e |

)
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Usama Hanif
Student I1D: 22108831

School of Computing
National College of Ireland

Supervisor: Furgan Rustam

‘-—
National College of Ireland \ National

MSc Project Submission Sheet ﬁ,oelieagrfg
School of Computing

Student Name: ... Usama Hanif........cccoivnniee e
Student ID: ... X2210883 1. . e .
Programme: ... Data Analytics......cccceveiiiiiiciiee, Year: ... 2023.............
Module: ... Research Project........cccceevneenee. F I I eeeennrereeeaater e e e e e e e e e e e e e anrees
Lecturer: ... (LU e F= 1 g I 2 U =3 o= o TP
Submission

Due Date: ... 1870972023

Project Title: Research Paper Summarization Using Text-To-Text Transfer
Transformer (T5) Model

Word Count: 1013......... Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ... USAMA HANIF ...

Date: = 18/09/2023.. .. e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Usama Hanif
Student ID: 22108831

1 Introduction

This manual illustrates how to execute and configure the implementation code for the current
research project. This document provides specified details about the machine hardware as well
as the programs to run. Following the below steps will enable the users to generate summaries
of the research papers using the T5, BERT, GPT2, and BART models.

2 System Specification

2.1 Hardware Specification
Following are the hardware specifications of the system that was used to develop the project:

Processor: Intel Core i7 — 9750H
RAM: 16GB

Storage: 500GB

Graphics Card: GTX 1650 4GB
Operating System: Windows 11

2.2 Software Specification

The Google Colab Pro a web-based platform was used to train and evaluate the models and its
specification was the following:

Processor: Intel Xeon

Graphics Card: A100 40GB

RAM: 80GB

Storage: 160GB

3 Software Tools

Following are the software tools that were used to implement the project:

3.1 Python

Python programming language was used to develop the project. The main reason to choose
Python was its useful libraries for visualization, dataset preparation, and deep learning models.
Python was downloaded from the main website!. Figure 1 shows the download page of
Python’s official website.

L https://www.python.org/downloads/

e python’ . I

About Downloads Documentation Community Success Stories Events

Download the latest version for Windows

Download Python 3.11.4

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other
Want to help test development versions of Python 3.12? Prereleases,

Docker images

Figure 1: Download page of Python’s official website
3.2 Jupyter Notebook

Jupyter Notebook was used as a compiler to run the code as it allows the users to implement
all the code in one place and execute the codes in small parts like cells to allow the audience
to check the output of each code with ease. Jupyter Notebook was downloaded from its official
website? and Figure 2 illustrates its download page.

JUPYLEr Lorenz Diferential EQUAtIONS wemees o 2
: i Jupyter Notebook: The Classic Notebook Interface
JUPYter wecome toR Exploring the Lorenz System The Jupyter Notebook is the original web application for creating and sharing computational

s sl ——a—— documents. It offers a simple, streamlined, document-centric experience.
-

Try it in your browser Install the Notebook

Jupyter

Weicome to the

Figure 2: Download page of Jupyter Notebook’s official website
4 Project Implementation

Following are the Python packages which were installed using pip and used to implement the
project:
e NLTK
Pandas
Numpy
Matplotlib
Keras
Tensorflow
Transformers

2 https://jupyter.org/

e Datasets
e Rouge-Score
e Huggingface-Hub

#installing necessary packages

Ipip install transformers==4.20.0

Ipip install keras nlp==6.3.8

Ipip install datasets

Ipip install huggingface-hub

Ipip install nltk

Ipip install rouge-score

#Loading necessary packages

import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

import os

import logging

import nltk

from tensorflow import keras

import keras_nlp

from transformers.keras_callbacks import KerasMetriccCallback
from google.colab import drive

from transformers import TFAutoModelForSeq2SeqLM
import matplotlib.pyplot as plt

from tensorflow import keras

import re

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

from nltk.tokenize import sent tokenize, word tokenize
from nltk.stem import WordNetLemmatizer

from sklearn.model selection import train test split
nltk.download(‘punkt”)
nltk.download(' stopwords")

nltk.download("wordnet")

Figure 3: Necessary Libraries and Packages
Pandas library was used to load and check the dataset as can be seen in Figure 4:

data

= pd.read csv('scisumm.csv')

data

text summary

0 TnT - A Statistical Part-Of-Speech Tagger Trig.... TnT - A Statistical Part-Of-Speech TaggerinTri...

1 Mildly Non-Projective Dependency Structures Sy Mildly Non-Projective Dependency StructuresinS...

2 Using Corpus Statistics And WordNet Relations ... Using Corpus Statistics And WordNet Relations ..

3 Automatic Labeling Of Semantic Roles presenta... Automatic Labeling Of Semantic Roles\nWe prese. .

4 Generative Models For Statistical Parsing With... Generative Models For Statistical Parsing With...
1004 Combining Lexical Syntactic And Semantic Featu... Combining Lexical Syntactic And Semantic Featu...
1005 Similarity of Semantic Relations are at least .. Similarity of Semantic Relations\nThere are at. .
1006 Further Meta-Evaluation of Machine Translation... Further Meta-Evaluation of Machine Translation...
1007 Soft Syntactic Constraints for Hierarchical Ph... Soft Syntactic Constraints for Hierarchical Ph...
1008 A Unification Method For Disjunctive Feature D A Unification Method For Disjunctive Feature D...

1009 rows x 2 columns

The dataset was preprocessed by converting the text into lowercase characters which can be

Figure 4: Loading and Checking the Dataset

seen in the following Figure 5:

def preprocess text(text):
Tokenize the text into sentences and words

sentences =
words =

sent_tokenize(text)

[word.lower() for sent in sentences for word in word tokenize(sent)]

Joining the processed words back into a sentence

processed text =

'.join(words)

return processed text

Applying the preprocessing on the 'text' column
data['preprocessed text'] = data['text'].apply(preprocess text)

Display the preprocessed DataFrame
print(data.head())

def preprocess_summary(summary):
Tokenize the summary into sentences and words
sentences = sent tokenize(summary)
words = [word.lower() for sent in sentences for word in word tokenize(sent)]

Joinin the processed words back into a sentence
processed_summary = ' '.join(words)

return processed summary

Applyin the preprocessing on the 'summary' column
data['preprocessed summary'] = data['summary’].apply(preprocess summary)

Display the preprocessed DatarFrame

print(data.head())
text summary preprocessed_text preprocessed_summary
0 TnT - A Statistical Part-Of-Speech Tagger TnT - A Statistical Part—Of—Spee_c:h tnt - a statistical part-of-speech tag_ger nt - a statistical part-of-speech tagger frig__
Trig.... TaggerinTri_.. trig...
1 Mildly Non-Projective Dependency Mildly Non-Projective Dependency mildly non-projective dependency mildly non-projective dependency structures
Structures Sy... StructuresinS._.. structures sy._. Sy
2 Using Corpus Statistics And WordNet Using Corpus Statistics And WordNet using corpus statistics and wordnet using corpus statistics and wordnet relations
Relations ... Relations ... relations ...
3 Automatic Labeling Of Semantic Roles Automatic Labeling Of Semantic Roles\nWe automatic labeling of semantic roles automnatic labeling of semantic roles we
presenta... prese... present a... presen...
n Generative Models For Statistical Parsing Generative Models For Statistical Parsing generative models for statistical parsing generative models for statistical parsing
With... With... with.... with....

Figure 5: Preprocessing of the Dataset

After applying preprocessing, the preprocessed columns were saved while others were dropped
and the dataset was saved in a CSV format which can be seen in the following Figure 6:
columns_to drop = ['text', 'summary’]

data.drop(columns_to drop, axis=1, inplace=True)

Saving the Preprocessed dataset
data.to csv('preprocessed scisumm.csv', sep=",", index=False, encoding='utf-8')

Figure 6: Dropping the columns and saving the preprocessed dataset

The preprocessed dataset was uploaded to the Huggingface website and later loaded into the
Google Colab Platform which can be seen in the following Figure 7:

from datasets import load dataset
#lLoading preprocessed dataset from the HuggingFace repository
dataset = load dataset("usamahanif719/scisumm”, split="train™)

Figure 7: Loading Preprocessed dataset from Huggingface

4.1 Implementation of the T5 Model

Some important variables like learning rate, number of epochs, and model version were
declared in Figure 8.

#Declaring some important values for model building

MAX TARGET LENGTH = 150 # Maximum length of the summary
BATCH SIZE = 4 # Batch size for training

LEARNING RATE = le-5 # Learning rate for training

EPOCHS = 18 # Maximum number of epochs the model will train

#version of the model that will be used
MODEL = "t5-base"

Figure 8: Declaring Important Values

In Figure 9 the google drive was mounted and some folders were created to save checkpoints
and models:

Mounting the Google Drive to save model and checkpoints
drive.mount('/content/drive")

Mounted at /content/drive

#Creating the checkpoints folder in the Google Drive
CHECKPOINT DIR = '/content/drive/MyDrive/T5 Model Checkpoints'

#Checking i1f the checkpoint folder exist and if not then creating a new one
if not os.path.exists(CHECKPOINT DIR):
os.makedirs (CHECKPOINT DIR)

#Creating the model folder in the Google Drive to save the models
SAVED MODEL DIR = "/content/drive/MyDrive/T5 Trained Model®

#Checking if the model folder exist and if not then creating a new one
if not os.path.exists(SAVED MODEL DIR):
os.makedirs(SAVED MODEL DIR)

Figure 9: Mounting Google Drive and Creating folders

Figure 10 shows the split of the dataset into train and test sets.

#Splitting the dataset into train and test sets
dataset = dataset.train test split(

train size=0.8, test size=08.2
)

Figure 10: Splitting Dataset
In Figure 11 a suitable tokenizer was downloaded for the T5 model

from transformers import AutoTokenizer
Downloading the suitable tokenizer for the base T5 model
tokenizer = AutoTokenizer.from pretrained(MODEL)

Figure 11: Downloading Tokenizer

In Figure 12 the prefix was declared to download the summarization capabilities of the T5
model:
Creating a prefix to download the T5's summarization capabilites
if MODEL in ["t5-small™, "t5-base", "t5-large”, "t5-3b", "t5-11b"]:
prefix = “"summarize: "

else:
prefix =

Figure 12: Declaring the prefix for the model

In Figure 13, a function was created to tokenize the dataset columns, and a map function was
used to apply it.

Creating a function to tokenize the dataset

def preprocess function(examples):
inputs = [prefix + doc for doc in examples["preprocessed text"]]
model inputs = tokenizer(inputs, truncation=True, padding=True)

Setup the tokenizer for targets
with tokenizer.as target tokenizer():
labels = tokenizer(
examples["preprocessed summary”], max_length= MAX TARGET LENGTH, truncation=True, padding=True,
)

model inputs[“labels"] = labels["input ids"]

return model inputs

Applying the tokenization function to dataset using map function
tokenized datasets = dataset.map(preprocess function, batched=True)

Figure 13: Applying Tokenization

In Figure 14, seq2seq class was downloaded to cache the data:

from transformers import TFAutoModelForSeq2SeqlLM
Downloading the seq2seq class to cashe the data
model = TFAutoModelForSeg2SeqLM.from pretrained(MODEL)

Figure 14: Cache the dataset

In Figure 15, a seq2seq data collator was downloaded and applied to the dataset

from transtormers import DataCollatorForSeq2Seq
Downloading the datacollator of seq2seq class to pad and embedding the data
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="tf")

Applying the datacollator to both the train and test set
train_dataset = tokenized datasets["train"].to tf dataset(
batch size=BATCH SIZE,
columns=["input ids", "attention mask", "labels"],
shuffle=True,
collate fn=data collator,
)
test dataset = tokenized datasets["test"].to tf dataset(
batch size=BATCH SIZE,
columns=["input ids", "attention mask", "labels"],
shuffle=False,
collate fn=data collator,

)

generation dataset = (

tokenized datasets["test"]

.shuffle()

.select(list(range(200)))

.to tf dataset(
batch size=BATCH SIZE,
columns=["input ids", "attention mask", "labels"],
shuffle=False,
collate fn=data collator,

Figure 15: Applying the data collator to the dataset

In Figure 16, the T5 model was compiled and trained for 10 epochs:

Optimizng and compiling the data

optimizer = keras.optimizers.Adam(learning rate=LEARNING RATE)
model .compile(optimizer=optimizer)

Training the model on train set
model . fit(

train_dataset, validation data=test dataset, epochs=EPOCHS
)

Epoch 1/1@
202/202 [1 - 233s goems/step - loss: 1.7974 - val loss: 0.7629
Epoch 2/10
202/202 [] - 1565 773ms/step - loss: ©.7863 - val_loss: ©.6890
Epoch 3/1e
202/202 [] - 155s 776ms/step - loss: ©.7233 - val loss: ©.6595
Epoch 4/1e
202/202 [] - 1565 771ms/step - loss: ©.6789 - val loss: 0.6363
Epoch 5/10
202/202 [1 - 155s 770ms/step - loss: ©.6472 - val loss: 0.6193
Epoch 6/1@
202/202 [] - 155s 770ms/step - loss: ©.6202 - val loss: 0.6853
Epoch 7/10
202/202 [] - 1565 771ms/step - loss: ©.6006 - val loss: ©.5903
Epoch 8/1@
202/202 [1 - 156s 771ms/step - loss: ©.5847 - val loss: ©.5817
Epoch 9/18
202/202 [] - 155s 770ms/step - loss: ©.5687 - val loss: @.5731
Epoch 18/1@
202/202 [1 - 156s 774ms/step - loss: ©.5538 - val loss: ©.5736

Figure 16: T5 model training

Figure 17 shows the loss graph of the trained T5 model:
8

1.8 1 —— Training Loss
-~ Validation Loss
1.6

0.8 A

0.6 1 o - -

Epochs

Figure 17: Loss graph of the trained T5 model

Figure 18 shows the code for generating the summaries using the trained T5 model:

from transformers import pipeline
summarizer = pipeline("summarization”, model-model, tokenizer=tokenizer, framework="tf")

summarizer(
raw_datasets["test"][2]["preprocessed_text"],
max_length=MAX_TARGET_LENGTH,

)

[{"summary_text': 'introducing cross-lingual word clusters for direct transfer of linguistic structure it has been establi
shed that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of
linguistic structure . while previous work has focused primarily on english , we extend these results to other languages ,
along two dimensions : first , they hold true for a number of languages . second , and more interestingly , a system for i
nducing crosslingual clusters and we show that by augmenting direct-transfer systems , the relative error of delexicalized
dependency recognizers , can be reduced by up to 26 % .'}]

Figure 18: Generating Summary

Figure 19 shows the evaluation of the T5 model using ROUGE scores:
9

from nltk.translate.bleu score import sentence_bleu

from rouge score import rouge scorer

Generating the ROUGE scores of the generated summary

scorer = rouge_scorer.RougeScorer([‘rougel’, ‘rouge2’, 'rougel'], use_stemmer=True)

reference_summary = dataset["test"][8]["preprocessed_summary"] # The reference summary for evaluation

generated_summary = summarizer(dataset["test"][@]["preprocessed text"], max_length=MAX_TARGET_LENGTH, truncation=True,
return_tensors="pt")[8]

generated_summary_token_ids = generated_summary|[‘summary token_ids']
generated_summary text = tokenizer.decode(generated summary_token_ids, skip special tokens=True)

scores = scorer.score(generated_summary_text, reference_summary)
print(scores)

{"rougel: Score(precision=8.7130434782688696, recall=@.9879518672289156, fmeasure=0.8282828282828283), 'rouge2’: Score(pr
ecision=0,7617543859649122, recall=8.975689756897561, fmeasure=8.8163265386122448), 'rougel': Score(precision=8,7138434782
608696, recall=8,9879518872289156, fmeasure=0.5282828282828283)}

Figure 19: ROUGE scores of the T5 model

Figure 20 shows the evaluation of the T5 model using the BLEU score

from nltk.translate.bleu_score import sentence_bleu

reference = [reference summary.split()]
candidate = generated_summary_text.split()

Calculating the BLEU score
bleu_score = sentence_bleu(reference, candidate)
print{bleu_score)

8.4781953268867201986

Figure 20: BLEU score of the T5 model

In Figure 21 the trained model is saved into Google Drive.

Saving the Trained model to the Google Drive
model.save(SAVED MODEL DIR)

Figure 21: Saving the model

4.2 Implementation of the BERT Model

The BERT model’s tokenization was implemented as same as was done for T5. Figure 22
shows the variables declared for the BERT model,

#Declaring some important wvalues for model building
BATCH_SIZE = 8 # Batch size for training the model

LEARNING _RATE = 2e-5 # Llearning rate for training the model
EPOCHS = 58 # Maximum number of epochs

#uversion of the model that will be used
MODEL_CHECKPOINT = "bert-base-cased”

Figure 22: Values for the BERT model

Figure 23 shows that the BERT model was trained for 50 epochs.
10

Epoch 39/58
181/1081 [===============cc=cmcooco=oo-
Epoch 48/58
181/181 [==============================
Epoch 41/58
101/181 [=================s============
Epoch 42/56
101/181 [==============================
Epoch 43/58
181/101 [======================c=======
Epoch 44/58
181/181 [==============================
Epoch 45/58
101/181 [=================s============
Epoch 45/58
101/181 [==============================
Epoch 47/58
181/181 [==============================
Epoch 48/58
181/181 [==============================
Epoch 48/58
101/181 [=================s============
Epoch 58/58
101/181 [=================s============

1
1

1295

128s

129s

129s

129s

128s

129s

129s

1293

12095

129s

12093

1s/step
1s/step
1s/step
1s/step
1s/step
1s/step
1s/step
1s/step
1s/step
1s/step
1s/step

1s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

a,

4.

.1581 - wval_loss: 3.8918
L1581 - wval_loss: 3.8773
L1433 - val_loss: 3.9414
L1467 - val_loss: 3.8978
.1267 - val_loss: 3.9841
.1298 - wval_loss: 3.8413
L1429 - val_loss: 3.89716
.B946 - val_loss: 3.9017
.1241 - val_loss: 3.9064

L1138 - wval_loss: 3.8991

1834 - val_loss: 3.8612

1859 - val_loss: 3.9722

Figure 23: Training of the BERT model
Figure 24 shows the loss graph of the BERT Model.

6.0 4 -~ Training Loss
—— Validation Loss
8.5
@ 5.0 4
S
4.5 1
4.0 1
0 10 20 30 40 50

Epochs

Figure 24: Loss Graph of the BERT model

Figure 25 shows the ROUGE scores of the trained BERT model.

11

generated summary token ids = generated summary['summary token ids']
generated summary text = tokenizer.decode(generated summary token ids, skip special tokens=True)

scores = scorer,score(generated summary text, reference summary)
print(scores)

{"rougel": Score(precision=@.7535545023696683, recall=8.4162303664921466, fmeasura=.5362563237774631), 'rouged’: Score(pr
ecision=p.5238005238805238, recall=8.2887130187611549, fmeasure=0.3721504230118444), 'rougel’: Score(precision=@.686635671
0080474, recall=B.33507853463141363, fmeasure=B.43178320484721757)}

Figure 25: ROUGE scores of the BERT model

Figure 26 shows the BLEU score of the Trained BERT model.

from nltk.translate.bleu_score import sentence_bleu

reference
candidate

[reference_summary.split()]
generated_summary_text.split()

Calculating the BLEU score
bleu_score = sentence_bleu(reference, candidate)
print(bleu_score)

B6.2134688280180426

Figure 26: BLEU score of the BERT model

4.3 Implementation of GPT2 Model
In Figure 27 the pre-trained gpt2 model was declared

#Declaring some important values

MAXY TARGET LENGTH = 288 # Maximum Length of the output by the model
version of the model that will be used

MODEL_CHECKPOINT = "gpt2"

Figure 27: Declaring GPT2 model

Figure 28 shows that the GPT2 tokenizer was downloaded and Figure 29 shows that a
function was created to tokenize the dataset and a map function was used to apply the
tokenization.

from transformers import GPT2Tokenizer

Downloading the GPTZ2 tokenizer for the model

tokenizer = GPT2Tokenizer.from_pretrained(MODEL_CHECKPOINT)
Add a new padding token to the tokenizer
tokenizer.add special tokens({'pad token': "[PAD]'})

Figure 28: Downloading GPT2 tokenizer

12

Creating a function to tokenize the dataset
def preprocess_function{examples):
inputs = [doc for doc in examples[“preprocessed_text™]]
model inputs = tokenizer(inputs, padding="max_length”, truncation=True, return_tensors="tf")
print{"Input IDs shape:”, model inputs[“input_ids"].shape)
print{"Attention Mask shape:”, model_inputs[“attention_mask”].shape)

Calculating the maximum target Length dynamically based on the batch
max_target_length = max{len{summary) for summary in examples["preprocessed_summary"])
max_target_length = min{max_target_length, MAX_TARGET_LENGTH)
labels = tokenizer(

examples["preprocessed_summary”],

padding="max_length",

max_length=max_target_length,

truncation=True,

return_tensors="tf",
Y["input_ids"]

model_inputs["labels"] = labels

return model_inputs

Applying the tokenization function to dataset using map function
tokenized_datasets = dataset.map(preprocess_function, batched=True)

Figure 29: Applying the tokenization to the dataset

The data collatoring was applied as same as was done in the T5 model. Figure 30 shows the
ROUGE scores of the GPT2 model.

generated summary token ids = generated summary['summary token ids']
generated summary_text = tokenizer.decode(generated summary token ids, skip special tokens=True)

scores = scorer,score(generated summary text, reference summary)
print(scores)

{"rougel": Score(precision=6.9132231484958677, recall=0.2822477650063857, fneasure=.43121951219512195), 'rougel’: Score(p
recision=d.8708755186721092, recall=B.2557544757033248, fmeasure=8.39180684261974583), "rougel’: Score(precision=@.8595041
32231485, recall-0,2656449553001277, fmeasure=0.4858536585365854)}

Figure 30: ROUGE scores of the GPT2 Model
Figure 31 shows the BLEU score of the GPT2 model.

from nltk.translate.bleu_score import sentence_bleu

reference
candidate

[reference_summary.split()]
generated_summary_text.split()

Calculating the BLEU score
bleu score = sentence_bleu(reference, candidate)
print({bleu_score)

8.19936258437373938

Figure 31: BLEU score of the GPT2 Model

13

4.4 Implementation of the BART Model

Figure 32 shows the implementation of the pre-trained BART model.
version of the model declared

MODEL_CHECKPOINT = 'facebook/bart-base’
from transformers import BartTokenizer, TFBartForConditionalGeneration

Importing and initializing the BART tokenizer

tokenizer = BartTokenizer.from pretrained(MODEL CHECKPOINT)
Add a new padding token to the tokenizer
tokenizer.add_special tokens({'pad_token': "[PAD]'})

applying the preprocess function for BART tokenizer and dynamic padding
def preprocess_function(examples):
inputs = [doc for doc in examples['preprocessed text"]]
model inputs = tokenizer(inputs, padding="max length", truncation=True, return_tensors="tf")
print("Input IDs shape:", model inputs["input ids"].shape)
print("Attention Mask shape:", model inputs["attention_mask"].shape)

Calculating the maximum target Length dynamically based on the batch
max_target_length = max(len(summary) for summary in examples["preprocessed summary”])
max_target_length = min(max_target_length, MAX TARGET_LENGTH)
labels = tokenizer(

examples["preprocessed_summary”],

padding="max_length",

max_length=max_target_length,

truncation=True,

return_tensors="tf",
J["input_ids"]

model_inputs[“labels"] = labels

return model_inputs
tokenized datasets = dataset.map(preprocess function, batched=True)
Initializing the BART model
model = TFBartForConditionalGeneration.from_pretrained(MODEL_CHECKPOINT)

Figure 32: Implementation of the BART model

The data collatoring was implemented as same as done for the T5 model. Figure 33 shows the
ROUGE scores of the BART model.

generated summary token ids = generated summary['summary token ids']

generated summary_text = tokenizer.decode(generated summary token ids, skip special tokens=True)

scores = scorer.score(generated summary text, reference summary)
print(scores)

{"rougel": Score(precision=@.7469879518072289, recall=0.6678431372549919, fmeasure=0,6762702702702761), 'rouge2’: Score(pr
ecision=0.6219512195121951, recall=@.504950495049505, fmeasure=0.5573770491803278), 'rougel’: Score(precision=0.6867469879
518872, recall-.5588235294117647, fmeasure=B.5162162162162163)}

Figure 33: ROUGE scores of the BART model

14

Figure 34 shows the BLEU score of the BART model.

from nltk.translate.bleu_score import sentence_bleu

reference
candidate

[reference_summary.split({)]
generated_summary_text.split()

Calculating BLEU score
bleu_score = sentence_bleu{reference, candidate)
print({bleu_score)

B8.232852117445726122

Figure 34: BLEU score of the BART model

15

