

Configuration Manual

MSc Research Project

Data Analytics

Urun Gungor

Student ID: x20246404

School of Computing

National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Urun Gungor

Student ID:

X20246404

Programme:

Data Analytics

Year:2023

Module:

MSc Research Project

Lecturer:

Dr. Catherine Mulwa

Submission Due

Date:

14/08/2023

Project Title:

Leukaemia Cell Classification with using DC-GAN versus 3

Traditional Techniques

Word Count:47

Page Count:3191

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

14/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Urun Gungor

Student ID: x20246404

INTRODUCTION

This document presents research configuration steps. The architecture is Resnet-50 for each

model.The configuration manual is structured as follows; data preprocessing, leukemia

classification, generated data with DC-GAN and classification, produced data with ADASYN

and classification, produced data with weighted random sampling with classification, It

includes data produced with data augmentation and classification sections.

Code links :

Classification

https://www.kaggle.com/code/petssss/resnet-50-classification/notebook

Data generation with DC-GAN and Classification

https://www.kaggle.com/petssss/dc-gan-generated-images/edit

https://www.kaggle.com/petssss/resnet-50-with-gan-data/edit

Data Produced with ADASYN and Classification

https://www.kaggle.com/petssss/adasyn/edit

Data Produced with Weighted Random Sampling and Classification

https://www.kaggle.com/code/petssss/weighted-random/notebook?scriptVersionId=139507977

Data Produced with Data Augmentation and Classification

https://www.kaggle.com/code/petssss/data-aug/edit

Presentation link:

-From Youtube

 -Presentation of Technical Report → https://www.youtube.com/watch?v=AX_5kvCzP20

 -Presentation of Data and Code → https://drive.google.com/file/d/1lFf9demcIidl1qxG5-Usz36c3jAQipzy/view

 -From Drive

 -Presentation of Technical Report → https://www.youtube.com/watch?v=rdZyAVH1Vyk

 -Presentation of Data and Code → https://drive.google.com/file/d/1S1OhqPXd2-PPLJ0nhvtDSYX1U8RKBbZs/view

https://www.youtube.com/watch?v=AX_5kvCzP20
https://drive.google.com/file/d/1lFf9demcIidl1qxG5-Usz36c3jAQipzy/view
https://www.youtube.com/watch?v=rdZyAVH1Vyk
https://drive.google.com/file/d/1S1OhqPXd2-PPLJ0nhvtDSYX1U8RKBbZs/view

2

SOFTWARE CONFIGURATION

1 Data Preprocessing

1.1 Import Libraries

Required libraries for all operations were imported.

To import numpy as np : To work with e multidimensional array-processing with high-

performance.

import pandas as pd : To data analysis and manipulation tool, fast, powerfully.

import seaborn as sns : To statistical data visualizaiton.

import sklearn : To do ml operations easily.

import os : To connecting with the operating system, like creating files and directories,

management of files and directories

import shutil : To make high-level operation on a file

import cv2 : To makes easier to find the package with search engines

3

import imgaug as ia : To image augmentation in machine learning experiments.import

matplotlib.pyplot as plt : To draw graps.

%matplotlib inline : To display plots inline.

import operator : To use operators.

import random : To create random numbers.

import skimage : To collection of algorithms for image processing and computer vision.

from skimage.io import imread, imshow, imsave

from PIL import Image: To add and manage for opening, manipulating, and saving many

different image file formats.

Necessary libraries for image processing

import tensorflow as tf : To data automation, model tracking, performance monitoring, and

model retraining.

from tensorflow.keras.layers import (BatchNormalization, Conv2D, MaxPooling2D,

Activation, Flatten, Dropout, Dense, MaxPool2D) :

from tensorflow.keras import layers : To make deep learning operations.

1.2 IMPORT DRIVE TO GET IMAGES

With using file paths fuction created a way to get data from Google drive.

1.3 TRAIN DATA

4

Glob is a function that used to search for files that match a specific file pattern or name to find my dataset in
Google drive.

1.4 CREATE VALIDATION SET FOR ALL AND HEM

1.5 GET DATASET DATA TYPE INFORMATION

1.6 CREATE TRAIN DATASET FOR ALL AND HEM CLASS

5

Output :

1.7 GIVE NEW NAME VALIDATIN SET IMAGES IN DRIVE

1.8 CROP FROM 410 TO 210 210 AND SAVE IMAGES

The initial size of the data images was 410. However, there was a black background around

the cells. This black background was crop to most suitable size was 210.

1.9 IMAGE DATA TRANSFORMATION TO ARRAYS FOR 2 CLASS

There are 7272 data for ALL and 2300 data for HEM in the train dataset. The array size is 210 i and has 3-
dimensional.

6

1.10 TRAIN ALL CLASS

1.11 READ AND CROP TRAIN ALL AND HEM

Output

7

2 CLASSIFICATION WITH RESNET-50

2.1 IMPORT LIBRARIES

2.2 IMPORT OTHER LIBRARIES FOR DEEP LEARNING

Sub-libraries imported such as metrics, layers optimization functions.

8

2.3 GET DATA FROM GOOGLE DRIVE

2.4 CREATE TEST AND TRAIN SET

Train and test set assigned 2 class as represented ALL and HEM.

Output :

9

2.5 INITIALIZATION OF RESNET-50 MODEL

To print : print("Summary of default ResNet50 model.\n")

To import Resnet50 :from tensorflow.keras.applications import resnet50

To Initialize model with model_resnet=resnet50.ResNet50(weights='imagenet')

To display model summary : model_resnet.summary()

Output :

10

2.6 DEFINE MODEL INNER LAYERS

To prepare input_layer to pass our image size which is (210,210,3) :

input_layer=layers.Input(shape=(210,210,3))

Change the last layer that are not including top layer:

resnet_model=resnet50.ResNet50(weights='imagenet',input_tensor=input_layer,include_top=

False)

To see the summary of the model with our properties: resnet_model.summary()

Output :

A specific value (based on data preprocess) was assigned to the model layers as 210,210,3 and the aimed to
get more effective results.

11

2.7 DEFINE INNER LAYER PARAMETERS

To define last layer : last_layer=resnet_model.output

To add flatten layer: flatten=layers.Flatten()(last_layer)

To add first dense layer : =layers.Dense(100,activation='relu')(flatten)

To add second dense layer : output_layer=layers.Dense(2,activation='softmax')(flatten)

To creating modle with input and output :

layermodel=models.Model(inputs=input_layer,outputs=output_layer)

To summarize the model :model.summary()

Relu was used as the activation function and two layes were added.

2.8 TRANSFER LEARNING and PARAMETERS

Transfer learning was applied to get fast and more effective results.Firstly, all inner layers freeze and model
train with out layer.

base_model_resnet.trainable = False → represent freeze inner layer

Secondly model trained with all layers.

base_model_resnet.trainable = True → represent train model with all layer

12

a) Train with only out layer

b) Train with all layers

13

2.9 VISUALIZATION
a) Confusion matrix

b) Metrics

c) Loss graph

d) Accuracy graph

14

3 GENERATED IMAGES WITH DC-GAN AND

CLASSIFICATION

GAN is a machine learning algorithm that trains a generator and allocator simultaneously and

generates new data in a loop. The main goal is to generate healthy, cancer-free synthetic data to

balance the CNMC 2019 dataset with DCGAN.

Healthy cells are less than 4000 leukemia cells. For this reason, approximately 5028 healthy (HEM)

synthetic data were produced. On the other hand, producing high quality synthetic data is the other

goal. Therefore, the discriminator is not necessary in the first place. However, the discriminator

controlling the similarity ratio between the original data and the synthetic data was not excluded, as

it was not removed. Since the similarity ratio between the synthetic data and the original data was

aimed to be high, the training time was ignored and the learning rate was kept small.

The next step was add generated images to original dataset and classification with Resnet-50.

Figure : Architecture of DC-GAN

3.1 IMPORT LIBRARIES

15

Import Numpy as Np : There are lists used instead of arrays in Python, but process is too slow. NumPy is,
returning an array up to 50 times faster than traditional Python lists because most of the fast computational parts are
written in C or C++.

Import Os : The OS module in Python is to interface with the Windows, Mac or Linux operating

system on which Python runs, by making the operating system use its functionality.

Import Cv2: Opencv is a basic library for image analysis and has more than 2,500 optimized

algorithms. It works easily in windows, Cv2 is last version.

Import Matplotlib.Pyplot As Plt : Matplotlip was used for 2D graphics and working with multiple graphics.

%Matplotlib Inline : It is a function that contribute to renders the figure in a notebook, instead of

displaying a dump of the figure object for more fast.

Import Operator : Operator module be used for efficient functions for better comparison.

Import Tensorflow As Tf : Tensorflow is a fundamental library that used for all operation

especially deep network algorithms.

Import Random : Used for generate random numbers.

From Keras.Preprocessing.Image Import Imagedatagenerator : For generating batches image data
with real-time data augmentation.

Import Sys, Os, Glob, Time, Imageio : output script name with sys, recursively create folders in the current

path, Directory tree generator with os, file search with glob.

Import Numpy As Np, Pandas As Pd : For data manipulation and analysis.

Import Matplotlib.Pyplot As Plt : Part of matplotlip for graphic and chart.

Import Matplotlib.Animation As Animation : Part of matplotlip for animation.

From Ipython.Display Import Html : To embed rendered HTML output into IPython output.

From Pil Import Image : To import images.

Import Torch : A Tensor library like NumPy, to support GPU.

Import Torchvision.Utils As Vutils : To effective visualization.

From Keras Import Models, Layers, Optimizers : To optimizate of model and layer.

From Keras.Models Import Sequential : To assign each layer has exactly one input tensor and

one output tensor.

From Keras.Utils Import Array_To_Img, Img_To_Array, Load_Img : For array converted to

image.

16

Import Tensorflow As Tf : Fundamental library.

3.2 GET VALIDATION AND TEST DATA ON KAGGLE

3.3 CREATE TRAİN AND VALIDATION DATASET AND DEFINE A

PATH TO GET TEST AND TRAINING SET

17

import glob : File search for glob.

File_paths = With a path to reach and get data from Kaggle.

To root directory for dataset with used path_root, path_train, path_test, path_val.

To training images first step is, defined Ximg_all with glob and Ximg_hem.

To training images used train_all and train_hem with glob.

To test images test_all and test_hem with os.

To Print with .format(len(Ximg_all), len(Ximg_hem),

To print with format(len(train_all), len(train_hem),

To print with .format(len(test_all), len(test_hem).

 Output

3.4 DEFINE TIME TYPES WİTH İF / ELSE

3.5 RESIZE IMAGES to 128 X 128 PIXEL SIZE AND PLOT

18

nrows, ncols = 4, 7 : To plot images with 4 rows and 7 colomns.

plt.figure : Define figure size 16 to 10.

img = img.resize :, resample 128 to 128 pixel size for processing data in dcgan simplier.

plt.imshow(img) and plt.title(name[:-5], fontsize=9) : Show and assign cell plot properties.

OUTPUT

3.6 CONVERT NO ARRAY AND NORMALIZED IMAGES

This part to resizes the pictures, converts them to no arrays, and normalizes them.

19

3.7 CREATE TRAIN DATASET

OUTPUT

()shape is to Get the dimensions of Pandas and NumPy type objects in Python.

3.8 CREATE GRID GRAPH

20

The algorithm required to define, create and draw the grid function was created and the size of the array was

adjusted accordingly.

OUTPUT

3.9 MAIN PART / CREATE DC-GAN NETWORK ARCHITECTURE

n_epoch =# Number of training epochs assigned 1000

batch_size = Batch size during training assigned 128.

latent_dim = Size of z latent vector, generator imput assigned 100

cols, rows = 128, 128 (images resized)

21

Number of channels in the training images.

channels = Number of channels in the training images assigned 3. For RGB color images this is 3.

dim = define dimensions

in_shape = (cols, rows, channels) # height, width, color

lr = Learning rate for optimizers assigned 0.001

beta1 = Beta1 hyperparam assigned for Adam optimizers to 0.5..

ngpu = Number of GPUs available which means assigned 1. Use 0 for CPU mode.#

nrows, ncols = plot ncols images in row and nrows images in column assigned 3, and 4 respectively.

3.10 IMPORT TENSORFLOW AND KERAS OPTIMIZER ADAM FOR

DC-GAN NETWORK ARCHITECTURE

Adam used as optimization fuction.

3.11 DEFINE DISCRIMINATOR AND LAYERS

22

define_discriminator in_shape= images pixel size assined 50,50,3 for easier train.

model = models.Sequential()

model.add assigned (layers.Conv2D = (64, (5,5)

(layers.LeakyReLU assigned alpha=0.2)

downsample started to 64x64

first layer

model.add(layers.Conv2D(32, (5,5), strides=(2,2), padding='same'))

model.add(layers.LeakyReLU(alpha=0.2))

downsample to 32x32

second layer

model.add(layers.Conv2D(16, (5,5), strides=(2,2), padding='same'))

model.add(layers.LeakyReLU(alpha=0.2))

downsample to 16x16

third layer

model.add(layers.Conv2D(8, (5,5), strides=(2,2), padding='same'))

model.add(layers.LeakyReLU(alpha=0.2))

downsample to 8x8

fourth layer

model.add(layers.Conv2D(4, (5,5), strides=(2,2), padding='same'))

model.add(layers.LeakyReLU(alpha=0.2))

classifier function and parameters

model.add(layers.Flatten()), model.add(layers.Dropout(0.4)), model.add(layers.Dense(1,

activation='sigmoid'))

compile model

Used adam for optimize fuction with 0.0002 learning rate beta1:0.5 and binary cross

entropy loss function.(This parameter changed step by step while dcgan traninig

better.)

23

3.12 DEFINE GENERATOR LAYERS

def define_generator(latent_dim): number of nodes used as input of the generator

model = models.Sequential() :To build a way for model and add layers

foundation for 8x8 feature maps

n_nodes = Assigned to 128*8*8

model.add(layers.Dense(n_nodes, input_dim=latent_dim))

(layers.LeakyReLU : assigned (alpha=0.2))

(layers.Reshape assigned ((8, 8, 128)))

24

With similar logic but opposite of generator

To upsample to 16x16 : model.add(layers.Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same'))

(layers.LeakyReLU assigned (alpha=0.2)) for all layers.

To upsample to 32x32 : model.add(layers.Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same'))

To upsample to 64x64 :model.add(layers.Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same'))

To upsample to 128x128 : model.add(layers.Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same'))

To output layer 128x128x3 : model.add(layers.Conv2D(3, (5,5), activation='tanh',

padding='same'))

To get input of G :def generate_latent_points(latent_dim, n_samples):

To generate points in the latent space :x_input = np.random.randn(latent_dim*n_samples)

To reshape into a batch of inputs for the network : x_input = x_input.reshape(n_samples,

latent_dim)

To get result : return x_input

To use the generator to generate n fake examples, with class labels : def

generate_fake_samples(g_model, latent_dim, n_samples):

To generate points in latent space : x_input = generate_latent_points(latent_dim, n_samples)

To predict outputs : X = g_model.predict(x_input)

To create 'fake' class labels (0) :y = np.zeros((n_samples, 1))

25

3.13 DEFINE GENERAL MODEL AND METRICS

To make weights in the discriminator not trainable : def define_gan(g_model, d_model):

d_model.trainable = False

To connect them : model = models.Sequential()

To add generator : model.add(g_model)

To add the discriminator : model.add(d_model)

To compile model with same parameters :

tf.keras.optimizers.legacy.Adam(learning_rate=0.0002, beta_1=0.5)

To model.compile : (loss='binary_crossentropy', optimizer=opt)

To retrive real samples : def get_real_samples(dataset, n_samples):

To choose random samples : ix = np.random.randint(0, dataset.shape[0], n_samples)

26

To retrieve selected images : X = dataset[ix]

To set 'real' class labels (1) : y = np.ones((n_samples, 1))

return X, y

To create and save a plot of generated images : def show_generated(generated, epoch,

nrows=4, ncols=5):

To plot figures : plt.figure(figsize=(10,10))

3.14 EVALUATE DISCRIMINATOR AND PLOT LOSS FUNCTION

To evaluate the discriminator and plot generated images : def

summarize_performance(epoch, g_model, d_model, dataset, latent_dim, n_samples=100):

To prepare real samples : X_real, y_real = get_real_samples(dataset, n_samples)

To evaluate discriminator on real examples : _, acc_real = d_model.evaluate(X_real, y_real,

verbose=0)

To prepare fake examples : x_fake, y_fake = generate_fake_samples(g_model, latent_dim,

n_samples)

To evaluate discriminator on fake examples : _, acc_fake = d_model.evaluate(x_fake, y_fake,

verbose=0)

27

To summarize discriminator performance : print('> Accuracy at epoch %d [real: %.0f%%,

fake: %.0f%%]'%(epoch+1, acc_real*100, acc_fake*100))

To show plot : show_generated(x_fake, epoch)

filename = 'generator_model_%03d.h5' % (epoch+1)

To save : g_model.save(filename)

To define plot of loss function : def plot_loss(loss):

To draw : plt.figure(figsize=(10,5))

plt.title("Generator and Discriminator Loss During Training", fontsize=20)

3.15 TRAIN DISCRIMINATOR AND GENERATOR, AND DEFINE

PARAMETERS

To train model :def train(g_model, d_model, gan_model, dataset, latent_dim=100,

n_epochs=10000, n_batch=128):

28

To manually enumerate epochs : print('Training Start...')

for i in range(n_epochs):

start1 = time.time()

To enumerate batches over the training set : for j in range(bat_per_epo):

To get randomly selected 'real' samples : X_real, y_real = get_real_samples(dataset,

half_batch)

To update discriminator model weights : d_loss1, _ = d_model.train_on_batch(X_real,

y_real)

To generate 'fake' examples : X_fake, y_fake = generate_fake_samples(g_model, latent_dim,

half_batch)

To update discriminator model weights : d_loss2, _ = d_model.train_on_batch(X_fake,

y_fake)

To prepare points in latent space as input for the generator :X_gan =

generate_latent_points(latent_dim, n_batch)

To create inverted labels for the fake samples :y_gan = np.ones((n_batch, 1))

To update the generator via the discriminator's error :g_loss =

gan_model.train_on_batch(X_gan, y_gan)

To summarize loss on this batch :loss1.append(d_loss1); loss2.append(d_loss2);

loss3.append(g_loss)

To evaluate the model performance :if (i+1)%(n_epochs//10) == 0:

To save and show generated images :summarize_performance(i, g_model, d_model, dataset,

latent_dim)

To show loss curves :loss = (loss1, loss2, loss3)

3.16 DEFINE DISCRIMINATOR AND GENERATOR AND TRAIN

MODEL

29

3.17 SAVE IMAGES AS ZIP FILE

OUTPUT

30

3.18 CLASSIFICATION WITH GENERATED DATA ADD TO

DATASET

Generated images add to original dataset and classification did again. The model, used libraries, graphics are
same as the first classification model. Therefore, only the different part in code are presented.

3.19 ADD GENERATED DATA TO DATASET

3.20 CREATE TEST AND TRAIN SET WITH NEW DATA

3.21 CLASSIFATION AND VISUALIZATION

The model, metrics, and visualization graphs are totally same with first classification therefore not presented
here.

4 PRODUCED IMAGES WITH ADASYN and

CLASSIFICATION

Traditional models run on kaggle TPU, synthetic data generation with DC-Gan was run on kaggle GPU
because there was no RAM. However, Kagle's weekly quota of 12 hours and cloud queues were noted as
hardware limitaitons.

31

4.1 IMPORT LIBRARIES

from imblearn.over_sampling import ADASYN: The main library for imported ADASYN.

32

4.2 CREATE TRAIN AND TEST SET

4.3 DEFINE CLASSES AND TRAIN MODEL

33

4.4 MAIN PART / DEFINE ADASYN ALGORITHM

4.5 MODEL WITH RESNET-50

34

4.6 TRANSFER LEARNING
a) Freeze inner layers

Defıne parameters

b) Train with all layers

35

4.7 VISUALIZATON

This step code is same for every classification therefore not presented here.

5 WEIGHTED RANDOM SAMPLING

In this traditional technique, classes are assigned numbers based on the amount of data they have. In my test
dataset, ALL has 7272 and HEM has 2300 data.

5.1 IMPORT LIBRARIES

The necessary libraries were imported. Since the libraries with this step are the same, they are not explained
one by one.

36

5.2 CREATE TRAIN AND TEST SET

37

5.3 DEFINE CLASSES

38

5.4 SPLIT DATA AS TRAIN AND TEST SET

5.5 MAIN PART / DEFINE CLASS WEIGHTS

HEM images are 2300, all images are 7272.Therefore assign 7 coefficient for HEM images and assign 2
coefficient for ALL class.To balanced these 2 class in this step.

5.6 MODEL WITH RESNET-50

39

5.7 TRANSFER LEARNING

a) Freeze inner layer

Define parameters

b) Train with all layers

40

5.8 VISUALIZATION
This step is totally same with others.Therefore not present here.

6 DATA AUGMENTATION AND CLASSIFICATION

6.1 IMPORT LIBRARIES

Main library for data generation : from tensorflow.keras.preprocessing.image import ImageDataGenerator

41

6.2 CREATE TRAIN SET AND TEST SET

6.3 DEFINE CLASSES

42

6.4 MAIN PART / DATA GENERATOR

6.5 BALANCED TWO CLASSES

43

6.6 MODEL WITH RESNET-50

6.7 TRANSFER LEARNING

a) Freeze inner layers

44

Define parametes

b) Train with all layers

6.8 VISUALIZATION

This step is totally same with all tecniqus therefore not presented here.

HARDWARE CONFIGURATION

The hardware to be used during the project are indicated in Table 1.

45

Ethical Considerations of the Research

In order to evaluate an ethical study the publicly available C-NMC 2019 dataset is used during this research.

References

TensorFlow. (n.d.). Module: tf.keras | TensorFlow Core v2.4.1. [online] Available at:
https://www.tensorflow.org/api_docs/python/tf/keras

TensorFlow. (n.d.). tf.keras.applications.resnet50.ResNet50 | TensorFlow Core v2.6.0. [online]

Available at: https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50.

TensorFlow. (n.d.). tf.keras.preprocessing.image.ImageDataGenerator. [online] Available at:

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator.

TensorFlow. (n.d.). Classification on imbalanced data | TensorFlow Core. [online] Available at:

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data.

TensorFlow. (n.d.). Deep Convolutional Generative Adversarial Network | TensorFlow Core.

[online] Available at: https://www.tensorflow.org/tutorials/generative/dcgan.

TensorFlow. (n.d.). Introduction to graphs and tf.function | TensorFlow Core. [online] Available at:

https://www.tensorflow.org/guide/intro_to_graphs.

Kaggle (2022). Kaggle: Your Home for Data Science. [online] Kaggle.com. Available at:
https://www.kaggle.com/.

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.kaggle.com/

