'VERB', 'ADV"
texts_out = []
for sent in texts:
doc - nlp(" ".join(sent))
texts_out.append(” ".join([token.lemma_ if token.lemma_ not in ['-PRON-'] else '°
for token in doc if token.pos_ in allowed_postags]))

return texts_out

data_words_train = list(sent_to_words(X_train))
print(data_words_train[:1])

[['data', 'engin’, 'data', 'engin', 'foundat', 'new', 'world', 'big', ‘data’, 'enrol', 'build', ‘'data’, ‘infrastructur’, 'essenti', 'skill’, ‘'advanc', ‘data', 'career']]

data_words_test = list(sent_to_words(X_test))
print (data_words_test[:1])

[['data', 'wrangl', 'mengodb’, 'data', 'scientist', 'spend', 'time', 'clean', 'data’, 'cours', 'learn’', ‘convert', 'manipul’, ‘'messi’, 'data', ‘extract’, 'need']]

Figure 15: Splitting sentences to words using sent_to_words

The Figure[16] illustrate the implementation of the lemmatizer function to lemmatize the

course details on both train and test splits.

nlp = spacy.load("en_core_web_sm", disable=["parser”, "ner"])

data_lemmatized_train = lemmatization(data_words_train, allowed postags=["NOUN", "VERB"]) #select noun and verb

print(data_lemmatized_train[:2])

['datum world datum enrol build datum infrastructur skill advanc datum career’,

data_lemmatized_test = lemmatization(data words_test, allowed_postags=["NOUN", "VERB"]) #select noun and verb

print({data_lemmatized_test[:2])

['datum wrangl mongodb datum scientist spend time datum cour learn extract need’,

The Figure [17], illustrate the code for TFIDF vectorizer of the lemmatized training and
testing data . Vectorizer creates an array for numbers for each word in the course data

Figure 16: Lemmatization

which can be fed into ML models.

vectorizer = TfidfVectorizer(analyzer='word®, stop_words='english', max_features=48, lowercase=True, token_pattern="[a-zA-Z8-9]{3,}")

X_train = vectorizer.fit transform(data_lemmatized_train).toarray()

X_test = vectorizer.fit_transform(data_lemmatized test).toarray()

X_train.shape, X_test.shape

({204, 40},

(51, 4a))

print(X_train)

[[e.
[@.
[e.

[o.
[e.
[e.

print(X_test)

[[e.
[e.
[e.

fo.

[@

L4a4p8599

[6.

a.
2.
e.

e.
8.
8.

8.
8.
B.

oo

A4T1B856 ...

Figure 17:

8.31764592]
e.]
e]
e.]
e.]
e.]
e.]
e.]
e.]
e.]
e.]
e.]

TF-IDF Vectorizer

10

‘scientist build effect learn model recommend system deploy project']

"develop get imtroduct program build app']

6 ML models implemented

Here, 3 ML models as shown below are implemented on both raw and transformed course
feaures and comparative study is done on the performance to prove the importance of
feature engineering.

6.1 SVM on Transformed Course feature

Implementing SVM model on transformed course feature as shown in Figure

SVM = SVC()

SVM.fit(X_train, y train)

y_pred = SVM.predict(X_test)

SVM_accuracy = round(accuracy score(y_test, y_pred)*100,2)
print("Accuracy:",5VM_accuracy)

Accuracy: 68.63

SVM_precision = round{precision_score(y_test, y_pred, average="weighted"),2)
print("Precision:",SVM_precision)

Precision: @.62

SVM_f1 = round(fl_score(y test, y_pred, average="weighted"),2)
print("Fl-score:",svM_f1)

Fl-=core: @.65

SVM_recall = round(recall score(y_test, y_pred, average="weighted"),2)
print(“"Recall_score:",SVM_recall)

)

Recall_score: 2.8

Figure 18: SVM model on Transformed Course feature

6.2 KNN on Transformed Course feature

Implementing KNN model on transformed course feature as shown in Figure

KNN = KNeighborsClassifier(algorithm= ‘auto’, metric= “cosine’, n_neighbors= 1@)
KNN.fit(X_train, y_train)

y_pred = KNN.predict(X_test)

KNN_accuracy = round{accuracy_score(y_test, y pred)*1e@,2)

print(™Accuracy:” ,KNN_accuracy)

Accuracy: 58.82

KNN_precision = round{precision_score(y_test, y_pred, average="weighted"),2)
print("Precision:",KNN_precision)

Precision: @.74

KNN_f1 = round(fl_score(y_test, y_pred, average="weighted"),2)
print("Fl-score:",KNN_f1)

Fl-score: @.65

KNN_recall = round(recall_score(y_test, y_pred, average="weighted"),2)
print(“Recall_score:",KNN_recall)

o

Recall_score: 8.5

Figure 19: KNN model on Transformed Course feature

11

6.3 AdaBoost on Transformed Course feature

Implementing AdaBoost model on transformed course feature as shown in Figure

adaboost = AdaBoostClassifier(n_estimators=5@8,learning rate=1)
adaboost.fit(X_train, y_train)

y_pred = adaboost.predict(X_test)

adaboost_accuracy = round(accuracy_score(y_test, y_pred)¥18e,2)
print("Accuracy:"”,adaboost_accuracy)

Accuracy: 72.55

adaboost_precision = round(precision_score(y_test, y pred, average="weighted"),2)
print("Precision:",adaboost_precision)

Precision: @.6

adaboost_f1 = round(fl_score(y_test, y pred, average="weighted"),2)
print("Fl-score:",adaboost_f1)

Fl-score: @.66

adaboost_recall = round(recall_score(y_test, y_pred, average="weighted™),2)
print("Recall_score:"”,adaboost_recall)

Recall score: 8.732

Figure 20: AdaBoost model on Transformed Course feature

Assigning the uncleaned feature ‘Course’ to X and re-run the ML models as shown in
Figure

X=data['Course’]
y=data['University']

Figure 21: Assign ‘Course’ to X variable

6.4 SVM on Raw Course feature

Implementing SVM model on raw course feature as shown in Figure

SWM = SVC()

SVM.fit(X_train, y_train)

y_pred = SVM.predict(X_test)

SWM_accuracy = round{accuracy_score(y_test, y_pred)*188,2)
print(“Accuracy:",SVM_accuracy)

Accuracy: 49,82

SWM_precision = round(precision_score(y_test, y_pred, average="weighted™),2)
print("Precisicon:",5VM_precision)

Precision: @.58

SVM_f1 = round(fl_score(y_test, y_pred, average="weighted"),2)
print{"Fl-score:",SVM_f1)

Fl-score: @.53

SWM_recall = round(recall_score(y_test, y_pred, average="weighted"),2)
print("Recall_score:",SVM_recall)

Recall_score: 2.49

Figure 22: SVM model on Raw Course feature

12

6.5 KNN on Raw Course feature

Implementing KNN model on raw course feature as shown in Figure

KNN = KNeighborsClassifier(algorithm= ‘auto’, metric= ‘cosine’, n_neighbors= 1@)
KNN.fit(X_train, y_train)

y_pred = KNN.predict(X_test)

KNN_accuracy = round{accuracy_score(y_test, y pred)*1ee,2)

print(“Accuracy:" ,KNN_accuracy)

Accuracy: 37.25

KNN_precision = round(precision_score(y_test, y_pred, average="weighted"),2)
print("Precision:™,KNN_precision)

Precision: @.55

KNN_f1 = round(fl_score(y_test, y_pred, average="weighted"),2)
print(“Fl-score:" ,KNN_f1)

Fl-score: @.44

KNN_recall = round(recall score(y_test, y pred, average="weighted"),2)
print(“Recall_score:",KNN_recall)

Recall_score: 2.37

Figure 23: KNN model on Raw Course feature

6.6 AdaBoost on Raw Course feature

Implementing AdaBoost model on raw course feature as shown in Figure [24

adaboost = AdaBoostClassifier(n_estimators=58,learning_rate=1)
adaboost.fit(X_train, y_train)

y_pred = adaboost.predict(X_test)

adaboost_accuracy = round(accuracy_score(y_test, y_pred)*188,2)
print(“Accuracy:",adaboost_accuracy)

Accuracy: 37.25

adaboost_precision = round(precision_score(y_test, y pred, average="weighted"),2)
print(“Precision:™,adaboost_precision)

Precision: @.62

adaboost_f1 = round(fl_score(y_test, y pred, average="weighted"),2)
print(“Fl-score:",adaboost_f1)

Fl-score: @.47

adaboost_recall = round(recall_score(y test, y pred, average="weighted™),2)
print(“Recall_score:",adaboost_recall)

Recall_score: .37

Figure 24: AdaBoost model on Raw Course feature

13

7 Evaluation

7.1 Comparative results of ML models on Raw course data

Comparison of ML performance on raw course feature as shown in Figure

#creating comparison table for the models

from tabulate import tabulate

table = [["SVM",SVM_accuracy,SVM_precision,SvM f1,5VM_recall],
["K-NearestNeighbours™,KNN_accuracy,KNN_precision,KNN_f1,KNN_recall],
["adaptive Boosting",adaboost_accuracy,adaboost_precision,adaboost f1,adaboost_recall]]

print (tabulate(table, headers=["Algorithm", "Accuracy", "Precision"”, "Fl-score™, "Recall"]))
result = pd.DataFrame(table)

Algorithm ACCuracy Precision Fl-score Recall
SWM 45.82 @.58 .53 B.49
K-NearestNeighbours 37.25 8.55 a.44 8.37
Adaptive Boosting 37.25 B.62 2.47 0.37

Figure 25: Model performance on Raw course data

7.2 Comparative results of ML models on Transformed course
data

Comparison of ML performance on transformed course feature as shown in Figure

#creating comparison table for the models
from tabulate import tabulate
table = [["SWM",SVM_accuracy,SVM _precision,SVM_f1,5VM _recall],
["K-NearestNeighbours" ,KNN_accuracy,KNN_precision,KNN_f1,KNN_recall],
["adaptive Boosting",adaboost_accuracy,adaboost_precision,adaboost f1,adsboost_recall]]

print (tabulate(table, headers=["Algorithm", "Accuracy”, "Precision™, "Fl-score™, "Recall"]))
result = pd.DataFrame(table}

Algorithm Accuracy Precision Fl-score Recall
SVM 68.63 2.62 @.65 @.69
K-MNesrestNeighbours 58.82 9.74 2.65 8.59
Adsptive Boosting 72.55 e. 2.66 8.73

Figure 26: Model performance on Transformed course data

14

7.3 Visualization of Results

Finally, MS Excel is used to plot the below visualizations of results.
Comparison of Accuracy values for ML models as shown in Figure

Accuracy

K-NearestNeighbours Adaptive Boosting

Raw Data Transformed Data

Figure 27: Accuracy

Comparison of Precision values for ML models as shown in Figure

Precision

K-NearestNeighbours Adaptive Boosting

Raw Data Transformed Data

Figure 28: Precision

15

Comparison of F1-score values for ML models as shown in Figure

Fl-score

K-NearestNeighbours Adaptive Boosting

Raw Data Transformed Data

Figure 29: Fl-score

Comparison of Recall score values for ML models as shown in Figure

Recall

K-NearestNeighbours Adaptive Boosting

Raw Data Transformed Data

Figure 30: Recall score

16

	Introduction
	Environment Specification
	Hardware Configuration
	Software Configuration

	Data Collection
	Data Exploration
	Data cleaning

	Data Transformation
	ML models implemented
	SVM on Transformed Course feature
	KNN on Transformed Course feature
	AdaBoost on Transformed Course feature
	SVM on Raw Course feature
	KNN on Raw Course feature
	AdaBoost on Raw Course feature

	Evaluation
	Comparative results of ML models on Raw course data
	Comparative results of ML models on Transformed course data
	Visualization of Results

