~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Karthik Krishnan Iyer
Student ID: x21205485

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Tomer

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Karthik Krishnan Iyer
Student ID: x21205485
Programme: MSc. Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Mr. Vikas Tomer
Submission Due Date: 14/08/2023
Project Title: Retail Inventory Management using Deep Learning Tech-
niques
Word Count: XXX
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Karthik Krishnan Iyer
x21205485

1 Introduction

This report is the step-by-step guide for "Retail Inventory Management Using Deep
Learning Techniques” as provided in the Research Technical Report in the methodology
and Implementation. The main aim of this report is to guide the reader to the steps for
implementation of this whole project and get the output and results as discussed in the
Technical Report. For this there are multiple steps, libraries, software, combination of
various softwares and configurations are used.

1.1 Project Overview

The project is a combination of two goal. The primary goal of the project is to detect
and count the objects and empty spaces in the shelf and display the count using YOLOv7
algorithm.Secondly, the displayed count of empty spaces is extracted through tesseract
OCR module and the extracted text is converted to speech through gTT'S(Text to speech
converter). There are series of steps which needs to be followed for the desired output.

1.2 Prerequisites

1.2.1 Hardware Used:-

e Device Name - Acer Aspire 5
e Processor - 12th Gen Intel(R) Core(TM) 15-1235U 1.30 GHzn
e RAM - 16 GB

GPU - NVIDIA GeForce MX550
ROM - 2 GB

OS - Windows

1.2.2 Software Used:-
e Programming Language:- Python
e Development Tools:- Google Colab Pro, cudnn

e Other platforms:- Google drive, labelimg, app.roboflow.com

7= Anaconda Prompt (anaconda; X + v

(base) C:\Users\karth>python --version
Python 3.9.13

(base) C:\Users\karth>

Figure 1: Python Version

print("TensorFlow version:", tf._ version_)
print("PyTorch version:", torch.__ version_)
print("NumPy version:", np.__version__)
print("OpenCV (cv2) version:", cv2.__version__)

TensorFlow version: 2.12.@
PyTorch version: 2.0.1+culls
NumPy version: 1.23.5
OpenCV (cv2) version: 4.8.0

Figure 2: Library Versions

2 Software Download and setup

Python is the primary programming language used in this study.The python is down-
loaded and setup through anaconda environment. The downloaded version of python is
3.9.13. CUDA and cudnn gpu are essential to run this project as it consumes a lot of
memory the execution speed will be less if it is executed in cpu environment

= Command Prompt

Microsoft Windows [Version 10.0.22621.1992]
(c) Microsoft Corporation. ALl rights reserved.

C:\Users\karth>nvec --version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2023 NVIDIA Corporation

Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91

Build cuda_12.2.r12.2/compiler.32965U70_0

Figure 3: CUDA Version

@ roboflow Projects Universe Documentation Forum Karthik Iyer - National college of Ireland v

Rob rse > Jacol ce » SKU 110k
Ty . Download this D: Try Pre-Trained Model
1 mEmeeetBlbeie 7 9 SKU 110k Computer Vision Project

Orgersmeeefihins

Ol g Bumnn souRce

o
" gege i pamm Jacobs Workspace »
IGLERER]: P I I;—h
i LAST UPDATED

SKU 110k 1 TRY THIS MODEL | 8monthsago
i i Drop an image or i

e PROJECT TYPE
B Overview 3 Object Detection

B) SUBJECT
Images 8 Individual-SKUs

© Dataset 6 oy | [!ﬁnf'ilﬂi! ~ | u CLASSES
g - . i I object »
i i LD o . o

o VIEWS: 4126
LV ATT]
<> APIDocs B
Explore Dataset » DOWNLOADS: 138

A
A
A\

Figure 4: Dataset Download

2.1 Dataset Download:-

The dataset is the open source public dataset. The dataset is downloaded from roboflow
website https://universe.roboflow.com/jacobs-workspace/sku-110k.

3 Data Preprocessing

3.1 Data Augmentation

The dataset downloaded is already augmented. But some of the extra images are used
with this data which are fed into roboflow which are augmented.

3.2 Data Annotation

e Firstly the downloaded dataset has predefined annotations only for objects in the
shelf. So, it is essential to annotate the "Empty’ and ’AlmostEmpty’ spaces.

e For this the labelimg annotation tool is used for this purpose.
e The environment was created by the name labelimg in anaconda.

e Then the labelimg was installed in the device and performed operation on the
images dataset.

e The classes.txt file is created in the images folder and the empty spaces and almost
empty spaces were annotated by creating bounding box.

Then the annotation performed by labelimg is saved in the format compatible with yolo
with the same name as the image. Then the manual annotation by the tool for "TEmpty’
and "AlmostEmpty’ is combined with predefined annotation of objects to form a new file

https://universe.roboflow.com/jacobs-workspace/sku-110k

@ roboflow Projects Universe Documentation Forum Karthik Iyer : National college of Ireland v

0w Bl buse
g e PREPROCESSING Auto-Orient: Apy

B
" o g
0 P

SKU 110k

Resize:

AUGMENTATIONS QOutputs per training example: 3
B Overview Fip: He

@ Images
Rotation:

© Dataset Q ‘ Grayscale:
4 Model

< APIDocs

Figure 5: Data augmentation

0
File Help

) ANACONDA NAVIGATOR e

¥
]
W

N

.” Environments Name; ’Iabel'\mg ’ Description Versiol
Location: ¢ ertificates for use with other 0
U . -
M Leaming ackages.
Packeges: [Python 39.3 v
1.8.
2\ oy al »
Pythonic binding for the ¢ libraries 49
ibxml2 and libxslt. h

Figure 6: Labelimg Environment setup in anaconda

™ Anaconda Prompt (anaconda. X~ +

(base) C:\Users\karth>activate labelimg

(labeling) C:\Users\karth>pip3 install labelimg

Requirement already satisfied: labelimg in c:\users\karth\anaconda3\envs\labelimg\lib\site-packages (1.8.6)

Requirement already satisfied: pyqt5 in c:\users\karth\anaconda3\envs\labelimg\lib\site-packages (from labelimg) (5.15.9)
Requirement already satisfied: Lxml in c:\users\karth\anaconda3\envs\labelimg\lib\site-packages (from labelimg) (4.9.3)

Requirement already satisfied: PyQt5-sip<13,>=12.11 in c:\users\karth\anaconda3\envs\labeling\lib\site-packages (from pyqt5->labelin
) (12.12.2)

Requirement already satisfied: PyQt5-Qt5>= 2 in c:\users\karth\anaconda3\envs\labelimg\lib\site-packages (from pyqt5->labeling)

5.15.2)

(labeling) C:\Users\karth>cd Downloads\datasetcolab\retail_shelf

(labeling) C:\Users\karth\Downloads\datasetcolab\retail_shelf>cd..

(labeling) C:\Users\karth\Dounloads\datasetcolab>cd retailshelf_dataset
(labelimg) C:\Users\karth\Dounloads\datasetcolab\retailshelf_dataset>cd images

(labelimg) C:\Users\karth\Dounloads\datasetcolab\retailshelf_dataset\images>labelimg train

Figure 7: Labelimg installation and operation on the dataset

¥ labellmg C:\Users\karth\Dy i in\test_1_jpg (1975)jpg 2129 / 2150) = o X

File Edit View Help

Box Labels

v [Fedit Label
Open =
t/ ([difficult
Open Dir (] Use default label
4
(Change Save Dir bt
» @ oty
Next I
jext Image el 1
] 8 emoty
Prev Image 8 Empty
(] Fille List 8
Verlfy Image CaUsers\karth\Downloads\datasetcolab\i
= CaUsers\karth\Downloads\datasetcolab\i

C:\Users\karth\Downloads\datasetcolab\i
C:\Users\karth\Downloads\datasetcolab\i
C:\Users\karth\Downloads\datasetcolab\t
C:\Users\karth\Downloads\datasetcolab\
C:\Users\karth\Downloads\datasetcolab\i
C:\Users\karth\Downloads\datasetcolab\i
C:\Users\karth\Downloads\datasetcolab\r
C:\Users\karth\Downloads\datasstcolab\i
C:\Users\karth\Downloads\datasstcolab\i
C:\Users\karth\Downloads\datasstcolab\i
C:\Users\karth\Downloads\datasetcolab\r
C:\Users\karth\Downloads\datasetcolab\r
C:\Users\karth\Downloads\datasetcolab\r
C:\Users\karth\Downloads\datasetcolab\i
C:\Users\karth\Downloads\datasetcolab\i
CaUsers\karth\Downloads\datasetcolab\: |
C:\Users\karth\Downloads\datasetcolab\i

Save
yoio Image
YoLo
&y
Create Rectox

Zoom In

35%

Figure 8: Labelimg Environment setup in anaconda

of annotation. After completing this for each image in the dataset the images and their
respective annotations are stored in the same folder named retailshelf.

3.3 Data Splitting:-

For model training the Data splitting is an important step for obtaining effective result.
The retailshelf folder which contains the images as well as annotations is splitted into
train, Validation and Test. For this the splitdataset.py file is downloaded from the github.
The command of split dataset is run which splits the data into train which constitutes
of 80 percent, validation 10 percent and test 10 percent.The splitted data is named as
retailshelfdataset.py.

As the dataset is a huge and the operation in the cpu won’t be effective enough.
So,the training is performed on google colab and the dataset is imported through google
drive. So for uploading the dataset to google drive it is converted to .zip file.

4 Implementation

4.1 Firstly the google colab pro notebook is connected to google
drive.

(0 L YOLOVZ (2)pynb 8 comment & Shere @

PRO° Fie Edit View Insert Runtime Tools Help All changes saved

+ Code + Text v

Installation

™o
High RAH Disk

roBRDT

m o # Mount Google Drive
from google.colab import drive
drive.mount('/content/gdrive')

Figure 9: Mounting the google drive for model training

0

0 # check e
import torch

torch.cuda.is_available()

[} True

Figure 10: Check for cuda

© +# clone voLovz
lgit clone https://github.com/pHidayatullah/yolov?7

Figure 11: Cloning of yolov7 pretrained model with the colab pro notebook

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Check if the cuda is operating.

The yolov7 pretrained model is downloaded from the github
and cloned with the google drive.

This operation downloads the yolov7 folder with the re-
quired files for executing the model.

The yolov7 weights are then downloaded from the github
for model training.

The .zip file is uploaded in the google drive yolov7 folder in
the data subfolder.

The .zip file is extracted in colab pro notebook for perform-
ing further operation.

For performing model training the retailshelf.yaml shoulld
be configured. As this file will be used model training the
retailshelf.yaml file should contain the location of the data-
set subfolders train, val and test.It should also contain the
class names in the same order as the index of the annota-
tion. Therefore, the index of ’AlmostEmpty’ is 0, ’TEmpty’
is 1 and ’Object’ is 2. So, they are placed in that order.

Furthermore the yolov7.yaml folder present in the cfg folder
also needs to be configured for training. The name of the
file is changed to yolovT7retailshelf.yaml. The default nc in
this file is 80 that is changed to 3.

Then the model is trained with yolov7 algorithm. The
command includes train.py file, batch size, retailshelf.yaml
file which contains the location of the dataset subfolders
with classes. Likewisely yolovT7retailshelf.yaml which con-
tains the nc information.It uses yolov7 weights for training.
It is trained for 300 epochs.

After a point the training is stopped after certain number
of epochs. So,to continue the training the command below
is used which used last.pt weights to start from the epochs
where it stopped.

The model training result are stored in the 'runs’

4.12

4.13

4.14

So, after the model training, the object detection test is
performed on some random image which is not from the
dataset to check the detection results. For this the de-
tect.py file is used. The random image is downloaded and
stored in the inference folder.

The second part is object counting. So, for this the detect-
andcount.py file is downloaded from github. This file has
code for running through every bounding box and count-
ing them on the basis of class labels. It also initiates the
counter for count of objects and empty spaces so that the
count can be displayed. There have been some alterations
made to the code then it is used to detect and count the
objects as well as empty spaces simultaneously.These res-
ults are stored in runs detect. This code is used to display
the detected image.

Now the final stage is to extract the count of the empty
spaces and convert it to speech so that the system can
speak out to the store management that how many empty
spaces are present in the shelf.This involves importing
some important libraries which include tesseract OCR for
text extraction, gTTS for text to speech conversion. cv2
and IPython.Display is used to show the image simultan-
eously with the audio.

My Drive > yolov7 -

[Tﬂ:-e v][People v][Modified r]

tessaract

scripts

rums

paper

models

inference

deploy

data

10

SN B BN BN BN BN BN BN BN BN BN
§

train.py

train_sux.py

traced_model.pt

test.py

sound.wav

sound.mp3

regquirementsl.ixt

reguirements.txt

regquirements_gpu.tat

README.md

output wav

output.mp3d

LICEMSE.md

hubconf.py

export.py

empty_count.way

empty_count.mp3

displayed_image.png

11

detect_pose.py

[1]

Download pretrained weights
lwget https://github.com/WongKinYiu/yolov7/releases/download/ve.1/yolov7.pt

--2023-87-27 ©1:06:10-- https://github.com/WongKinYiu/yolov7/releases/download/ve.1/yolov7.pt

Resolving github.com (github.com)... 20.2085.243.166

Connecting to github.com (github.com)|20.2085.243.166]:443... connected.

HTTP request sent, awaiting response... 382 Found

Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/b8243edf-9fbe-4337-95e1-425
--2023-87-27 ©1:06:10-- https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/b8243edf-9fbq
Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.108.133, 185.199.189.133, 185.199.116.133
Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.188.133|:443... connected.

HTTP request sent, awaiting response... 200 0K

Length: 75587165 (72M) [application/octet-stream]

Saving to: ‘yolov7.pt.2’

yolov7.pt.2 100%[===================>] 72.08M 17.4MB/s in 4.4s

2@23-87-27 ©1:86:15 (16.4 MB/s) - ‘yolov7.pt.2’ saved [75587165/75587165]

Figure 14: Cloning of yolov7 pretrained model with the colab pro notebook

° # Unzip Dataset

O

lunzip data/retailshelf_dataset.zip -d ./data

Streaming output truncated to the last 5600 lines.
inflating: ./data/retailshelf_dataset/images/train/1_jpg (225).jpg
inflating: ./data/retailshelf_dataset/images/train/1_jpg (226).Jjpg
inflating: ./data/retailshelf_dataset/images/train/1_jpg (227).Jjpg
inflating: ./data/retailshelf _dataset/images/train/1_ijpg (228).7jpg

Figure 15: Extracting the dataset folder

12

retail_shelfyaml X

1
2
3 train: data/retailshelf_dataset/images/train # relative to path
4 val: data/retailshelf_dataset/images/val # relative to path

5 test: data/retailshelf_dataset/images/test # relative to path

6

7

8

9

Class Names
nc: 3

names: ['AlmostEmpty’', 'Empty', 'Object']
19

Figure 16: Changing the retailshelf.yaml file to configure model training

v

yolov7_retail_shelfyaml X

1 # parameters

2 nc: 3 # number of classes

3 depth_multiple: 1.8 # model depth multiple

4 width_multiple: 1.8 # layer channel multiple
5

Figure 17: Changing the configuration file

° # Train

Ipython train.py --batch-size 8 --device @ --data data/retail_shelf.yaml --img 64@ 648 --cfg cfg/training/yolov7_retail_shelf
--weights yolov7 training.pt --name yolov7-retailshelf --hyp data/hyp.scratch.custom.yaml --epochs 368

Figure 18: Model training using yolov7

A I -
Continue Training
Ipython train.py --batch-size 8 --device @ --data data/retail_shelf.yaml --img 648 648 --cfg cfg/training/yolov7_retail_shelf.yaml --weights
runs/train/yolov7-retailshelf5/weights/last.pt --name yolov7-retailshelf --hyp data/hyp.scratch.custom.yaml --epochs 388 --resume

Figure 19: Continue training

13

° # Detection on Image

>

Ipython detect.py --weights runs/train/yolov7-retailshelf5/weights/best.pt --conf-thres 0.1 --img-size 640 --source inference/images/shelfl.jpg

Namespace (weights=['runs/train/yolov7-retailshelf5/weights/best.pt'], source='inference/images/shelfl.jpg', img_size=648, conf_thres=e.1, iou_thres=8.¢
YOLOR %’ 52f8176 torch 2.0.1+cull8 CUDA:@ (Tesla T4, 15101.8125MB)

Fusing layers...

RepConv.fuse_repvgg_block

RepConv.fuse_repvgg_block

RepConv.fuse_repvgg_block

IDetect.fuse
Model Summary: 314 layers, 36492560 parameters, 6194944 gradients
Convert model to Traced-model...

traced_script_module saved!

model is traced!

/usr/local/lib/python3.16/dist-packages/torch/functional.py:564: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the i
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

3 Emptys, 149 Objects, Done. (36.7ms) Inference, (37.4ms) NMS

The image with the result is saved in: runs/detect/exp34/shelfl.jpg

Done. (1.875s)

Figure 20: Object Detection

° Ipython detect_and_count2.py --weights runs/train/yolov7-retailshelf5/weights/best.pt --conf 8.1 --img-size 640 --source inference/images/shelfll.jpg

Figure 21: Object Detection and counting

o # Function to Show Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def showImage(path):
img = mpimg.imread(path)
plt.figure(figsize=(20,20))
plt.axis("off")
plt.imshow(img)
plt.show()

Figure 22: Displaying the image

14

° from gtts import gTTS
from IPython.display import Audio, display
import cv2
import pytesseract
import re
import matplotlib.pyplot as plt
import time # Import the time module

Path to Tesseract OCR executable (make sure Tesseract is instsz
pytesseract.pytesseract.tesseract_cmd = r'/usr/bin/tesseract’

Figure 23: Text extarction and text to speech conversion libraries

Function to extract text from the image using Tesseract OCR
def extract_text_from_image(image_path):
image = cv2.imread(image_path)
if image is None:
raise Exception("Error: Image not found. Please check the 'image_path' variable.")

text = pytesseract.image_to_string(image)
return text

Function to find the text "Empty = X" in the extracted text
def find_empty_count(text):
pattern = r"Empty=(\d+)"
match = re.search(pattern, text)
if match:
return int(match.group(1l))
else:
return None

Figure 24: Code for extracting the count of empty spaces

15

if empty_count is not None:
Print the extracted count
print(f"Empty: {empty_count}")

Convert the count to speech using gTTS
tts = gTTS(f"Empty spaces count: {empty_count}", lang='en')
tts.save('output.mp3')

Display the image

image = cv2.imread(image_path)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(16, 16)) # Adjust the size as needed
plt.imshow(image)

plt.axis('off")

plt.show()

Add a 3-second delay
time.sleep(1)

Play the audio
audio = Audio('output.mp3', autoplay=True)
display(audio)

Figure 25: Converting the extracted text to audio

16

	Introduction
	Project Overview
	Prerequisites
	Hardware Used:-
	Software Used:-

	Software Download and setup
	Dataset Download:-

	Data Preprocessing
	Data Augmentation
	Data Annotation
	Data Splitting:-

	Implementation
	Firstly the google colab pro notebook is connected to google drive.
	 Check if the cuda is operating.
	The yolov7 pretrained model is downloaded from the github and cloned with the google drive.
	This operation downloads the yolov7 folder with the required files for executing the model.
	The yolov7 weights are then downloaded from the github for model training.
	The .zip file is uploaded in the google drive yolov7 folder in the data subfolder.
	The .zip file is extracted in colab pro notebook for performing further operation.
	For performing model training the retailshelf.yaml shoulld be configured. As this file will be used model training the retailshelf.yaml file should contain the location of the dataset subfolders train, val and test.It should also contain the class names in the same order as the index of the annotation. Therefore, the index of 'AlmostEmpty' is 0, 'Empty' is 1 and 'Object' is 2. So, they are placed in that order.
	 Furthermore the yolov7.yaml folder present in the cfg folder also needs to be configured for training. The name of the file is changed to yolov7retailshelf.yaml. The default nc in this file is 80 that is changed to 3.
	Then the model is trained with yolov7 algorithm. The command includes train.py file, batch size, retailshelf.yaml file which contains the location of the dataset subfolders with classes. Likewisely yolov7retailshelf.yaml which contains the nc information.It uses yolov7 weights for training. It is trained for 300 epochs.
	 After a point the training is stopped after certain number of epochs. So,to continue the training the command below is used which used last.pt weights to start from the epochs where it stopped.
	So, after the model training, the object detection test is performed on some random image which is not from the dataset to check the detection results. For this the detect.py file is used. The random image is downloaded and stored in the inference folder.
	 The second part is object counting. So, for this the detectandcount.py file is downloaded from github. This file has code for running through every bounding box and counting them on the basis of class labels. It also initiates the counter for count of objects and empty spaces so that the count can be displayed. There have been some alterations made to the code then it is used to detect and count the objects as well as empty spaces simultaneously.These results are stored in runs detect. This code is used to display the detected image.
	 Now the final stage is to extract the count of the empty spaces and convert it to speech so that the system can speak out to the store management that how many empty spaces are present in the shelf.This involves importing some important libraries which include tesseract OCR for text extraction, gTTS for text to speech conversion. cv2 and IPython.Display is used to show the image simultaneously with the audio.

