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Abstract 

This study investigates the efficacy of machine learning models – XGBoost, Random 

Forest (TensorFlow Decision Forest), and MLP Neural Network – in predicting 

ambulance demand in Dublin city. This study, aimed at improving resource allocation 

within emergency medical services (EMS), bridges gaps in the current understanding of 

Dublin's ambulance demand dynamics. Utilizing a comprehensive dataset comprising over 

850,000 historical ambulance demand records over ten years, we scrutinized the influence 

of diverse feature engineering techniques on the models' performance. The study primarily 

accomplishes three key contributions: (1) Unveiling an effective XGBoost model, coupled 

with astute feature selection, for ambulance demand prediction, which achieved a mean 

absolute error (MAE) of 0.49673, thereby contributing to strategic EMS planning; (2) 

Highlighting significant factors that influence ambulance demand, notably temporal and 

societal factors, while contesting the previously assumed importance of weather data; and 

(3) Underscoring the essential role of feature engineering in refining model performance. 

Our findings suggest potential areas of improvement in model performance, through 

further refinement and integration of additional data sources. This paves the way for future 

research to enhance these models and assess their applicability across different regions, 

ultimately augmenting EMS resource allocation and public health outcomes. 

 

Keywords: ambulance demand, machine learning, predictive modelling, Dublin, 

resource management, public health, feature engineering. 

 

1 Introduction 
 

Emergency medical services (EMS) are pivotal in delivering immediate medical care to 

communities, with a primary objective of reducing response times and the rate of death and 

morbidity (Aringhieri et al., 2017). EMS managers and dispatchers need to understand the 

distribution of incoming call requests (demand) and develop resource deployment plans based 

on historical demand data and forecasts. This necessitates accurate emergency call forecasts, 

also known as ambulance demand prediction. 

 

The crucial significance of Emergency Medical Services (EMS) is emphasized through its 

function in enhancing survival chances by administering immediate care to those experiencing 

critical emergencies (Jin et al., 2021). In contrast, the unequal distribution of EMS supply and 

demand in urban regions might lead to a scarcity of readily available EMS resources, 

consequently postponing the initial medical assistance. This situation underscores the 

immediate necessity to unearth the concealed relationship between EMS supply and demand, 
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forecast upcoming EMS requirements, and implement measures to prepare for unforeseen 

emergencies. 

 

In Dublin, Ireland, the Health and Social Care Executive (HSE) ambulance service is 

experiencing a surge in ambulance demand, straining the system (National Ambulance Service, 

2020). Factors such as an aging and expanding population requiring more medical care are 

challenging the government's resource management capabilities. In 2020, the pressure on 

emergency services led to prolonged delays and reduced satisfaction among patients. 

Specifically, over 40% of urgent emergency calls surpassed the targeted 20-minute response 

window (National Ambulance Service, 2020). 

 

To tackle this problem, the current research is focused on crafting a machine learning (ML) 

model that can precisely forecast the need for ambulances in Dublin. Building upon prior 

studies that employed ML techniques for predicting ambulance requirements, this research 

seeks to identify the most suitable ML approach for the Dublin area. Additionally, the 

investigation includes an examination of how newly considered factors, such as public 

holidays, influence the efficiency of the ML model. 

 

The exploration fills a notable research void concerning ambulance demand forecasting in 

Ireland, and evaluates models to determine the optimal one. By fashioning an accurate and 

trustworthy ML framework to anticipate ambulance needs, the National Ambulance Service 

(NAS) stands to refine its handling of resources and assure the prompt and suitable delivery of 

medical aid. Moreover, this research contributes to the wider academic domain by analysing 

the effects of supplemental factors on the prediction of ambulance demand. The anticipated 

findings of this study hold substantial promise in augmenting the comprehension and prediction 

of ambulance requirements in Ireland, paving the way for enhanced medical services and 

improved patient health outcomes. 

 

The research questions guiding this study are: 

 

What are the optimal machine learning methods for predicting ambulance demand in 

Dublin, Ireland, and how do they compare in terms of performance? 

 

To what extent can the performance of ambulance demand prediction models be 

improved with feature engineering and the addition of new features, and how do these 

improvements vary across different prediction models? 

 

The paper is structured as follows: Section 2 reviews existing literature on ambulance demand 

prediction, including machine learning models and feature engineering. Section 3 details this 

studies methodology—data collection, pre-processing, model development, and evaluation 

metrics. Section 4 presents the design specification of the prediction system. Section 5 outlines 

the implementation, detailing data transformation, tools used, and models implemented. 

Section 6 evaluates and compares the performance of XGBoost, Random Forest, and MLP 

Neural Network models, also discussing the role of feature engineering. Finally, Section 7 

concludes the study, summarizing the findings and suggesting potential future work. 
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2 Related Work 

2.1 Ambulance Demand in Dublin, Ireland 

In Dublin, Ireland, the growing need for pre-hospital emergency services has been triggered by 

an increasingly aging population and a boost in chronic illness (NAS, 2020). The Irish National 

Ambulance Service (NAS), designed as a response-driven service, strives to serve the entire 

populace. Meeting the needs of a constantly changing population presents continuous 

challenges for NAS, especially considering the demographic trend towards aging. The NAS 

works in coordination with the Sláintecare Programme Implementation Office within the 

Health Department, aligning their strategies with the National Service Plan (NSP) to ensure 

effective care delivery in the mid-term (NAS, 2020). Predictive techniques could facilitate the 

optimal distribution of resources and cut down wait times, ensuring immediate provision of 

health and social care according to clinical necessities (Kyrkou et al., 2023). Nevertheless, the 

current academic discourse lacks substantial insights into the utilization of predictive models 

specifically aimed at ambulance demand in Dublin, Ireland. 

2.2 Predicting Ambulance Demand 

Traditional prediction methods of ambulance requirements have relied on classic time series 

methodologies, such as autoregressive and ARIMA models, as corroborated by the work of 

Baker & Fitzpatrick (1986) since the 1980s. Despite their prevalence, these models have 

inherent drawbacks, chiefly their inability to navigate complex, non-linear correlations often 

found in data relating to ambulance demand, a fact noted by Hyndman & Athanasopoulos 

(2018). Recently, a trend has emerged to harness machine learning technologies to overcome 

these limitations. For example, Ramgopal et al. (2021) found that employing machine learning 

techniques like XGBoost and decision trees could enhance the precision of ambulance demand 

predictions. This has led the academic field to lean towards machine learning methodologies 

to develop more reliable and efficient models for forecasting ambulance needs. 

 

Several comparative research papers have evaluated various predictive models for ambulance 

demand, generally highlighting the superiority of machine learning models over conventional 

time series methods. The pioneering comparative research by Setzler et al. (2009) pitted 

machine learning models, such as ANN, against traditional models like ARIMA and seasonal 

naïve methods, demonstrating the higher accuracy of machine learning models, particularly 

ANN. 

 

In a similar vein, Martin et al. (2021) assessed the effectiveness of machine learning models, 

including artificial neural networks, against standard time series techniques like ARIMA, Holt-

Winters, and MHF, showing that ANN models excel in capturing intricate connections between 

predictive factors and ambulance requirements. 

 

Furthermore, Ramgopal et al. (2021) conducted an analysis comparing various machine 

learning models like XGBoost, LSTM, and MLP for predicting ambulance demand, concluding 

that XGBoost and Random Forest outperformed others in accuracy and efficiency. 
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The literature consistently indicates that machine learning models, especially XGBoost, 

random forest, and artificial neural networks, are more adept at forecasting ambulance needs 

in comparison to traditional approaches. However, the choice of the best machine learning 

model may differ based on the specific data and features used in the model, making it crucial 

to carefully analyse and weigh multiple models to select the one that best aligns with the 

requirements (Wickramasuriya et al., 2019). 

2.2.1 Important Features in Predicting Ambulance Demand 

The forecast of ambulance needs is an intricate procedure that entails multiple essential 

features. These can be grouped into three main categories: time-related, location-related, and 

external aspects. 

 

Time-related factors reflect the changing ambulance needs over various time frames. 

Numerous studies have identified significant time-based elements such as the hour of the day, 

specific days within the week, particular months, and seasonal variations. For example, 

Ramgopal et al. (2019) noticed an upsurge in emergency calls on weekends and holidays as 

opposed to regular weekdays and an increased demand in winter compared to summer. Still, 

certain variables like public holidays and substantial communal events that may influence 

ambulance needs remain largely unexamined. Moreover, Lin et al. (2020) brought forward the 

idea of accumulated counts or aggregate demand over the preceding 7 and 30 days as a possible 

time-related component, providing a historical framework that could boost the predictive 

model's precision. 

 

Location-related aspects are crucial since they explain the varying demands across different 

geographical areas. Elements such as the site of the incident, population concentration, and 

proximity to the closest medical facility play an important role in forecasting ambulance needs 

(Ramgopal et al., 2019). Previous research has detected a robust connection between 

population concentration and the density of calls, as emphasized by Vile et al. (2016) and Chen 

et al. (2016). Hence, the inclusion of location-related aspects in the model for predicting 

ambulance demand is vital for achieving accuracy. 

 

External aspects, although not directly connected to ambulance needs, can affect it. Factors like 

climatic conditions, extraordinary events, and demographic shifts have been identified as 

influential. Research has shown that weather variations such as temperature, precipitation, and 

snow can considerably affect ambulance needs (Ramgopal et al., 2019). The integration of 

external aspects like temperature, wind velocity, and atmospheric pressure has been found to 

enhance predictive accuracy by McLay, Boone, and Brooks (2012). Nevertheless, studies 

focusing on EMS needs have largely omitted aspects like public holidays, leaving room for 

more inclusive research encompassing a broader set of features. 

 

In summary, the forecast of ambulance needs requires attention to various crucial components, 

categorized as time-related, location-related, and external aspects. While significant time and 

location factors have been investigated, there exists a demand for more thorough research, 

embracing an extended selection of components, such as public holidays, to improve the 
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precision of ambulance demand predictions. The exploration of novel time-related aspects like 

accumulative counts highlights promising avenues for future studies in this domain. 
 

2.3 Research Niche and Expected Contribution 

Despite advancements in machine learning applied to predicting ambulance needs, there 

remains a deficiency in studies focusing on its implementation, particularly in Dublin, Ireland. 

Hence, this research is set to explore the utilization of machine learning techniques in 

forecasting ambulance demand in this region, with an emphasis on pinpointing the most 

accurate algorithm and comprehending the factors that shape ambulance demand. 

 

This investigation aims to enrich the existing scholarly corpus by incorporating elements like 

climatic conditions and public holiday events into the model predicting ambulance demand. It 

also plans to examine the potential of newly identified time-related features such as 

accumulative counts. The goal is to evaluate whether these variables have a substantial 

influence on ambulance needs and if they should be considered in the development of 

predictive models. 

 

The anticipated contribution of this inquiry is a refined and more inclusive model for 

forecasting ambulance demand, enabling emergency health services to distribute resources 

more proficiently and enhance responsiveness. Moreover, the results of this study could be 

applied to other urban settings sharing resemblances with Dublin, Ireland. 

 

Ultimately, this study endeavours to offer a substantial contribution to the realm of ambulance 

demand forecasting, specifically in Dublin, Ireland, and more generally in the wider field of 

prediction. This will be achieved by addressing existing research gaps and presenting a more 

holistic and accurate predictive model. 

 

3 Research Methodology 
 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) was employed in this 

study due to its structured, iterative nature that facilitates continuous improvement (Larose & 

Larose, 2015). This versatile, industry-standard framework guides us through all stages of a 

data mining project, making it suitable for a wide variety of data types and business challenges. 

It ensures a comprehensive process of data exploration, preparation, modelling, and evaluation. 

Each phase of the CRISP-DM methodology will be further discussed in Section 4, providing 

an in-depth understanding of its application in this research. 

 

3.1 Data Collection and Pre-processing 

To develop the machine learning models for predicting ambulance demand, historical 

ambulance call-out data was obtained from the National Ambulance Service (NAS) in Dublin 

for a 10-year period from 2013 to 2022. This public dataset was obtained via the Smart Dublin 

Website (Smart Dublin, 2023). This dataset includes time-stamped records of each ambulance 
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call-out, along with the location of the call-out (represented as Station ID), call priority (e.g., 

life-threatening, non-life-threatening), and dispatch and arrival times. 

Table 1:  Overview of the Ambulance Call-out Dataset 

Feature Description Count Unique Most 

Frequent 

Frequency 

Date When the incident was logged 846630 70304 01/01/2014 304 

Station 

Area 

DFB Station Boundary where the 

incident occurred 

846630 17 Tallaght 137031 

Clinical 

Status 

Acuity of the reported incident 

(from Echo to Omega) 

846630 8 Delta 375022 

TOC Time of Call 846630 230086 19:17:15 21 

ORD Time first appliance is 

MOBILISED or ORDERED to 

incident 

846630 153483 17:53:36 29 

MOB Time the first appliance is 

MOBILE to INCIDENT 

828438 151926 17:59:09 26 

IA In Attendance - time the first 

appliance is at the scene of the 

incident 

704393 143180 17:54:33 25 

LS Leaving Scene (ambulance calls 

only) 

527104 132859 10:43:54 20 

AH At Hospital (ambulance calls only) 556396 133887 20:16:49 21 

MAV Mobile and Available 772885 149533 17:35:40 31 

 

Apart from the ambulance dispatch data, several other pertinent datasets were gathered, 

comprising: 

 

• Meteorological data sourced from Met Éireann (Met Eireann, 2023), the Irish National 

Meteorological Service, incorporating temperature, precipitation, wind velocity, and 

humidity. 

• Public holiday data procured from timeanddate.com (Time&Date.com, 2023), which 

was subsequently formatted into a dataset utilizing Python. 

 

The pre-processing stage of the data entailed various steps, including: 

 

• Data cleaning to eliminate any inaccuracies or inconsistencies. 

• Handling missing values, such as imputation or exclusion based on the degree of 

missingness and their impact on the analysis. 

• Identifying and dealing with outliers, which can significantly affect model performance 

and predictions. 

• Organizing the primary dataframe by the station area. 
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• Merging the distinct datasets predicated on the date and time of each ambulance 

dispatch. 

• Consolidating the data into hourly intervals to furnish a suitable level of detail for the 

analysis. 

• Converting categorical variables into numerical form through one-hot encoding or 

other appropriate techniques. 

• Formulating new features to incorporate cumulative counts of dispatches and other 

relevant temporal patterns. 

• Scaling the numerical variables with the StandardScaler or other normalization 

techniques to guarantee they all fall within a comparable range. 

3.2 Feature Selection 

The process of feature selection plays an instrumental role in establishing a proficient 

predictive model. The features contemplated in this study were extracted from the data that had 

been collected and pre-processed as detailed earlier. These encompass temporal elements (hour 

of the day, day of the week, month, season), spatial elements (station area), and external 

elements (weather conditions, public events). 

 

An analysis of feature importance was carried out to ascertain the relative significance of each 

feature in the prediction of ambulance demand. The feature importance was determined 

through the application of the XGBoost algorithm's feature importance methodology. This 

methodology utilizes a metric known as 'F-score' or 'Gain'. The XGBoost algorithm calculates 

the relative importance of a feature based on the number of times a feature is used to split the 

data across all trees, weighted by the improvement to the model as a result of each split. The 

feature that provides the most value for splitting the data, thus improving the model's accuracy, 

is considered the most important. 

 

The more often a feature is used in the trees of the model, and the more it improves the model's 

performance when it is used, the higher its relative importance or F-score. This score provides 

an indication of the contribution each feature makes to the model's predictive power. Features 

with a higher F-score are considered more important for prediction. 

 

This F-score, or gain, is not only an efficient way of selecting the most relevant features but 

also helps in reducing the dimensionality of the dataset, minimizing the risk of overfitting, and 

improving the model's overall performance. 

 

Applying the XGBoost feature importance methodology in this study, we were able to 

prioritize features that significantly influence ambulance demand, ensuring a more robust and 

accurate prediction model. The specific results of this feature importance analysis will be 

elaborated upon in the following sections of the study. 
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3.3 Model Development 

To predict ambulance demand, we employed a diverse set of machine learning algorithms, 

including Random Forest, Extreme Gradient Boosting (XGBoost), and Deep Learning models 

(MLP). These models were implemented using Python and relevant libraries, such as Scikit-

learn, XGBoost, TensorFlow, and TensorFlow Decision Forests (TF-DF). 

 

The model development process comprised the following key steps, optimized for reliable and 

accurate predictions: 

 

1. Data Splitting: 

The dataset was divided into three distinct sets while preserving the chronological order 

essential for time-series data. The training set encompassed 70% of the total data, while 

the testing set comprised 20%. The validation set constituted the remaining 10%. This 

division ensured that the models were trained on historical data, validated on recent 

data, and tested on unseen data to gauge their generalization capabilities accurately. 

 

2. Hyperparameter Tuning: 

For each model, we performed hyperparameter tuning to optimize their performance. 

Hyperparameter tuning is a crucial step to identify the best combination of model 

parameters that yield superior results. GridSearchCV was employed for XGBoost, and 

fine-tuning was carried out for the MLP model based on previous knowledge and 

experimentation. 

 

3. Model Training: 

Each model was trained using the designated training set with the optimized 

hyperparameters. For XGBoost and TF-DF models, we leveraged their respective 

implementations in Scikit-learn and TensorFlow Decision Forests. For XGBoost and 

MLP models, we utilized the XGBoost and TensorFlow libraries. 

 

4. Model Evaluation: 

To evaluate the predictive prowess of each model, we used the testing set, which was 

not seen during training or hyperparameter tuning. We calculated various performance 

metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-

squared (R²). These metrics provide comprehensive insights into the accuracy and 

robustness of the models. 

 

By adhering to this comprehensive model development process, we ensured that each model 

was appropriately trained, optimized, and thoroughly evaluated. The models' performance 

metrics served as a reliable basis for selecting the most effective predictive model for 

ambulance demand. Detailed analysis and comparison of the models' performance will be 

discussed in subsequent sections of the study, enabling us to make informed decisions about 

resource allocation and enhance public health resource management. 
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3.4 Evaluation Metrics 

The choice of evaluation metrics for the comparison of Random Forest, Artificial Neural 

Network, and XGBoost models in predicting the volume of ambulance dispatches was 

influenced by their relevance and suitability to the context. 

 

The Mean Absolute Error (MAE) metric was adopted as it computes the mean of the absolute 

differences between predicted and actual values, independent of their direction (Willmott & 

Matsuura, 2005). This metric is crucial in the setting of ambulance demand prediction, offering 

an indication of the average prediction error in the number of calls, which is essential to ensure 

that the appropriate quantity of resources are deployed timely and efficiently. 

 

The Root Mean Squared Error (RMSE) metric was selected, given its role in measuring the 

square root of the average of squared discrepancies between predicted and actual values 

(Hyndman & Koehler, 2006). This metric is valuable in the context of ambulance demand 

prediction as it indicates the efficacy of the model in terms of accurately forecasting the hourly 

call volume. 

 

The Coefficient of Determination (R²) metric was employed, given its capability to measure 

the proportion of variance in the dependent variable (ambulance calls) that can be explained 

by the independent variables (weather data, traffic data, population data, and public holiday 

data). This metric is pivotal in the setting of ambulance demand prediction, revealing the 

model's capacity to capture the relationships between the independent variables and the 

dependent variable. 

 

In summary, the chosen evaluation metrics, due to their relevance and suitability, provide 

comprehensive insights into the accuracy, precision, and overall performance of the machine 

learning models in predicting ambulance demand. These insights further guide model selection 

and refinement to yield the most reliable and effective forecasting tool. 

3.5 Model Interpretation and Discussion 

The culminating phase of the methodology focuses on the interpretation of the outcomes 

derived from the machine learning models and a discussion of their implications, guided by 

previous research and models of interpretation (Goldstein et al., 2015). This encompasses 

pinpointing the model that provides the most accurate predictions, delving into the significance 

of the features used in the model, and contemplating how the model can be leveraged to 

enhance the management of ambulance resources in Dublin. 

 

The model offering the most accurate predictions is identified by comparing the performance 

metrics of each model, namely the Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and the Coefficient of Determination (R²). The model yielding the lowest MAE and 

RMSE alongside the highest R² value, as proposed by Wickramasuriya et al. (2019), is 

considered the most proficient. 
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Subsequently, the importance of the features is examined based on the feature importance 

metrics from the most accurate model. This evaluation provides an understanding of the key 

factors influencing ambulance demand and can be used to make informed decisions about 

resource allocation. 

 

Finally, the practical application of the model is considered. Specifically, how its predictive 

capabilities can inform the efficient and effective deployment of ambulance resources in 

Dublin. This application draws from the emergency service logistics literature, aligning 

predictive insights with strategic deployment (Andrienko et al., 2013). This may include the 

optimization of ambulance schedules, strategic positioning of ambulances based on predicted 

demand hotspots, and other proactive measures to ensure that ambulance services are always 

available when needed. 

 

4 Design Specification 

4.1 Architecture 

 

 

Figure 1: Ambulance Demand Prediction Multitier Architecture 

 

As illustrated in Figure 1, the architecture for the Ambulance Demand Prediction system is 

structured into a multi-tier framework. The architecture comprises three core layers: 

 

Data Persistence Layer: This foundational layer is tasked with the collection, storage, and 

pre-processing of various types of data. It handles data from diverse sources like the ambulance 

call-out data from the National Ambulance Service (NAS), meteorological data from Met 

Éireann, and public holiday data. The operations associated with data pre-processing, which 

encompass cleaning, merging, feature engineering, and scaling, are executed in this layer. 
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Business Logic Layer: This middle layer encapsulates the machine learning models employed 

for predicting ambulance demand, which include algorithms like Random Forest, XGBoost, 

and deep learning models such as the Multi-Layer Perceptron (MLP). This layer oversees the 

processes related to model training, hyperparameter tuning, and validation. 

 

Client Tier: This uppermost layer serves as the user interface, facilitating the presentation of 

prediction results in an easily interpretable and accessible format. It may incorporate 

visualization tools to present model outcomes and predictions effectively. 

 

This multi-tier architecture design is instrumental in ensuring efficient data management, 

robust training, and validation of predictive models, and a user-friendly presentation of 

prediction outcomes. Consequently, it offers a comprehensive and cohesive framework for 

accurate ambulance demand prediction.  

 

4.2 Framework 

The proposed solution to the research question regarding the forecast of ambulance demand 

will encompass the creation and assessment of machine learning techniques. Specifically, this 

undertaking aspires to evaluate the efficacy of diverse machine learning methodologies, 

comprising XGBoost, Random Forest, and Multilayer Perceptron (MLP) models, in 

forecasting ambulance necessities.  

 

 

 
Figure 2. Ambulance Demand Prediction Methodology 

 

In order to maintain an organized and methodical plan for the suggested research undertaking, 

a modified rendition of the Cross Industry Standard Process for Data Mining (CRISP-DM) 
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approach will be employed, as depicted in Figure 2. The CRISP-DM approach furnishes an all-

encompassing structure that supervises the entire data mining operation, starting from 

comprehending the issue to the final deployment of the model. The subsequent segment details 

the six phases of the CRISP-DM approach and the manner they will be utilized in this 

investigation. 

 

Project Understanding: This phase encompasses the recognition of the issue and the 

delineation of the research inquiries to be examined. As articulated in the introductory section, 

the commercial challenge is the requisite for precise prediction of ambulance demand in 

Dublin, Ireland, with research questions concentrating on discerning the best machine learning 

techniques for forecasting ambulance demand and understanding how the engineering of 

features and the integration of novel features might augment the model's functionality. 

 

Data Understanding: During this phase, pertinent data sources and variables will be 

pinpointed, and the data will be aggregated and processed. This includes obtaining publicly 

accessible ambulance call information from the National Ambulance Service (NAS) and 

correlated data sets, like public holidays and climatic conditions, to create an exhaustive dataset 

for examination. 

 

Data Preparation: This phase entails purifying and altering the data to render it suitable for 

scrutiny. This will include cleansing the data, managing absent values, and selecting and 

engineering features. These data sources will then be amalgamated in readiness for the 

subsequent modeling phase. Exploratory data analysis (EDA) will be performed to uncover 

insights into the data and detect any outliers or inconsistencies. 

 

Modelling: During this phase, the machine learning model will be constructed utilizing a 

variety of algorithms, encompassing neural networks, XGBoost, and random forests. The 

efficacy of each model will be appraised using fitting evaluation metrics, like MAE, RMSE, 

and R-squared. The model that excels in these metrics will be selected as the optimal one. 

 

Evaluation: In this phase, the models will undergo an assessment to ascertain their capability 

in forecasting ambulance demand. The evaluation metrics chosen for this purpose are detailed 

in section 3.3. The outcomes will be juxtaposed with the initial research inquiries to verify that 

they have been suitably addressed. 

 

Deployment: The concluding phase comprises incorporating the chosen model into a 

functional environment to make predictions on anticipated data, which will guide future 

demand forecasts. The model's applicability will be showcased on a PowerBI platform to 

demonstrate how it can be employed to aid decision-making in resource allocation and to 

augment the responsiveness of ambulance services. 

 

Through adherence to the CRISP-DM approach, this study will guarantee an orderly and 

methodical method for solving the ambulance demand prediction challenge, commencing with 

comprehending the issue to the final deployment of the model. This adherence ensures that the 
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research maintains rigor and comprehensiveness, and that the findings are dependable and 

valid. 

 

4.3 Models and Algorithms 

In pursuit of a solution to predict ambulance demand, this research project necessitates the 

construction and assessment of various machine learning models. The central goal is to 

compare the effectiveness of several machine learning algorithms, which encompass XGBoost, 

Random Forest, and Multilayer Perceptron (MLP) models, in accurately predicting ambulance 

demand. 

 

XGBoost: The eXtreme Gradient Boosting (XGBoost) model is an implementation of the 

gradient boosting algorithm that has proven effective in numerous machine learning 

challenges. Its core advantage lies in its ability to handle both numerical and categorical data, 

its capability to manage missing values, and its flexibility in modeling complex, non-linear 

relationships, which are anticipated in the prediction of ambulance demand. 

 

Random Forest: The Random Forest model is a well-known ensemble learning method that 

employs multiple decision trees and averages their output to enhance the prediction accuracy 

and prevent overfitting. Its strength lies in its ability to handle high-dimensional datasets and 

provide insight into feature importance, which will be beneficial in understanding the 

underlying factors influencing ambulance demand. 

 

Multilayer Perceptron (MLP): The Multilayer Perceptron (MLP) is a type of artificial neural 

network that consists of multiple layers of neurons, including an input layer, one or more 

hidden layers, and an output layer. MLPs are versatile and capable of learning complex patterns 

in the data. They have been successfully applied to various tasks, including time-series data 

prediction. In this research, the MLP will be used to model the temporal patterns and 

relationships in the ambulance demand data, making it suitable for capturing non-linear 

dependencies over time. 

 

Each of these models offers distinct advantages, and a comparative analysis of their 

performance on the ambulance demand prediction problem will yield valuable insights. The 

selection of the final model will be based on its performance metrics, its interpretability, and 

its ability to generalize well to unseen data. 

 

5 Implementation 
 

5.1 Data Transformation 

The data transformation process was carried out meticulously to ensure the accuracy and 

effectiveness of the predictive models. It involved the following steps: 
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Data Collection: We collected relevant datasets, including ambulance call-out records, 

weather data, public holiday information, and other pertinent data sources. 

 

Data Cleaning: To rectify any errors or inconsistencies in the data, data cleaning procedures 

were executed. This encompassed removing duplicates, handling missing or null values, and 

addressing outliers. 

 

Data Aggregation: The main dataset was grouped by station area and merged with other 

relevant datasets based on the date and time of each ambulance call-out. The data was then 

aggregated into hourly intervals to provide a suitable level of granularity for analysis. 

 

Feature Engineering: Categorical variables, such as call priority and station area, were 

transformed into numerical forms using one-hot encoding. Additionally, feature engineering 

was employed to include accumulated counts of call-outs and other potentially beneficial 

features. At detailed breakdown of the feature engineering steps carried out in this study is 

discussed in 5.1.1.   

 

Data Scaling: To ensure the effectiveness of the machine learning models, numerical variables 

were scaled using StandardScaler to bring them to a similar scale. 

5.1.1 Feature Engineering 

Feature engineering is critical for improving the predictive capabilities of machine learning 

models. In this study, three distinct feature sets were drawn from datasets relating to ambulance 

demand in Dublin: the Basic, Full, and a Post XGBoost Feature Selection set. 

 

Basic Feature Set: This dataset comprised readily available data from the Dublin ambulance 

dataset, such as 'Station Area', 'Date', 'Time Of Call', 'Count', 'day_of_week', 'month', 

'weekend', and 'season'. 

 

Full Feature Set: This dataset encompassed all features of the Basic set, enhanced with 

additional sourced data, including weather parameters ('rain', 'temp', 'wetb', etc.), time-series 

features ('Count for this hour in last x hours/days'), and the flag for public holidays. 

 

Post XGBoost Feature Selection Set: After applying a XGBoost feature selection technique, 

we obtained a reduced set of features deemed most important for prediction: 

'Count_in_last_7days', 'Count_in_last_14days', 'Count_in_last_28days', 'weekend', 'Date', 

'Time Of Call', 'Count', 'Station Area', and 'Public Holiday'. This will be further covered in the 

Evaluation section 6.2. 

5.2 Tools and Languages 

The implementation of the research project utilized Python as the primary programming 

language. Python's readability and versatility made it a suitable choice for this study. The 

following libraries were instrumental in data processing, manipulation, and machine learning 

modeling: 
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• Pandas: For data manipulation and pre-processing. 

• NumPy: For numerical computations and operations on arrays. 

• TensorFlow:  For implementing neural networks and Decision Forests. 

• Scikit-learn: For implementing machine learning models and evaluation metrics. 

 

For handling more advanced models like XGBoost and Multilayer Perceptron (MLP), we 

harnessed the capabilities of the XGBoost and TensorFlow libraries. These libraries are 

renowned for their extensive functionalities, adaptability, and robustness in building machine 

learning models. 

 

To facilitate data visualization and exploratory data analysis, we utilized the Matplotlib and 

Seaborn libraries. These libraries offer a wide range of functionalities, enabling comprehensive 

and insightful exploration of the data. The Integrated Development Environment (IDE) 

selected for this study was Google Colab, known for its interactive nature, user-friendly 

interface, and the added advantage of GPU usage, making it an ideal platform for executing 

complex machine learning algorithms and data analysis tasks.. 

5.3 Models Used 

A variety of machine learning models were trained and evaluated to predict ambulance 

demand, as detailed in Section 4.3. The models included: 

 

• Random Forest 

• eXtreme Gradient Boosting (XGBoost) 

• Multilayer Perceptron (MLP) 

 

Each model was trained on 70% of the data in time-series order, with 20% reserved for testing 

and the remaining 10% for validation. Hyperparameter tuning was performed for each model 

to optimize their performance. The effectiveness of these models was evaluated based on 

relevant metrics, such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

R-squared (R²). 

 

The time-series split is essential in this context, as ambulance demand is expected to have 

temporal patterns and dependencies that need to be considered in the model training and 

evaluation (Wickramasuriya et al. 2019). Using a time-based split ensures that the validation 

process accounts for the chronological order of the data, preserving the temporal structure, and 

providing a more realistic evaluation of the model's ability to generalize to unseen future data. 

 

 
Figure 3. Time-Series Split 
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6 Evaluation 
 

In this section, an exhaustive evaluation is presented of the machine learning models 

implemented for predicting ambulance demand. These models include the XGBoost, Random 

Forest as implemented through TensorFlow's Decision Forest, and the Multi-Layer Perceptron 

(MLP) Neural Network. To evaluate these models, we employed three key performance 

indicators: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the 

coefficient of determination, R². In addition, the evaluation considers the impact of feature 

engineering on the models' predictive ability, reflecting our discussions on the importance of 

feature selection and the construction of new attributes based on the existing ones. 

 

6.1 Overview of Model Performance 

Table 2 below provides a comprehensive evaluation of the performance of the selected machine 

learning models across different feature sets. Distinct trends emerge when observing the 

evaluation metrics, indicating the individual models' sensitivity and adaptability to the feature 

variations. 

 

Table 2:  Performance Metrics for Different Models and Feature Sets 

Model Feature Set R² % 

Change 

in R² 

RMSE % Change 

in RMSE 

MAE % Change 

in MAE 

MLP Neural 

Network 

Basic Feature 

Set 

0.085 - 0.901 - 0.516 - 

 
Full Feature 

Set 

0.264 +209% 0.807 -10.3% 0.472 -8.5% 

 
Post XGBoost 

Feature 

Selection 

0.299 +250% 0.788 -12.5% 0.465 -9.9% 

XGBoost Basic Feature 

Set 

0.232 - 0.825 - 0.554 - 

 
Full Feature 

Set 

0.369 +59.1% 0.748 -9.3% 0.496 -10.5% 

 
Post XGBoost 

Feature 

Selection 

0.367 +58.2% 0.749 -9.2% 0.497 -10.3% 

TensorFlow 

Decision Forest 

Basic Feature 

Set 

0.215 - 0.833 - 0.555 - 

 
Full Feature 

Set 

0.368 +71.2% 0.748 -10.2% 0.496 -10.6% 

 
Post XGBoost 

Feature 

Selection 

0.365 +69.8% 0.750 -10% 0.496 -10.6% 
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The MLP Neural Network, when examined, showcased noticeable improvements. 

Transitioning from the Basic Feature Set to the Full Feature Set resulted in a significant boost, 

with the R² value jumping by 209%. Furthermore, the Post XGBoost Feature Selection 

accentuated its performance, culminating in a 250% increase in R². This pattern suggests that 

the MLP Neural Network benefits immensely from feature enhancement and selection. 

 

On the other hand, the XGBoost model, starting with a respectable R² of 0.232 on the Basic 

Feature Set, experienced a surge in its performance with the Full Feature Set, achieving a 59.1% 

improvement in R². Interestingly, even when the number of features was reduced in the Post 

XGBoost Feature Selection, the XGBoost model retained a comparable performance, 

achieving an R² of 0.367. This demonstrates the model's efficiency, as it was able to achieve 

near-identical results with fewer features, underlining its advantages in terms of computational 

efficiency and resistance to overfitting. 

 

TensorFlow's Decision Forest showed consistent growth as it moved from the Basic Feature 

Set to the Full Feature Set, with its R² improving by 71.2%. The subsequent feature set, Post 

XGBoost Feature Selection, brought a minor decrease in the R², but the change was relatively 

insubstantial. 

 

From the data in Table 2, it becomes clear that the incorporation of a comprehensive feature 

set plays a crucial role in enhancing a model's predictive capabilities. Across all models, the 

Full Feature Set consistently outperformed the Basic Feature Set. However, the outcomes from 

the Post XGBoost Feature Selection were varied, highlighting the challenges and complexities 

associated with feature selection. 

 

Considering these observations, the marginally best performer was XGBoost model with the 

Full Feature Set, with the XGBoost feature set achieving almost identical performance. In 

addition, both models proved to maintain a high-performance level with fewer features offering 

a notable advantage. We will further probe into model performance in the subsequent section. 

6.2 XGBoost 

The XGBoost model, renowned for its gradient boosting framework, displayed significant 

performance, particularly when applied to a fully featured dataset and a dataset post-XGBoost 

feature selection. As discussed in the literature review, the success of XGBoost in this 

application could be attributed to its ability to capture complex non-linear relationships and its 

resistance to overfitting. 

Table 3:  XGBoost Model Performance 

Evaluation Metric Full Feature Set Basic Feature Set Post XGBoost Feature Selection 

MAE 0.49673 0.554875 0.497342 

RMSE 0.74803 0.825101 0.749228 

R² 0.369156 0.232465 0.367134 
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An integral aspect of the XGBoost model's operation is its feature importance mechanism. This 

mechanism rates the significance of each feature in the prediction model. The importance of 

features varies, with some contributing more to the predictions than others. The feature 

importance for our model is demonstrated in Figure 4 below: 

 

 
Figure 4. XGBoost Feature Importance 

 

The feature importance chart for the model, as shown in Figure 4, offers significant insights. 

Notably, historical data features such as "Count for this hour in last 7 days", "Count for this 

hour in last 14 days", and "Count for this hour in last 28 days" score high, implying they play 

a critical role in predicting ambulance demand. This indicates the existence of temporal 

patterns in ambulance demand. Other influential features include "weekend", "Time Of Call", 

and "Station Area", which respectively denote the day of the week, the time the call was made, 

and the geographical station area. 

 

Based on this feature importance information, a new dataset ‘Post XGBoost Feature Selection‘ 

was created containing only the most influential features. This smaller dataset focuses on the 

most critical elements, thereby reducing overfitting, improving prediction accuracy, and 

increasing computational efficiency. 

 

Therefore, the XGBoost model, combined with the crucial step of feature selection informed 

by feature importance, provides a robust and efficient approach to predict ambulance demand.  

 

6.3 Random Forest 

The Random Forest model's effectiveness is reflected in its consistent performance across the 

different feature sets, as shown in Table 4. The Mean Absolute Error (MAE) values ranged 

from 0.496314 (Full Feature Set) to 0.555137 (Basic Feature Set), and marginally increased to 
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0.496880 when using the dataset post XGBoost feature selection. This suggests that the model 

can handle high dimensional data and deliver reliable predictions. 

 

The Root Mean Squared Error (RMSE) values ranged from 0.748428 (Full Feature Set) to 

0.833942 (Basic Feature Set), showing a decrease to 0.750034 with the dataset post XGBoost 

Feature Selection. The R² values were similar across all feature sets, implying that the 

proportion of the variance in the dependent variable that is predictable from the independent 

variables was consistent, regardless of the complexity of the feature set. 

Table 4:  Random Forest Model Performance 

Evaluation Metric Full Feature Set Basic Feature Set Post XGBoost Feature Selection 

MAE 0.496314 0.555137 0.496880 

RMSE 0.748428 0.833942 0.750034 

R² 0.368485 0.215929 0.365773 

 

6.4 MLP Neural Network 

The performance of the MLP Neural Network with different feature sets is detailed in Table 5. 

From the table, the MAE values for the full feature set, basic feature set, and post XGBoost 

Feature Selection were 0.472612, 0.516209, and 0.465147, respectively. Notably, the dataset 

post XGBoost Feature Selection exhibited the best performance with an MAE of 0.465147. 

 

Regarding the RMSE values from Table 5, the full feature set had an RMSE of 0.807909, which 

went up to 0.900717 for the basic feature set, and then slightly decreased to 0.788218 after 

XGBoost feature selection. This trend reaffirms the significance of feature selection in 

bolstering the prediction accuracy of the model. 

 

The R² scores, as shown in the table, were distinct for each feature set. The model trained on 

the Post XGBoost Feature Selection set had the highest R² score at 0.2996, suggesting it could 

explain approximately 29.96% of the variance in ambulance demand. 

 

Table 5's data underlines the potential of deep learning models like the MLP Neural Network 

in effectively managing intricate prediction challenges such as ambulance demand forecasting, 

especially when they are tailored with the most suitable features. 

Table 5:  MLP Model Performance 

Evaluation Metric Full Feature Set Basic Feature Set Post XGBoost Feature Selection 

MAE 0.472612 0.516209 0.465147 

RMSE 0.807909 0.900717 0.788218 

R² 0.264117 0.085338 0.299551 
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6.5 Feature Engineering 

 

Table 2 presented in section 6.1 illustrates the impact of feature engineering in the models' 

performance. Models trained on the Full Feature Set and Post XGBoost Feature Selection 

showed significant improvements over those trained with the Basic Feature Set. 

 

The MLP Neural Network exhibited a substantial R² growth, moving from 0.085 to 0.264 and 

0.299 with the Full Feature Set and Post XGBoost Feature Selection respectively. This 

underscores the value of comprehensive feature incorporation and methodical feature selection. 

 

The significant role played by historical data ('Count for this hour in last x days') is evident in 

the feature importance given by the XGBoost model. These features top the list with a 

substantial margin, underlining their relevance in predicting ambulance demand. Features like 

'weekend' and 'Time Of Call' also appear to add valuable information to the model. 

 

These observations are consistent with prior literature, illuminating the factors driving 

ambulance demand in Dublin. Effective feature engineering not only amplifies predictive 

precision but also deepens our comprehension of the key drivers influencing ambulance 

demand, thereby facilitating better resource allocation. 

 

6.6 Discussion 

This study explores the application of three machine learning models - XGBoost, Random 

Forest, and MLP Neural Network - for predicting ambulance demand in Dublin city. Our goal 

was to leverage these sophisticated computational tools to bolster public health resource 

management. The results from our experiments contribute valuable insights regarding the 

utility of machine learning in public health settings. 

 

With regards to performance, the XGBoost model demonstrated superior predictive ability, 

achieving an R-squared value of 0.37, RMSE of 0.75, and an MAE of 0.50 with the optimised 

feature set. This finding is consistent with prior research, which often highlights XGBoost's 

robustness in tackling a wide array of predictive tasks. Nonetheless, there were occurrences of 

both underestimation and overestimation of demand, indicating room for model enhancement 

through methods such as hyperparameter tuning or further refinement of the feature selection 

process. 

 

The Random Forest model exhibited a level of effectiveness comparable to XGBoost, with 

identical performance metrics (R-squared value of 0.37, RMSE of 0.75, and an MAE of 0.50). 

This model's ability to handle nonlinear relationships and its robustness against overfitting 

likely contribute to its reliable performance. 

 

The MLP Neural Network trained on the XGBoost feature set performed slightly below 

XGBoost and Random Forest. Despite achieving an R-squared value of 0.30, RMSE of 0.79, 

and an MAE of 0.47, this model may benefit from further refinement. Given the intricate nature 
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of neural networks, adjustments such as adding additional layers, neurons, or modifying the 

activation function may enhance its predictive capability. 

 

A comparison of these models underscores the unique strengths and weaknesses inherent to 

each model. Their applicability depends on the requirements and limitations of the specific use 

case. For example, while XGBoost boasts impressive performance, its intensive computational 

resource demand may be unsuitable for real-time or resource-constrained scenarios. 

 

Feature engineering played a central role in improving model performance. Features such as 

"Count for this hour in last 7 days", "Count for this hour in last 14 days", "Count for this hour 

in last 28 days", and 'weekend' significantly influenced the predictive accuracy. However, the 

inclusion of certain features, including weather variables, seemed to introduce more noise than 

value to the models. This underlines the importance of careful feature selection and validation. 

 

The study has certain limitations. One significant limitation is the static nature of the models, 

which contrasts with real-world situations that demand models capable of adapting in real-time 

to evolving data patterns. Future research could explore online learning models to address this 

limitation. Additionally, investigating other machine learning techniques, integrating 

additional data sources, and leveraging advanced feature engineering methods could further 

boost prediction accuracy. 

 

In conclusion, this research reinforces the potential of machine learning for enhancing public 

health resource management, such as ambulance demand prediction. The results emphasize the 

necessity for judicious model selection, rigorous testing, and thoughtful feature engineering. 

This study serves as a foundation for future research aimed at refining and advancing this 

crucial area of study. 

6.7 Limitations 

While this study has yielded significant findings, it's important to acknowledge its limitations. 

Firstly, our data is limited to ambulance demand in Dublin, and while the models have proven 

effective in this context, they may not perform equally well in other regions. There may be 

unique factors at play in Dublin that the models have become overly fitted to, which could 

reduce their generalizability. 

 

Additionally, the scope of the features considered, while broad, is not exhaustive. There may 

be other relevant features that we did not consider in our study, such as socio-economic factors, 

which could play a role in ambulance demand. 

 

Finally, while our models performed well on our performance metrics, it's important to 

acknowledge the remaining error. The instances where the models overestimated or 

underestimated demand could represent situations where additional, unknown factors are 

influencing ambulance demand, indicating room for improvement in the models' predictive 

accuracy. 
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These limitations underscore the importance of continued research in this area. Future studies 

should explore these aspects further, using our research as a foundation upon which to build a 

more comprehensive and precise understanding of ambulance demand. 

6.8 Overprediction vs. Underprediction 

In predictive modeling, particularly in vital sectors like ambulance demand forecasting, it's 

crucial to navigate the balance between overprediction and underprediction, understand their 

implications, and devise strategies to mitigate associated risks. 

 

When a model overpredicts, it anticipates a demand greater than the actual. While this ensures 

a heightened state of readiness with abundant resources in place, facilitating quick response to 

unforeseen demand spikes, it comes at a cost. Excessive resource allocation due to these 

overestimations can result in notable inefficiencies. Resources might be squandered, 

potentially increasing operational costs and diverting essential resources from other crucial 

areas. 

 

On the contrary, underprediction leads the model to forecast a demand lower than the actual 

requirement. Though there might be short-term operational cost savings, as resources aren't 

over-allocated, the repercussions in a critical service context can be severe. Undervaluing 

demand can compromise emergency response times, risking lives. Additionally, consistently 

underestimating can overburden the available resources, possibly causing staff fatigue and a 

decline in service quality. 

 

Given the gravity of ambulance services, a model veering towards overprediction might seem 

more prudent. Yet, it's imperative to assess the broader economic ramifications. The risk of 

underprediction, on the other hand, is grave since it can compromise patient safety. Striking 

the right balance is imperative. A potential strategy could be a dual-system approach, where a 

baseline resource allocation is guided by a model with a slight over predictive bias, augmented 

by a swift response mechanism to address unforeseen demand surges. 

 

 

7 Conclusion and Future Work 
 

In our pursuit of exploring and addressing the issues surrounding ambulance demand in Dublin, 

Ireland, this study has made notable strides in advancing the field of demand prediction and 

enhancing resource management within the emergency medical services (EMS) sphere. By 

comprehensively integrating machine learning techniques and evaluating numerous factors 

influencing demand, the research has not only effectively catered to Dublin's specific situation 

but also bridged a significant knowledge gap in the broader scientific literature. 

7.1 Summary of Contributions 

This study conducted an in-depth examination of ambulance demand in Dublin, Ireland, and 

developed a machine learning model to predict this demand, with the overarching aim of 

improving resource allocation within emergency medical services (EMS). The research has 
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effectively filled the knowledge gap identified in the literature by developing an accurate 

prediction model specific to Dublin, while also enhancing our comprehension of the significant 

factors influencing ambulance demand. 

 

Among the several machine learning algorithms explored, XGBoost proved to be the optimal 

model for predicting ambulance demand in Dublin. This aligns with the existing literature 

where studies like Ramgopal et al., (2021) highlighted the capabilities of XGBoost for accurate 

ambulance demand prediction. The robustness of XGBoost as a prediction model for 

ambulance demand is empirically validated through our findings. 

 

Contrary to common assumptions, incorporating weather data into the model did not enhance 

its predictive power. This challenges the prevailing notion in the literature that weather 

significantly influences ambulance demand. Nonetheless, temporal factors, especially the 

introduction of accumulative counts, and societal factors like public events significantly 

improved the model's accuracy, reinforcing their importance in ambulance demand prediction. 

7.2 Directions for Future Work 

Considering the findings, several directions for future research can be suggested. Considering 

that weather data did not improve the model's prediction accuracy, it would be valuable to 

investigate other external factors that could potentially influence ambulance demand. 

Deepening our understanding of the relationship between different external factors and 

ambulance demand can lead to the creation of more accurate prediction models. 

 

Moreover, this study focuses specifically on Dublin. The model's adaptability and reliability in 

different geographical contexts across Ireland are yet to be tested. Future studies could look at 

validating the model in these regions, adjusting for region-specific factors to ensure robust and 

reliable results. 

 

In conclusion, this study has significantly contributed to the pressing issue of resource 

management in EMS by developing an accurate prediction model for ambulance demand. The 

findings provide important insights for Dublin's EMS and potentially for similar urban areas 

worldwide. Future work expanding on these findings has the potential to further enhance EMS 

resource management. 
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