~

\"'ﬂ
\ National
College

Ireland

Forecasting of Power plants consumption
using Machine Learning Techniques

MSc Research Project
Data Analytics

Mohit Kaushal Jain
Student ID: X21191514

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Mohit Kaushal Jain
Student ID: X21191514
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Vladimir Milosavljevic
Submission Due Date: 14/08/2023
Project Title: Forecasting of Power plants consumption using Machine
Learning Techniques
Word Count: 995
Page Count: [13]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mohit Kaushal Jain

Date: 17th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). v
Attach a Moodle submission receipt of the online project submission, to | v/
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | v
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Forecasting of Power plants consumption using
Machine Learning Techniques

Mohit Kaushal Jain
X21191514

1 Introduction

The configeration manual provides a brief information about the hardware and software
requirements for this research. It will also talk about the step by step approach to
complete the research project successfully. The following manual is broken into different
section for the purpose of information.

2 System Requirement

2.1 Hardware Requirements

1. Model Name: MacBook Air 2020
2. Operating System: macOS Ventura 13.4

3. Processor: M1 chip
4. Memory: 8 GB RAM Storage

2.2 Software Requirements

Python language was used for programming. A 3.9.12 Python version was installed
from python official websitdl] A jupyter Notebook of 6.4.12 was installed by following
instruction from official website of jupyterE]. The ”jupyter notebook” command is written
in terminal to start the notebook as shown in figure

3 Importing Libraries

There are certain libraries that may be not be installed by default in order to install a
library, one needs to use 'pip’ command. For example if numpy needs to be installed
then the syntax would be ”!pip install numpy” in jupyter notebok. The figure [2| shows
the commands mentioned for importing libraries. Together, these libraries offer the func-
tionalities needed to effectively handle time series data.

Thttps://www.python.org/downloads/
Zhttps://jupyter.org/install

[N J mohitjain — jupyter-notebook — 121x24

Last login: Fri Aug 4 11:09:37 on ttyseee
(base) mohitjain@Mohits-MacBook-Air ~ % jupyter notebook
2023-08-12 23:14:02.483 LabApp] JupyterLab extension loaded from /opt/anaconda3/lib/python3.9/site-packages/jupyterlab
2023-08-12 23:14:02.483 LabApp] JupyterLab application directory is /opt/anaconda3/share/jupyter/lab
:14:02.487 NotebookApp] Serving notebooks from local directory: /Users/mohitjain
.487 NotebookApp] Jupyter Notebook 6.4.12 is running at:
.487 NotebookApp] http://localhost:8888/?token=0c648e72fb68a5a88ab@23171d1e202a65c808197cc8e9d61
.488 NotebookApp] or http://127.0.0.1:8888/7token=0c648e72fb68a5a88ab@23171d1e202a65c80197cc8e9d61
488 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

To access the notebook, open this file in a browser:
file:///Users/mohitjain/Library/Jupyter/runtime/nbserver-15789—open.html
Or copy and paste one of these URLs:
http://localhost:8888/?token=0c648e72fb68a5a88ab823171d1e202a65¢c80197cc8e9d61
or http://127.0.0.1:8888/?token=0c648e72fb68a5a88ab023171d1e202a65c80197cc8e9dél

Figure 1: Terminal for Starting Jupyter Notebook

In [1]: import pandas as pd
import numpy as np
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller, kpss|
from sklearn.metrics import mean_ absolute_error, mean_ squared error

Figure 2: Importing libraries

4 Dataset Exploration

The dataset was taken from Kaggle and it contains 52,416 rows and 9 columns E| The
figure [3] shows the output for first five and last 5 rows of the dataset that was loaded in
jupyter notebook.

In [2]: df = pd.read csv('/Users/mohitjain/Desktop/Tetuan City power consumption.csv')

In [3]: df.head()

Out[3]: . - Wind general diffuse diffuse Zone 1 Power Zone 2 Power Zone 3 Power
DateTime Temperature Humidity N N -
Speed flows flows Consumption Consumption Consumption
1/1/2017
o 0:00 6.559 73.8 0.083 0.051 0.119 34055.69620 16128.87538 20240.96386
1 1/1/2017 6.414 7a
0:10 . 5 0.083 0.070 0.085 29814.68354 19375.07599 20131.08434
2 1/1/2017
0:20 6.313 74.5 0.080 0.062 0.100 29128.10127 19006.68693 19668.43373
1/1/2017
3 0:30 6.121 75.0 0.083 0.091 0.096 28228.86076 18361.09422 18899.27711
1/1/2017
4 0:40 5.921 75.7 0.081 0.048 0.085 27335.69620 17872.34043 18442.40964
In [4]: df.tail()
out[4]: DateTime Temperature Humidi Wind general diffuse diffuse Zone 1 Power Zone 2 Power Zone 3 Power
! peratur umidity Speed flows flows C i C i Consumption
52411 12/30/22;1; 7.010 724 0.080 0.040 0.096 31160.45627 26857.31820 14780.31212
52412 12/30/22:2;3 6.947 726 0.082 0.051 0.093 30430.41825 26124.57809 14428.81152
52413 L 2/30/22;13; 6.900 728 0.086 0.084 0.074 29590.87452 25277.69254 13806.48259
52414 1 2/30/22513 6.758 73.0 0.080 0.066 0.089 28958.17490 24692.23688 13512.60504
52415 12/30/2230_;g 6.580 741 0.081 0.062 0.111 28349.80989 24055.23167 13345.49820

Figure 3: Importing Dataset

5 Exploratory Data Analysis

To understand the data in a better way Exploratory Data Analysis was carried. With
”df.info()” as shown in figure [} In fig [4] it is observed that the datetime data type is in
object so it was converted into datetime object as show in figure [5]

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 52416 entries, 0 to 52415
Data columns (total 9 columns):

Column Non-Null Count Dtype

0 DateTime 52416 non-null object
1 Temperature 52416 non-null floaté64
2 Humidity 52416 non-null floaté64
3 Wind Speed 52416 non-null floaté64
4 general diffuse flows 52416 non-null floaté64
5 diffuse flows 52416 non-null floaté4
6 Zone 1 Power Consumption 52416 non-null float64
7 Zone 2 Power Consumption 52416 non-null floaté64

8 Zone 3 Power Consumption 52416 non-null floaté64
dtypes: float64(8), object(l)
memory usage: 3.6+ MB

Figure 4: Exploratory Data Analysis.

3https://www.kaggle.com /datasets/ashkanforootan /tetuan-city-power-consumption

In [6]: df['DateTime’'] = pd.to_datetime(df['DateTime'])
df.set_index('DateTime', inplace=True)

Figure 5: Datetime conversion

5.1 Time Series Modelling

The code in figure [6] shows plotting time series model using for loop as the dataset was
huge. Here, 'rows_per_subplot’ will determine how many data points will be plotted in
each subplot. The 'num_subplots’ will calculate the total number of subplots needed
based on the length of the DataFrame ('df’) and the desired number of rows per subplot.
After that subplots were created using for loop with start and end index for selecting the
data points for plotting.

Define the number of rows you want to plot in each subplot
rows_per_subplot = 1000

Calculate the number of subplots needed
num_subplots = int(np.ceil(len(df) / rows_per_subplot))

Create subplots
fig, axs = plt.subplots(num_subplots, 1, figsize=(12, num subplots * 6))

Loop through the data and create subplots
for i in range(num_subplots):
start_idx = i * rows_per_ subplot
end_idx = min((i + 1) * rows_per subplot, len(df))

Plot the selected rows

axs[i].plot(df.index[start_idx:end_idx], df['Zone 1 Power Consumption'][start_idx:end idx], label='Zone 1')
axs[i].plot(df.index[start_idx:end_idx], df['Zone 2 Power Consumption'][start_idx:end_idx], label='Zone 2')
axs[i].plot(df.index[start_idx:end idx], df['Zone 3 Power Consumption'][start_idx:end_idx], label='Zone 3')
axs[i].set_xlabel('DateTime')

axs[i].set_ylabel('Power Consumption')

axs[i].set_title(f'Subplot {i+1}")

axs[i].legend()

Adjust layout to prevent overlapping labels and titles
plt.tight_layout()

Show the plot
plt.show()

Subplot 1

45000 A

40000 4

35000 1

30000

25000 1

Power Consumption

20000 1

15000

10000

2017-01-01 2017-01-02 2017-01-03 2017-01-04 2017-01-05 2017-01-06 2017-01-07 2017-01-08
DateTime

Figure 6: Time Series Modelling

5.2 Time Series Decomposition

The code in figure [7] shows the additive decomposition of the time series. The seasonality
frequency in the dataset is defined by the period variable. The value was set to 6 for the

analysis. The ’seasonal_decompose’ function was used to decompose the time series into
its components and the model was set to additive.

Create subplots

fig, axs =

plt.subplots(num subplots, 1, figsize=(12, num_subplots * 6))

plt.subplots_adjust(hspace=0.5)
Specify the frequency of seasonality (assuming 6 timestamps per hour in the dataset)

period = 6

Loop through the data and create subplots
for i in range(num_subplots):

start_idx
end_idx

i * rows_per_subplot
min((i + 1) * rows_per_subplot, len(df))

Perform additive decomposition on the current chunk of data

result

= seasonal_decompose(df['Zone 1 Power Consumption'].iloc[start_idx:end_idx],
model='additive', period = period)

Get the trend, seasonal, and residual components

trend = result.trend
seasonal = result.seasonal
residual = result.resid
Plot the decomposed components in the current subplot
axs[i].plot(df.index[start_idx:end idx], df['Zone 1 Power Consumption'].iloc[start_idx:end_idx]
, label='Original Data')
axs[i].plot(trend.index, trend, label='Trend', color='orange')
axs[i].plot(seasonal.index, seasonal, label='Seasonality', color='green')
axs[i].plot(residual.index, residual, label='Residuals', color='red')
axs[i].set_ylabel('Power Consumption')
axs[i].set_title(f'Subplot {i+l1}"')
axs[i].legend()
Show the plot
plt.tight_layout()
plt.show()
Subplot 1
— Onginal Data
Trend X [[| f .,
— Seasonalit ™ [l [
40000 Y 4 1 \
—— Residuals | \ | | \ |
' I I \
| | no : | M
| I /N J M I\
30000 A J |
J FAY # |
s i ’
E A N N .,'J A J
g A J W | L) ™
& 20000 Y v
: !
2
10000
o L) | A — PPPEPH N A A N A,
v g e v ~ W P 4] T v R
2017-01-01 2017-01-02 2017-01-03 2017-01-04 2017-01-05 2017-01-06 2017-01:07 20170108

Figure 7: Additive time series decomposition for zone 1

5.3 Plot for temperature, Humidity and zone wise energy con-
sumption

The code in figure 8| is about grouping time series data by month and then plotting the
average temperature over each month. The "resample(’M’)” function is used to group the
data by months ("M’ represents monthly frequency). Finally the mean value is taken for
resampled months. The figure [§ shows a line plot for temperature. The figure [9] creates
a line graph to visualize the average humidity over each month. The figure [10] creates a
line graph for zone wise energy consumption in different colours.

Group the data by month and compute the mean for each month
monthly data = df.resample('M').mean()

#Plot Temperature

#plt.plot(df['Temperature'], label='Temperature', color='tab:red')
plt.plot(monthly data['Temperature'], label='Temperature', color='tab:red')
plt.title("Monthly plot for Temperature")

Text(0.5, 1.0, 'Monthly plot for Temperature')

Monthly plot for Temperature

26

24 A

22 1

20 A

18

16

14 A

12

2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Figure 8: Plotting of Temperature

Plot Humidity

#plt.plot(df['Humidity '], label='Humidity', color='tab:blue')
plt.plot(monthly data['Humidity'], label='Humidity', color='tab:blue')
plt.title("Monthly plot for Humidity")

Text (0.5, 1.0, 'Monthly plot for Humidity')

Monthly plot for Humidity

75.0 A

72.5

70.0 A

67.5

65.0 1

62.5

60.0 -

57.5 A1

2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Figure 9: Plotting of Humidity

Plot Power Consumption for each zone
#plt.plot(df['Zone 1 Power Consumption'], label='Zone 1 Power Consumption', color='tab:orange')

plt.plot(monthly data['Zone 1 Power Consumption'], label='Zone 1 Power Consumption', color='tab:orange')
#plt.plot(df['Zone 2 Power Consumption'], label='Zone 2 Power Consumption', color='tab:green')
plt.plot(monthly data['Zone 2 Power Consumption'], label='Zone 2 Power Consumption', color='tab:green')
#plt.plot(df['Zone 3 Power Consumption'], label='Zone 3 Power Consumption', color='tab:purple')
plt.plot(monthly data['Zone 3 Power Consumption'], label='Zone 3 Power Consumption', color='tab:purple')
plt.title("Zone wise monthly power consumption")

plt.legend()

<matplotlib.legend.Legend at 0x7£946846bd90>

Zone wise monthly power consumption

35000 -

30000 -

25000 -

20000 1

15000 1 Zone 1 Power Consumption
—— Zone 2 Power Consumption
—— Zone 3 Power Consumption

10000 -

2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Figure 10: Plotting of Zone wise energy consumption

6 Assumption tests

The assumption tests that were performed were related to autocorrelations. The names
of various time series variables (such as power consumption for each zone, humidity, and
temperature) that are significant for the analysis are listed in the variables list. The
variables list includes the names of various time series variables that are relevant for the
analysis, such as power consumption for each zone, humidity, and temperature.

After that Augmented Dickey Fuller(ADF) test is performed. The figure [11] shows the
code and results of ADF test. The 'result[0]’ represents the calculated ADF statistic,
'result[1]’ provides the p-value associated with the test and 'result[4]” gives critical values
at different significance levels.

The KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test is used in the code segment to eval-
uate the stationarity of various time series variables. The figure (12| shows the results of
KPSS test. The 'kpss_result[0]” represents the calculated KPSS statistic, kpss_result[1]
provides the p-value associated with the test, and kpss_result[3] gives critical values at
different significance levels.

The program is aimed at generating a pair of visualizations, namely the AutoCorrel-
ation Function (ACF) visualization and the Partial AutoCorrelation Function (PACF)
visualization, with the purpose of evaluating the autocorrelation present in a temporal
sequence. The figure [13] shows the results of ACF and PACF graphs.

Select the time series data for each variable
variables = ['Zone 1 Power Consumption'
,'Zone 2 Power Consumption'
, 'Zone 3 Power Consumption',
'Humidity', 'Temperature']

for variable in variables:
time_series_data = df[variable]

Perform the Augmented Dickey-Fuller test
result = adfuller(time_series_data)

Print the ADF test results for each variable
print (f'ADF Statistic for {variable}:', result[0])
print(f'p-value for {variable}:', result[l])
print(f'Critical Values for {variable}:', result[4])
print('\n')

ADF Statistic for Zone 1 Power Consumption: -32.12127853462614

p-value for Zone 1 Power Consumption: 0.0

Critical values for Zone 1 Power Consumption: {'1%': -3.4304749044184266, '5%': -2.8615952052
42518, '10%': -2.566799383915253}

ADF Statistic for Zone 2 Power Consumption: -25.22216377100368

p-value for Zone 2 Power Consumption: 0.0

Critical Values for Zone 2 Power Consumption: {'1%': -3.4304749044184266, '5%': -2.861595205
242518, '10%': -2.566799383915253}

ADF Statistic for Zone 3 Power Consumption: -16.36686797515679

p-value for Zone 3 Power Consumption: 2.835133086903964e-29

Critical Values for Zone 3 Power Consumption: {'1%': -3.4304749044184266, '5%': -2.861595205
242518, '10%': -2.566799383915253}

ADF Statistic for Humidity: -17.184247931293186

p-value for Humidity: 6.616075836617727e-30

Critical Values for Humidity: {'1%': -3.4304749044184266, '5%': -2.861595205242518, '10%': -
2.566799383915253}

ADF Statistic for Temperature: -9.459827585705547

p-value for Temperature: 4.384185727809652e-16

Critical Values for Temperature: {'1%': -3.4304749044184266, '5%': -2.861595205242518, '10%':
-2.566799383915253}

Figure 11: ADF test

for variable in variables:
time series_data = df[variable]

Perform the KPSS test
kpss_result = kpss(time_ series_data)

Print the KPSS test results for each variable
print(f'KPSS Statistic for {variable}:', kpss_result[0])
print(f'p-value for {variable}:', kpss_result[1])
print(f'Critical Values for {variable}:', kpss_result[3])
print('\n'")

KPSS Statistic for Zone 1 Power Consumption: 6.018599702888408

p-value for Zone 1 Power Consumption: 0.01

Critical Values for Zone 1 Power Consumption: {'10%': 0.347, '5%': 0.463, '2.5%': 0.574,
'1%': 0.739}

KPSS Statistic for Zone 2 Power Consumption: 16.860093845930926

p-value for Zone 2 Power Consumption: 0.01

Critical Values for Zone 2 Power Consumption: {'10%': 0.347, '5%': 0.463, '2.5%': 0.574,
'1%': 0.739}

KPSS Statistic for Zone 3 Power Consumption: 8.92788914353952

p-value for Zone 3 Power Consumption: 0.01

Critical Values for Zone 3 Power Consumption: {'10%': 0.347, '5%': 0.463, '2.5%': 0.574,
'1%"': 0.739}

KPSS Statistic for Humidity: 0.5777992157502823
p-value for Humidity: 0.024654616749974337
Critical Values for Humidity: {'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739}

KPSS Statistic for Temperature: 11.643586215500964
p-value for Temperature: 0.01
Critical Values for Temperature: {'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739}

Figure 12: ADF test

Plot ACF and PACF plots to assess autocorrelation

fig, axes = plt.subplots(l, 2, figsize=(10, 4))
plot_acf(time_series_data, ax=axes[0], lags=30)
plot_pacf(time_series_data, ax=axes[1], lags=30)

plt.tight_layout(ﬂ

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/graphics/tsaplots.py:348: FutureWarning: The default method 'y

w' can produce PACF values outside of the [-1,1] interval. After 0.13, the default will change tounadjusted Yule-Walk

er ('ywm'). You can use this method now by setting method='ywm'.
warnings.warn(

Autocorrelation

Partial Autocorrelation

1.00 — 1.00
0.75 1 0.75 1
0.50 A 0.50 -
0.25 4 0.25 4
0.00 0.00 lll“‘...""'------"----'-
—0.25 —0.25
—0.50 A —0.50 4
—0.75 A -0.75 4
-1.00 T u T T T T -1.00 T T T T T T T

10 15 20

25

Figure 13: ACF and PACF graphs

7 Initialising variables for SARIMAX

The code in figure shows order and seasonal order components required for time
series analysis for SARIMAX. SARIMAX is a time series forecasting model that includes
seasonality to the basic ARIMA model.

Specify the order and seasonal order parameters for SARIMAX

order = (1,

(p, d, Q)
seasonal_order = (1, 0, 1, 10) # (P, D, Q,

S)

Figure 14: Order and Seasonal orders

The code in figure [16] focuses on dividing a dataset into training and testing sets.

Specify the order and seasonal_order parameters for SARIMAX

order

(p, d, q)
seasonal_order = (1, 0, 1, 10) # (P, D, O,

S)

Figure 15: Order and Seasonal orders

8 SARIMAX Modelling and predictions

The code in figure [L7] talks about the model building of SARIMAX time series.

The code in figure involves forecasting using the fitted SARIMA model for Zone
1 power consumption, evaluating the forecasted values, and calculating Mean Squared

10

Split the data into 80% training and 20% testing
train_data, test_data = train_test_split(df, test_size=0.2, shuffle=False)|

Figure 16: Training and testing sets

Error (MSE) and Root Mean Squared Error (RMSE) metrics. 'forecastl’ contains fore-
casted results of time series, 'predicted _zonel’ stores the predicted mean values for Zone
1 power consumption from the forecast, forecasted values holds the forecasted values ob-
tained from predicted_zonel, actual_values contains the actual power consumption values
from the last 12 observations in the test data. The 'mean_squared_error(actual_values,
forecasted_values)’ calculates the MSE between the actual and forecasted values and the
square root of MSE gives RMSE.

The similar code is also there for Zone 2 power consumption, Zone 3 power consump-
tion, Temperature and Humidity.

11

Create and fit the SARIMA model for zone 1 power consumption

#model = SARIMAX(df['Zone 1 Power Consumption'], order=order, seasonal_ order=seasonal order)

modell = SARIMAX(train_data['Zone 1 Power Consumption'], order=order, seasonal_order=seasonal_order)
resultsl = modell.fit()|

RUNNING THE L-BFGS-B CODE

Machine precision = 2.220D-16

N = 5 M = 10
At X0 0 variables are exactly at the bounds
At iterate 0 f= 7.57382D+00 |proj g|= 9.20021D-02
At iterate 5 f= 7.56881D+00 |proj g|= 3.52700D-03
At iterate 10 f= 7.56875D+00 |proj g|= 8.19087D-04
At iterate 15 f= 7.56865D+00 |proj g|= 5.46129D-03
* % *
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function wvalue
* % %
N Tit Tnf Tnint Skip Nact Proijg F
5 19 22 1 0 0 6.768D-05 7.569D+00
F = 7.5686168200734656

CONVERGENCE: REL_REDUCTION OF_ F <= FACTR*EPSMCH

Figure 17: SARIMAX Model Creation.

12

forecastl = resultsl.get forecast(steps=12)
predicted zonel = forecastl.predicted_mean
print(predicted zonel)

forecasted_values = np.array(predicted_zonel)

Extract the last 12 actual test values
actual_values = np.array(test_data['Zone 1 Power Consumption'][-12:])

Calculate Mean Squared Error (MSE)
mse = mean_squared_error(actual_values, forecasted_values)

Calculate Root Mean Squared Error (RMSE)
rmse = np.sqrt(mse)

print("Mean Squared Error (MSE):", mseﬂ
print("Root Mean Squared Error (RMSE):", rmse)

2017-10-19 04:40:00 25666.045587
2017-10-19 04:50:00 25753.540162
2017-10-19 05:00:00 25823.748687
2017-10-19 05:10:00 25880.851264
2017-10-19 05:20:00 25926.696875

2017-10-19 05:30:00 25958.508600
2017-10-19 05:40:00 25995.375771
2017-10-19 05:50:00 26027.272135
2017-10-19 06:00:00 26045.157748
2017-10-19 06:10:00 26066.080167
2017-10-19 06:20:00 26081.482192
2017-10-19 06:30:00 26093.950397

Freqg: 10T, Name: predicted mean, dtype: floaté64
Mean Squared Error (MSE): 42747195.128234446
Root Mean Squared Error (RMSE): 6538.133917887767

Figure 18: SARIMAX Predictions

13

	Introduction
	System Requirement
	Hardware Requirements
	Software Requirements

	Importing Libraries
	Dataset Exploration
	Exploratory Data Analysis
	Time Series Modelling
	Time Series Decomposition
	Plot for temperature, Humidity and zone wise energy consumption

	Assumption tests
	Initialising variables for SARIMAX
	SARIMAX Modelling and predictions

