

Automated Store Billing System Based on Deep Learning (Image Detection and Computer Vision)

MSc Research Project MSc in Data Analytics

Vijaykumar Ghanti Student ID: x21237174

School of Computing National College of Ireland

Supervisor: Prof. Furqan Rustam

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Vijaykumar Ghanti
Student ID:	x21237174
Programme:	MSc in Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Prof. Furqan Rustam
Submission Due Date:	18/09/2023
Project Title:	Automated Store Billing System Based on Deep Learning (Im-
	age Detection and Computer Vision)
Word Count:	XXX
Page Count:	32

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Vijaykumar Ghanti
Date:	18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Automated Store Billing System Based on Deep Learning (Image Detection and Computer Vision)

Vijaykumar Ghanti x21237174

1 Inroduction

The aim of the document is to provide a stepwise approach to achieve the "Automated Store Billing System Based on Deep Learning (Image Detection and Computer Vision)". For customer satisfaction and retail profit efficient store billing systems are crucial. However errors while pricing and inventory issues cost the the industry billions. National retail federation said, due to errors in pricing retail got shrink and inventory management costed to \$61.7 billion in 2020 in the United States alone Federation (2020). This research aims to create an Automated Store Billing System using deep learning, image processing, and computer vision. Traditional manual processes are error-prone and time-consuming, especially for products without barcodes. In this field, computer vision has shown promise in addressing these limitations. Deep learning, a subset of AI, is a powerful technology for image processing and computer vision tasks. Our research employs both machine learning and deep learning models to analyze product images and select the perfect algorithm which is performing best. Then provide a streamlined billing process for retail customers and improve profitability.

2 Hardware and software requirements

2.1 Hardware

The Laptop with 11th Gen Intel (\mathbb{R}) coreTM with installed RAM of 16.0 GB and 64 bit operating system, x64-based processor is used to build the model as shown in Fig. 1. And a camera or mobile camera of 108MP with EIS, 2MP Depth-Assist lens and 2MP Macro Lens.

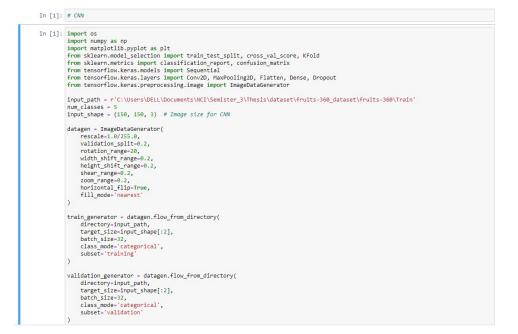
()	Device specifications							
	Device name	DESKTOP-EE130CJ						
	Processor	11th Gen Intel(R) Core(TM) i5-11320H @ 3.20GHz 2.50 GHz						
	Installed RAM	16.0 GB (15.7 GB usable)						
	Device ID	B078D816-DF8F-4676-9FEA-1C4CF6F10F3E						
	Product ID	00356-24582-39920-AAOEM						
	System type	64-bit operating system, x64-based processor						
	Pen and touch	No pen or touch input is available for this display						

Figure 1: Laptop used with specifications

2.2 Software

Software like Jupyter Notebook to run python code, python to build model, SQL to create database and fetch respective data, and PostGreSQL to store data are given with their respective versions as shown in Table 1 are used.

Table 1: Software Ver	sions
Software	Version
Jupyter Notebook	6.4.12
Python	3.10.7
PGAdmin or PostgreSQL	7.6


3 Evaluation

We have considered both deep learning and machine learning algorithms like CNN, RCNN, ResNet, AlexNet and Naive Bayes, KNN, SVM, logistic regression to detect the fruits accurately by processing their images. Let's analyze the performance of each model one by one.

3.1 Deep learning

3.2 CNN

From Fig. 2 to 4 incorporates the code written to build the CNN model using TensorFlow and Keras to classify images of fruits into different categories. Necessary libraries like OS for file operations, NumPy for numerical operations, Matplotlib for plotting, and scikitlearn for machine learning utilities are imported. Some other libraries like Conv2D, MaxPooling2D, Flatten, and Dense are imported for defining the architecture of the neural network. Input path to the training data is set, number of classes and input shape of the CNN model are specified. For data augmentation ImageDataGenerator is written. Followed by two data generators are provided one for training and one for validation. build_cnn_model() method is defined to build the model. The model consists of multiple Convolutional and MaxPooling layers followed by Flatten, Dense, and Dropout layers to prevent overfitting. By given 10 epochs model is trained and built. The trained model history is stored in the history variable. Then confusion matrix, classification report, per epoch accuracy, 10-fold validation result are generated as shown in following images.

lef build_cnn_model():
model = Sequential()
<pre>model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))</pre>
model.add(MaxPooling2D((2, 2)))
<pre>model.add(Conv2D(64, (3, 3), activation='relu'))</pre>
<pre>model.add(MaxPooling2D((2, 2))) model.add(maxPooling2D((2, 2)))</pre>
<pre>model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2)))</pre>
model.adu(max/obling20((2, 2))) model.adu(flatter())
<pre>model.add(Dense(512, activation='relu'))</pre>
model.add(Dropout(0.5)) # Add dropout to prevent overfitting
model.add(Dense(num classes, activation "softmax'))
return model
nodel = build cnn model()
nodel.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
nistory = model.fit(
train generator,
steps per epoch-train generator.samples // train generator.batch size,
steps_per_epocn=train_generator.samples // train_generator.batcn_size, validation data=validation generator,
validation_data=validation_generator,
validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size,
validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size,
validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 </pre>
<pre>validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size, epochs=10 </pre>
<pre>validation_dsta=validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 =ound 1881 images belonging to 5 classes. =ound 469 images belonging to 5 classes. =poch 1/10</pre>
<pre>validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size, epochs=10 </pre>
<pre>validation_dta=validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 found 1881 images belonging to 5 classes. found 469 images belonging to 5 classes. poch 1/10 8/58 [=========] - 74s 1s/step - loss: 0.5191 - accuracy: 0.7896 - val_loss: 0.0089 - val_accuracy: 1.6 9</pre>
<pre>validation_dsta=validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 </pre>
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 </pre>
<pre>validation_dsta=validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 Found 1881 images belonging to 5 classes. epoch 1/10 88/58 [=========] - 74s 1s/step - loss: 0.5191 - accuracy: 0.7896 - val_loss: 0.0089 - val_accuracy: 1.6 9 ppoch 2/10 85/58 [========] - 58s 990ms/step - loss: 0.0266 - accuracy: 0.9908 - val_loss: 0.0018 - val_accuracy: 2.5 9</pre>
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 -ound 1881 images belonging to 5 classes. -ound 469 images belonging to 5 classes. -poch 1/10 83/58 [========] - 74s 1s/step - loss: 0.5191 - accuracy: 0.7896 - val_loss: 0.0089 - val_accuracy: 1.6 - - poch 2/10 - 58s 990ms/step - loss: 0.0266 - accuracy: 0.9908 - val_loss: 0.0018 - val_accuracy: - 600 - 700 - 70</pre>
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 </pre>
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 -ound 1881 images belonging to 5 classes. -ound 469 images belonging to 5 classes. -poch 1/10 86/58 [========] - 74s 1s/step - loss: 0.5191 - accuracy: 0.7896 - val_loss: 0.0089 - val_accuracy: 1.6 </pre>
<pre>validation_dtaa-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 found 1881 images belonging to 5 classes. Found 469 images belonging to 5 classes. Found 469 images belonging to 5 classes. Found 469 images belonging to 5 classes. Found 1481 images belonging to 5 classes. Found 469 images belonging to 5 classes. Found 1481 images belonging to 5 classes. Found 1481 images belonging to 5 classes. Found 1489 images belonging to 5 classes. Found 1490 images belonging to 5 classes. Found 140 images belonging to 5 classes. Fou</pre>
<pre>validation_data-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 -ound 1881 images belonging to 5 classes. -ound 469 images belonging to 5 classes. -poch 1/10 86/58 [========] - 74s 1s/step - loss: 0.5191 - accuracy: 0.7896 - val_loss: 0.0089 - val_accuracy: 1.6 </pre>
<pre>validation_dsta-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 </pre>
<pre>validation_dsta-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs-10 </pre>
<pre>validation_dtata-validation_generator, validation_steps-validation_generator.samples // validation_generator.batch_size, epochs=10 found 1881 images belonging to 5 classes. Found 469 images belonging to 5 classes. Foch 1/10 88/58 [====================================</pre>

Figure 3:

58/58 []	- 58s 1s/step - loss: 0.0018 - accuracy: 0.9995 - val_loss: 3.8752e-05 - val_accuracy:
Epoch 5/10	
	- 59s 1s/step - loss: 0.0263 - accuracy: 0.9930 - val loss: 4.4107e-04 - val accuracy:
1.0000	- 595 15/Step - 1055: 0.0263 - accuracy: 0.9950 - Val_1055: 4.410/e-04 - Val_accuracy:
Epoch 6/10	
	- 59s 1s/step - loss: 0.0013 - accuracy: 1.0000 - val loss: 7.2328e-05 - val accuracy:
1.0000	- 555 15/5000 - 1055. 0.0015 - accuracy. 1.0000 - Var_1055. 7.25200-05 - Var_accuracy.
Epoch 7/10	
	- 58s 1s/step - loss: 0.0051 - accuracy: 0.9968 - val_loss: 3.5500e-05 - val_accuracy:
1.0000	
Epoch 8/10	
	- 58s 995ms/step - loss: 0.0046 - accuracy: 0.9973 - val_loss: 1.7047e-05 - val_accurac
y: 1.0000	
Epoch 9/10	
58/58 [=====]	- 60s 1s/step - loss: 2.6928e-04 - accuracy: 1.0000 - val_loss: 3.2429e-06 - val_accurac
y: 1.0000	
Epoch 10/10	
58/58 [] y: 1.0000	- 60s 1s/step - loss: 5.9983e-05 - accuracy: 1.0000 - val_loss: 1.3807e-06 - val_accurac

Figure 4:

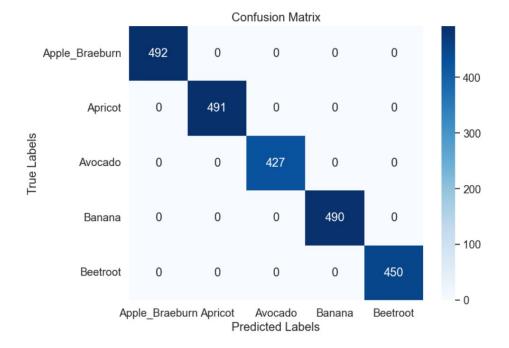


Figure 5: CNN confusion matrix

Classification	Report:			
	precision	recall	f1-score	support
Apple_Braeburn	1.00	1.00	1.00	492
Apricot	1.00	1.00	1.00	491
Avocado	1.00	1.00	1.00	427
Banana	1.00	1.00	1.00	490
Beetroot	1.00	1.00	1.00	450
accuracy			1.00	2350
macro avg	1.00	1.00	1.00	2350
weighted avg	1.00	1.00	1.00	2350

Figure 6: CNN classification report

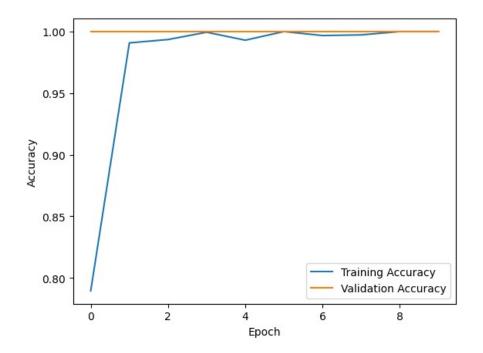


Figure 7: per epoch accuracy

10-Fold	Cross	Validation	Results:
	Fold	Accuracy	
	1	1.000000	
	2	0.500000	
	3	0.666667	
	4	0.666667	
	5	0.333333	
	6	1.000000	
	7	1.000000	
	8	0.666667	
	9	1.000000	
	10	0.333333	
	Mean	0.716667	
Std Devi	iation	0.258736	

Figure 8: 10-fold cross validation

3.2.1 ResNet

The code built begins by specifying the input path to a dataset of fruits and considering the number of classes as 5, along with the input shape of (224, 224, 3) for image dimensions. It uses the ImageDataGenerator to preprocess and augment the data, rescaling pixel values to [0, 1], and splitting it into training and validation sets. The ResNet-50 model is employed as a base model for transfer learning, with its layers frozen to retain pre-trained weights. A custom model is built on top of ResNet-50, consisting of global average pooling, dense layers, and softmax activation. The model is then compiled with the Adam optimizer and categorical cross-entropy loss. Training is performed for 10 epochs using the training and validation generators. Additionally, 10-fold cross-validation is applied to assess model performance, and the mean accuracy and standard deviation are printed. Finally, the code includes a function to get true and predicted labels from the generator and trains the model using the specified training function. From Fig. 9 to 15 represents the code and results of ResNet.

Figure 9: resnet code

	Found 1881 images belonging to 5 classes. Found 469 images belonging to 5 classes.
In [4]:	<pre>def build_resnet_model(): base_model = ResNet50(include_top=False, input_shape=input_shape, weights='imagenet') for layer in base_model.layers: layer.trainable = False model = Sequential() model.add(base_model) model.add(base_model) model.add(Conse(256, activation='relu')) model.add(Dense(run_classes, activation='softmax')) return model</pre>
In [5]:	<pre>def train_model(model): model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, steps_per_epochetrain_generator.samples // train_generator.batch_size, validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size, epochs=10) return history</pre>
In []:	<pre>def create_resnet_model(): model = build_resnet_model() model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model</pre>
	<pre>kfold = KFold(n_splits=10, shuffle=True) model = create_resnet_model()</pre>
	results = cross_val_score(model, train_generator[0][0], train_generator[0][1], cv=kfold)
	print("10-Fold Cross Validation Results:") print(results)
	print(f"Mean Accuracy: {np.mean(results)}")

Figure 10: resnet code

y_pred = y_pred =	<pre>generator.classes model.predict(generator) np.argmax(y_pred, axis=1)</pre>									
return y_	true, y_pred									
history = tra	in model(model)									
Epoch 1/10										
		- 194	Be/stop	locci	1 4487		0 3872	- val loss:	1 0042	- val accupacy:
93]	1545	o bayacep	1055.	1.4407	accuracy.	0.5072	Va1_1035.	1.0542	var_accuracy.
Epoch 2/10										
		- 193s	3s/step	loss:	1.0092	- accuracy:	0.6582	- val loss:	0.6667	- val accuracy:
65	-							-		
Epoch 3/10										
58/58 [=====]	- 192s	3s/step	loss:	0.7490	- accuracy:	0.7847	<pre>- val_loss:</pre>	0.4411	- val_accuracy:
00										
Epoch 4/10			1.000	23.00					10105556	
]	- 199s	3s/step	· loss:	0.6062	- accuracy:	0.8177	- val_loss:	0.4297	 val_accuracy:
99										
Epoch 5/10	1	204-	0-1-+	1	0 4010		0.9005		0.0044	
58/58 [====== 00]	- 204s	4s/step	- 1055:	0.4910	- accuracy:	0.0005	- Val_loss:	0.2644	- val_accuracy:
Epoch 6/10										
		- 2105	4s/sten	loss	0.3985	- accuracy:	0.9081	- val loss:	0.3268	- val accuracy:
21	1					,-				
Epoch 7/10										
58/58 [=====]	- 219s	4s/step	loss:	0.3389	- accuracy:	0.9210	- val_loss:	0.2649	- val_accuracy:
08										
Epoch 8/10										
]	- 218s	4s/step	loss:	0.2805	- accuracy:	0.9410	<pre>- val_loss:</pre>	0.2612	 val_accuracy:
31										
Epoch 9/10		240	4-1-1-	1	0.0400		0.0440	1.1	0 1001	
]	- 218s	4s/step	· loss:	0.2422	- accuracy:	0.9448	- val_loss:	0.1821	 val_accuracy:
88 Epoch 10/10										

Figure 11: resnet code

n Report:			
precision	recall	f1-score	support
0.20	0.18	0.19	98
0.20	0.20	0.20	98
0.20	0.22	0.21	85
0.27	0.27	0.27	98
0.13	0.13	0.13	90
		0.20	469
0.20	0.20	0.20	469
0.20	0.20	0.20	469
	0.20 0.20 0.20 0.27 0.13 0.20	precision recall 0.20 0.18 0.20 0.20 0.20 0.22 0.27 0.27 0.13 0.13 0.20 0.20	precision recall f1-score 0.20 0.18 0.19 0.20 0.20 0.20 0.20 0.22 0.21 0.27 0.27 0.27 0.13 0.13 0.13 0.20 0.20 0.20

Figure 12: resnet classification report

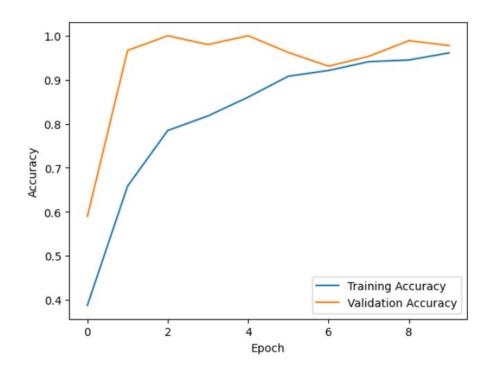


Figure 13: resnet per epoch accuracy

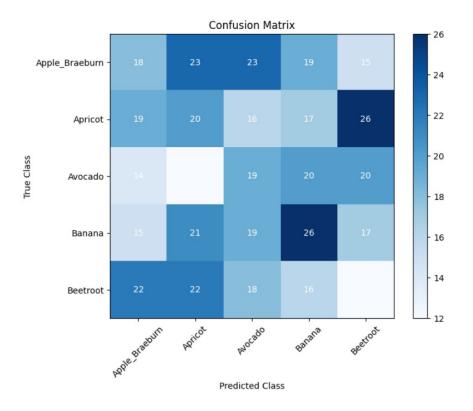


Figure 14: resnet confusion matrix

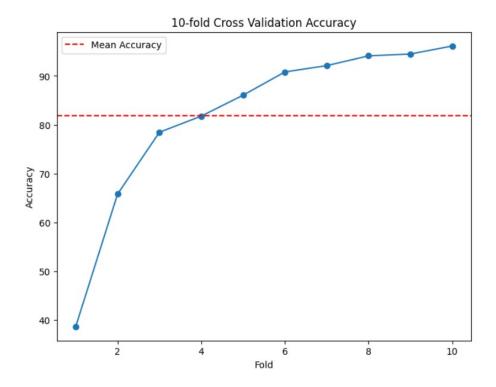


Figure 15: resnet 10-fold cross validation

3.2.2 R-CNN

The code built defines a machine-learning pipeline for training an image classification model using the ResNet50 architecture on a dataset of fruits. The dataset located in a specified directory is conisdered, and splitted into train and test subsets. Data augmentation is applied using the ImageDataGenerator, including rescaling and preprocessing to maintain the common image size and all. The model is compiled with an Adam optimizer with a learning rate of 0.001 and categorical cross-entropy loss. Training is conducted for ten epochs with batch size 32. Additionally, functions to obtain true and predicted labels from the generator and to train the model are defined. From Fig. 16 to 15 represents the code and results of RCNN.

Figure 16: RCNN code

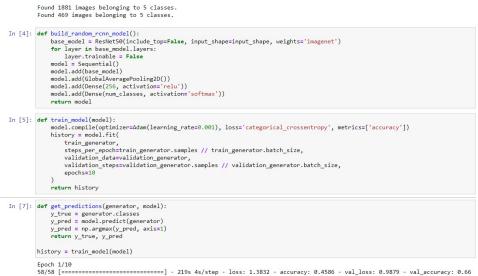


Figure 17: RCNN code

58/58 74	[J	-	219s	4s/step	-	loss:	1.3832	-	accuracy:	0.4586	-	val_loss:	0.9879	- 1	val_accuracy:	0.66
Epoch	2/10															
	[======]		2010	Ac/ston		loss	0 0101		accunacy	0 7307		val loss:	0 6799	- 1	val accupacy:	0 93
08	[]		2045	45/Step		1055.	0.9194		accuracy.	0.7507		var_ioss.	0.0799	- 1	var_accuracy.	0.95
Epoch	3/10															
58/58 77	[]	-	205s	4s/step	-	loss:	0.6909	-	accuracy:	0.7923	-	val_loss:	0.4767	- 1	val_accuracy:	0.97
Epoch	4/10															
58/58	[======]	-	209s	4s/step	-	loss:	0.5642	-	accuracy:	0.8167	-	val loss:	0.3788	- 1	val accuracy:	0.93
30												-				
Epoch	5/10															
58/58	[======]	-	205s	4s/step	-	loss:	0.4466	-	accuracy:	0.8897	-	val loss:	0.2828	- 1	val accuracy:	0.99
55																
Epoch	6/10															
58/58	[]	-	203s	4s/step	-	loss:	0.3773	-	accuracy:	0.8875	-	val_loss:	0.3375	- 1	val_accuracy:	0.95
54																
Epoch																
58/58 62	[]	-	203s	4s/step	-	loss:	0.3117	-	accuracy:	0.9340	- 1	val_loss:	0.3022	- 1	val_accuracy:	0.90
Epoch	8/10															
58/58	[]	-	206s	4s/step	-	loss:	0.2650	-	accuracy:	0.9421	-	val_loss:	0.2096	- 1	val_accuracy:	0.98
66																
Epoch	9/10															
58/58 99	[]	-	203s	4s/step	-	loss:	0.2264	-	accuracy:	0.9567	-	val_loss:	0.1873	- 1	val_accuracy:	0.97
Epoch	10/10															
58/58	[]	-	203s	4s/step	-	loss:	0.1732	-	accuracy:	0.9762	-	val_loss:	0.0927	- 1	val_accuracy:	1.00

Figure 18: RCNN code

15/15 [======			===] - 38s	2s/step
Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.20	0.20	0.20	98
1	0.23	0.23	0.23	98
2	0.13	0.13	0.13	85
3	0.19	0.19	0.19	98
4	0.24	0.24	0.24	90
accuracy			0.20	469
macro avg	0.20	0.20	0.20	469
weighted avg	0.20	0.20	0.20	469

Figure 19: RCNN classification report

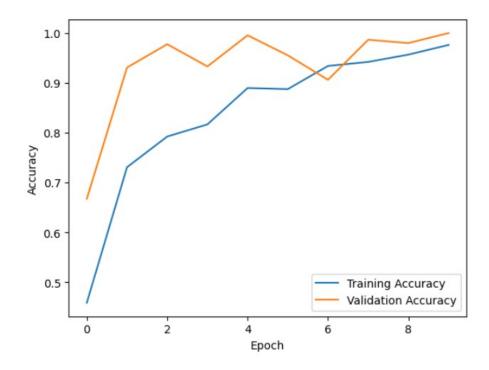


Figure 20: RCNN per epoch accuracy

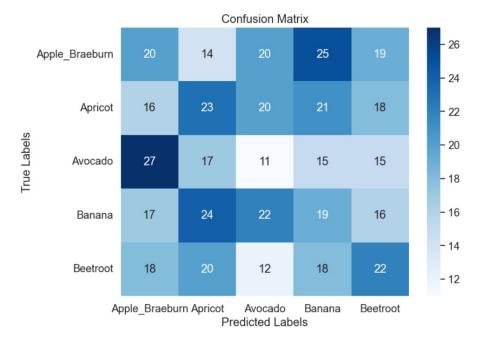
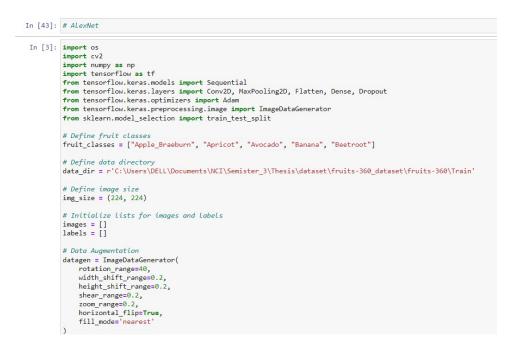



Figure 21: RCNN confusion matrix

3.2.3 AlexNet

The AlexNet model built for image classification uses TensorFlow and Keras. The data augmentation technique is implemented to address the dataset shortage issue and it uses ReLU activation functions and dropout regularization to prevent overfitting. Then images are loaded, resized to a consistent size (224x224), and normalized by dividing pixel

values by 255.0 to ensure consistent input to the model. One hot encoding is used to label the fruit classes and made them suitable for categorical classification. AlexNet architecture built with multiple convolutional and pooling layers, followed by fully connected layers. The model is compiled with the Adam optimizer and categorical cross-entropy loss function, to make it suitable for multi-class classification tasks. The model is trained for 10 epochs using a batch size of 32. Finally, the summary of the model performance is evaluated by classification report, confusion matrix, 10 fold cross-validation and per epoch accuracy as shown in below Figures from 20 to 24.

Figure 22: RCNN code

Figure 23: AlexNet code

Dropout(0.5), Dense(len(fruit_classe)) Compile the model odel.compile(optimizer=Ad odel.summary() Train the model		loss='categorical_cro	<pre>sentropy', metrics=['accuracy'])</pre>
<pre>istory = model.fit(X_train </pre>	n, y_train, batch_size=32,	epochs=10, validation	n_data=(X_test, y_test))
odel: "sequential"			
Layer (type)	Output Shape	Param #	
	Output Shape (None, 54, 54, 96)	Param # ======== 34944	
conv2d (Conv2D)	(None, 54, 54, 96)		
conv2d (Conv2D) max_pooling2d (MaxPooling)	(None, 54, 54, 96)	34944	
conv2d (Conv2D) max_pooling2d (MaxPooling) conv2d_1 (Conv2D) max_pooling2d_1 (MaxPooli	(None, 54, 54, 96) 2D (None, 26, 26, 96) (None, 26, 26, 256)	34944 0	
conv2d (Conv2D) max_pooling2d (MaxPooling) conv2d_1 (Conv2D) max_pooling2d_1 (MaxPooli 2D)	(None, 54, 54, 96) 2D (None, 26, 26, 96) (None, 26, 26, 256)	34944 0 614656	
Layer (type) conv2d (Conv2D) max_pooling2d (MaxPooling) conv2d_1 (Conv2D) max_pooling2d_1 (MaxPooli 2D) conv2d_2 (Conv2D) conv2d_2 (Conv2D)	(None, 54, 54, 96) 2D (None, 26, 26, 96) (None, 26, 26, 256) ng (None, 12, 12, 256)	34944 0 614656 0	

dense	_2 (Dense)	(None, 5)			20485							
Total Traina	params: 46,767,493 ble params: 46,767 ainable params: 0											
Epoch												
	[======================================]	- 143s	2s/step	- loss:	1.8307	- accura	cy: 0.58	46 - val_loss	1.1418	 val_accuracy: 	0
36												
Epoch												
59/59 96	[======================================]	- 139s	2s/step	- 1055:	1.0829	- accura	cy: 0.91	06 - val_loss	0.9241	 val_accuracy: 	0
50 Epoch	2/10											
	[======================================		1420	2c/stop	lacer	0 9476			20	0 7050	wal accuracy.	0
09	(]	1423	zs/scep	1035.	0.0470	accura	Ly. 0.57	55 Var_1033	0.7555	var_accuracy.	0
Epoch	4/10											
	[======================================	1	- 139s	2s/step	- loss:	0.7808	- accura	cv: 0.98	51 - val loss	0.7177	- val accuracy:	1
00												
Epoch	5/10											
59/59	[]	- 136s	2s/step	- loss:	0.7081	- accura	cy: 0.99	68 - val_loss	0.6836	- val_accuracy:	1
00												
Epoch												
	[]	- 140s	2s/step	- loss:	0.7075	- accura	cy: 0.98	88 - val_loss	0.6728	- val_accuracy:	0
15	7/40											
Epoch	//10	1	142-	2-1-+	1	0 7005			40	0 (510		1
00	L]	- 1425	zs/step	- 1055:	0.7005	- accura	Ly: 0.96	40 - Val_1055	0.0510	- val_accuracy:	1
Epoch	8/10											
	[======================================	1	- 156s	3s/step	- loss:	0.6569	- accura	cv: 0.99	04 - val loss	0.6637	- val accuracy:	0
30											- /	
Epoch	9/10											
59/59	[]	- 150s	3s/step	- loss:	0.6168	- accura	cy: 0.99	68 - val_loss	0.5984	- val_accuracy:	1
00												
Enoch	10/10											
Lpoch												

Figure 25: AlexNet code

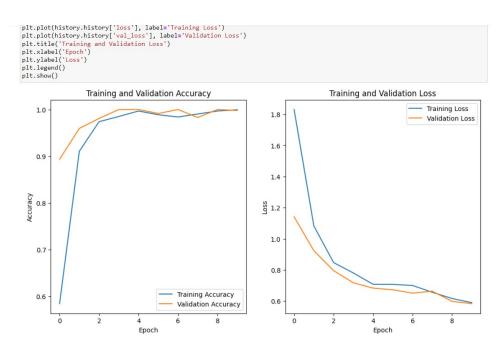


Figure 26: AlexNet per epoch accuracy

Figure 27: AlexNet confusion matrix

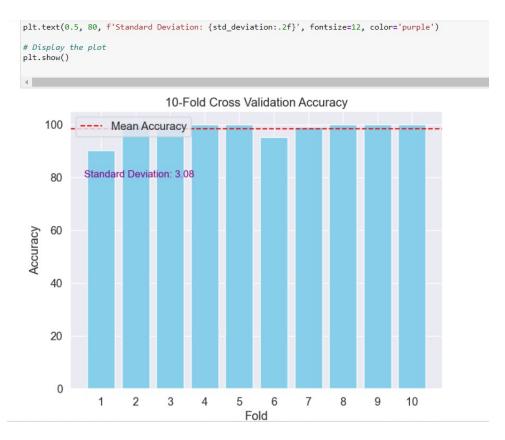


Figure 28: AlexNet 10 fold cross accuracy

3.3 Machine learning

The machine learning algorithms like SVM, Logistic regression, Naive Bayes and KNN are considered for image processing and fruits classification. All algorithms on top of the given dataset performed well, which can be confirmed by observing highest values for precision, recall, and F1-score in Table 6. Hyperparameters considered for each of the machine learning algorithms are as follows. Number of neighbours considered as default is 5 in KNN, in case of logistic regression maximum number of iterations for solver to converge is 1000 as default. Further in random forest number of decision trees in the forest as default is 100 and in SVM the type of kernel used is linear and C = 1.0 as regularization parameter. Apart from these, data augmentation and regularization with 10 pca components is considered to address overfitting issue. After build and execution of these algorithms, it is found that confusion matrix with non zero values diagonally indicates best performance of all algorithms as shown in Table 7. Algorithms like SVM, Logistic regression and KNN have high mean accuracy from 51% to 100% while Naive Bayes showed a lower cross validation score of 27.91 shown in Table 8. For Naive Bayes, the standard deviation is also high in comparison with other algorithms. This indicates that the Naive Bayes shows more variability in performance. Further, it is observable that SVM, Logistic Regression, and KNN achieve higher mean cross-validation scores and lower standard deviation in comparison with Naive Bayes. By which it is clearly possible to say that SVM, Logistic Regression, and KNN perform better on top of the considered dataset than Naive Bayes. Below figures indicates code implemented for each machine learning algorithms and their results.

3.3.1 Naive Bayes

```
In [ ]: #Naive Bayes
In [1]: import os
        import cv2
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split, cross_val_score, KFold
        from sklearn.naive_bayes import GaussianNB
        from sklearn.metrics import classification_report, confusion_matrix
        from sklearn.decomposition import PCA
        def load_images(input_path, augment=True, apply_pca=True, pca_components=50):
            labels = []
images = []
            class_names = sorted(os.listdir(input_path))
            for image_file in os.listdir(class_path):
                    image_path = os.path.join(class_path, image_file)
                     image = cv2.imread(image_path)
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.resize(image, (100, 100))
                     if augment:
                         image = apply_augmentation(image)
                    images.append(image.flatten())
labels.append(class_name)
            images = np.array(images)
            if apply_pca:
                pca = PCA(n_components=pca_components)
                 images = pca.fit_transform(images)
```

Figure 29: Naive bayes code

```
return images, np.array(labels)
def apply_augmentation(image):
    angle = np.random.randint(-15, 16)
    rows, cols = image.shape
    rotation_matrix = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)
    image = cv2.warpAffine(image, rotation_matrix, (cols, rows))
    if np.random.rand() > 0.5:
        image = cv2.flip(image, 1)
    return image
def split_dataset(images, labels, test_size=0.2, random_state=42):
    return train_test_split(images, labels, test_size=test_size, random_state=random_state)
def build_naive_bayes_classifier():
    return GaussianNB()
def evaluate_classifier(classifier, X_train, y_train, X_test, y_test):
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
    print("Confusion Matrix:")
    print(confusion_matrix(y_test, y_pred))
def cross_validate(classifier, images, labels, n_splits=10):
    kfold = KFold(n_splits=n_splits)
    scores = cross_val_score(classifier, images, labels, cv=kfold)
    print("Cross-validation Scores (%):")
    for fold, score in enumerate(scores, start=1):
    score_percentage = score * 100 # Convert accuracy to percentage
        print(f"Fold {fold}: {score_percentage:.2f}%")
```

Figure 30: Naive bayes code

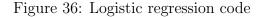
Figure 31: Naive bayes code

3.3.2 KNN

```
In [1]: # KNN
In [30]: import os
         import numpy as np
         import cv2
         import random
         from sklearn.model_selection import train_test_split, cross_val_score, KFold
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import classification_report, confusion_matrix
         import matplotlib.pyplot as plt
         from sklearn.decomposition import PCA
         def load_images(input_path, augment=True, apply_pca=True, pca_components=10):
             labels = []
             images = []
             class_names = sorted(os.listdir(input_path))
             for i, class_name in enumerate(class_names):
                 class_path = os.path.join(input_path, class_name)
                 for image_file in os.listdir(class_path):
                     image_path = os.path.join(class_path, image_file)
                     image = cv2.imread(image_path)
                     image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                     image = cv2.resize(image, (100, 100))
                     if augment:
                         image = apply_augmentation(image)
                     images.append(image.flatten())
                     labels.append(i)
             images = np.array(images)
             if apply_pca:
                 pca = PCA(n_components=pca_components)
                 images = pca.fit_transform(images)
```

Figure 32: KNN code

Figure 33: KNN code


Figure 34: KNN code

3.4 Logistic regression

In []:	# Logistic regression
In [10]:	<pre>import os import cv2 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, cross_val_score, KFold from sklearn.linear_model import togisticRegression from sklearn.decomposition import PCA def load_images(input_path, augment=True, apply_pca=True, pca_components=50): class_names = sorted(os.listdir(input_path)) labels = [] images = [] for i, class_name in enumerate(class_names): class_path = os.path.join(input_path, class_name) for image_file in os.listdir(class_path): image = cv2.imread(image_path) image = cv2.imread(image_path) image = cv2.resize(image, (100, 100)) if augment: image = apply_augmentation(image) images.append(image.flatten()) labels.append(class_name) # Use class_name os the label</pre>
	<pre>images = np.array(images)</pre>

Figure 35: Logistic regression code

```
if apply_pca:
        pca = PCA(n_components=pca_components)
        images = pca.fit_transform(images)
    return images, np.array(labels)
def apply_augmentation(image):
    angle = np.random.randint(-15, 16)
    rows, cols = image.shape
    rotation_matrix = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)
   image = cv2.warpAffine(image, rotation_matrix, (cols, rows))
    if np.random.rand() > 0.5:
        image = cv2.flip(image, 1)
    return image
def split_dataset(images, labels, test_size=0.2, random_state=42):
    return train_test_split(images, labels, test_size=test_size, random_state=random_state)
def build logistic regression classifier():
    return LogisticRegression(max_iter=1000)
def train_and_plot(classifier, X_train, y_train, X_test, y_test, epochs=100):
    train_accuracy = []
   test_accuracy = []
   for epoch in range(1, epochs + 1):
    classifier.fit(X_train, y_train)
        train_accuracy.append(classifier.score(X_train, y_train))
        test_accuracy.append(classifier.score(X_test, y_test))
```



```
def train_and_plot(classifier, X_train, y_train, X_test, y_test, epochs=100):
    train accuracy = []
    test_accuracy = []
    for epoch in range(1, epochs + 1):
        classifier.fit(X_train, y_train)
        train_accuracy.append(classifier.score(X_train, y_train))
        test_accuracy.append(classifier.score(X_test, y_test))
    # Plot accuracy per epoch
    plt.figure(figsize=(8, 6))
    plt.plot(range(1, epochs + 1), train_accuracy, label="Train Accuracy")
plt.plot(range(1, epochs + 1), test_accuracy, label="Test Accuracy")
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.title('Accuracy per Epoch')
    plt.grid()
    plt.show()
def evaluate classifier(classifier, X train, y train, X test, y test):
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    print("Classification Report:"
    print(classification_report(y_test, y_pred))
    print("Confusion Matrix:")
    print(confusion_matrix(y_test, y_pred))
def cross_validate(classifier, images, labels, n_splits=10):
    kfold = KFold(n_splits=n_splits)
    scores = cross val score(classifier, images, labels, cv=kfold)
    print("Cross-validation Scores (%):")
    for fold, score in enumerate(scores, start=1):
    score_percentage = score * 100 # Convert accuracy to percentage
        print(f"Fold {fold}: {score_percentage:.2f}%")
```

Figure 37: Logistic regression code

Figure 38: Logistic regression code

3.5 SVM

Figure 39: SVM code

```
return images, np.array(labels)
def apply_augmentation(image):
     angle = np.random.randint(-15, 16)
     rows, cols = image.shape
     rotation_matrix = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)
     image = cv2.warpAffine(image, rotation_matrix, (cols, rows))
     if np.random.rand() > 0.5:
    image = cv2.flip(image, 1)
     return image
X, y = load_images(input_path, classes, augment=True, apply_pca=True, pca_components=50)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Use GridSearchCV to find the optimal hyperparameters
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1]}
grid_search = GridSearchCV(SVC(kernel='rbf'), param_grid, cv=10)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
# Train the model with the best hyperparameters
best_model = SVC(kernel='rbf', C=best_params['C'], gamma=best_params['gamma'], random_state=42)
# Initialize lists to store accuracy values per epoch
train_accuracy = []
test_accuracy = []
# Training Loop
epochs = 100
for epoch in range(epochs):
   best_model.fit(X_train, y_train)
train_accuracy.append(best_model.score(X_train, y_train))
test_accuracy.append(best_model.score(X_test, y_test))
```

Figure 40: SVM code

```
# Training Loop
epochs = 100
for epoch in range(epochs):
    best_model.fit(X_train, y_train)
    train_accuracy.append(best_model.score(X_train, y_train))
    test_accuracy.append(best_model.score(X_test, y_test))
# Plot accuracy per epoch
plt.figure(figsize=(8, 6))
plt.plot(range(1, epochs + 1), train_accuracy, label="Train Accuracy")
plt.plot(range(1, epochs + 1), test_accuracy, label="Test Accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy per Epoch')
plt.grid()
plt.show()
# Make predictions
y_pred = best_model.predict(X_test)
# Rename class labels
class_names = ['Apple_Braeburn', 'Apricot', 'Avocado', 'Banana', 'Beetroot']
y_test_mapped = [class_names[i] for i in y_test]
y_pred_mapped = [class_names[i] for i in y_pred]
print("Classification Report:")
report = classification_report(y_test_mapped, y_pred_mapped)
print(report)
print("Confusion Matrix:")
confusion = confusion_matrix(y_test_mapped, y_pred_mapped)
print(confusion)
kfold = KFold(n_splits=10, shuffle=True, random_state=42)
results = cross_val_score(best_model, X, y, cv=kfold)
```

Figure 41: SVM code

Fig. 42 indicates precision, recall, F1 score for Naive Bayes is around 95%, for KNN it is 93%, logistic it is 98% and for SVM it is 100%. These accuracy marks shows machine learning algorithms considered have best accuracy. Fig. 43 consists of comparison of machine learning classification report. In which we can find diagonal value populated indicates machine learning algorithms considered performing better. Further the Fig. 44 gives comparison of mean accuracy of all machine learning algorithms considered in which we can see that Naiver Bayes performed least with 27.91% and SVM as best with 100%.

Table 8: Cross-fold	Validation Scores Comparison
Algorithm	Mean Cross-validation Score
Naive Bayes	27.91%
KNN	51.86%
Logistic Regression	72.81%
SVM	100.00%

Figure 42: Machine learning 10 fold cross validation

Algorithm	Precision	Recall	F1-Score	Accuracy
Naive Bayes	0.95	0.95	0.95	0.95
KNN	0.93	0.93	0.93	0.93
Logistic Regression	0.98	0.98	0.98	0.98
SVM	1.00	1.00	1.00	1.00

Table 6: Machine learning Classification Report Comparison

Figure 43: machine learning classification

	Table 7: Confusion Matrix Comparison										
Algorithm	Apple Braeburn	Apricot	Avocado	Banana	Beetroot						
Naive Bayes	110	95	82	97	86						
KNN	103	88	72	83	91						
Logistic Regression	104	95	81	96	84						
SVM	110	95	82	97	86						

Figure 44: Machine learning confusion matrix

3.6 Algorithm selection

Though most of the deep learning and machine learning algorithms considered providing best accuracy, actually failed in accurate detection of fruits. For example KNN model built failed in Avocado fruit detection as shown in Fig. 45, Naive Bayes wrongly predicted Avocado as Apricot as shown in figure 46. Whereas AlexNet outperformed all other algorithms by accurately detecting fruits. For example AlexNet correctly detected fruit Avocado as shown in Fig. 47. So, AlexNet is choosed as best deep learning algorithm for fruit detection.

Predicted Fruit: Banana

Figure 45: Wrong prediction by KNN

Predicted Fruit: Apricot

Figure 46: Wrong prediction by Naive bayes

Predicted Fruit: Banana

Figure 47: Accurate prediction by AlexNet

3.7 Bill generation

A local database called PostgreSQL is considered and a table called fruit and price

is created. Within which fruit and their respective prices are maintained as whown in Fig. 48.

Admin File Y Object Y Tool	ls Y	Help) ~					
owser	5		1	Q	>_	Dash	board Properties	SQL Statistics
Servers (3)						de la	postgres/postgres	@PostgreSQL 15
> E Docker PostgreSQL								✓ No limit
✓						-	- 1.1	
🗸 🍔 Databases (1)						Quer	ry Query History	
🗸 🍮 postgres						1	select * from f	fruits_price
> 🐼 Casts								
> 💖 Catalogs								
> 🔃 Event Triggers								
> 🔁 Extensions								
> 🛒 Foreign Data Wrappers								
> 🤤 Languages								
> 🖉 Publications								
✓ 💖 Schemas (1)								
🗸 📀 public								
> 🕅 Aggregates						Data	Output Messages	Notifications
> ₿↓ Collations						-		
> 🏠 Domains						≡+		5 ± ~
> 🚯 FTS Configurations							fruits character varying	double precision
> 🕅 FTS Dictionaries						1	Apple_Braeburn	1.5
> Aa FTS Parsers						2	Apricot	0.75
> 📵 FTS Templates								
> 📑 Foreign Tables						3	Avocado	2
> (i) Functions						4	Banana	0.5
> R Materialized Views						5	Beetroot	1

Figure 19: fruits and their respective price in dollar

Figure 48: Fruit and price table

Once the fruit is detected by the AlexNet algorithm built by taking the image. Then the respective price from the database as shown in Fig. 48 will be fetched by using the code as shown in Fig. 49 and 50. Within which sql query is maintained to tech respective price. Then by multiplying with their respective quantities total amount will be found and bill is generated as shown in Fig. 51 without using internet and cloud server.

Admin File 🗸 Object 🖌 Tool	s Y	Help	~			
Browser			To	Q	>_	Dashboard Properties SQL Statistics
✓					1	S postgres/postgres@PostgreSQL 15
> 📑 Docker PostgreSQL						■ B × Z× T × No limit
✓ I PostgreSQL 15						
🗸 🍧 Databases (1)						Query Query History
🗸 🍮 postgres						1 select * from fruits_price
> 🐼 Casts						
> 💖 Catalogs						
> 🔄 Event Triggers						
> 🔁 Extensions						
> 🛒 Foreign Data Wrappers						
> 🤤 Languages						
> 🖒 Publications						
🗸 💖 Schemas (1)						
🗸 🚸 public						
> 🕼 Aggregates						Data Output Messages Notifications
> 🔂 Collations						
> 🏠 Domains						
FTS Configurations						fruits character varying duble precision
> 🕅 FTS Dictionaries						1 Apple_Braeburn 1.5
> Aa FTS Parsers						2 Apricot 0.75
> C FTS Templates						3 Avocado 2
> 📑 Foreign Tables						4 Banana 0.5
> () Functions						
> 💽 Materialized Views						5 Beetroot 1

Figure 19: fruits and their respective price in dollar

Figure 49: Fruit and price table

Figure 50: Bill generation code

```
In [19]: import time
        from datetime import datetime
        start_time = time.time()
        shop_name = "Fruit Emporium"
        shop_address = "123 Main Street, City"
        current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        while True:
            fruit_name = predicted_fruit
            if fruit_name.lower() == 'exit':
                break
            sample_fruit_price = ["Banana","Avocaddo","Apple_Braeburn","Apricot","Beetroot"]
            if fruit_name in sample_fruit_price:
                try:
                   quantity = float(input("Enter the quantity: "))
                   if quantity < 0:
                       print("Quantity cannot be negative.")
                   else:
                      print(shop_name)
                       print(shop_address)
                       print(current_date)
                       print(f"Total price for {quantity:.2f} {fruit_name}: ${price:.2f}")
                       break
                except ValueError:
                  print("Invalid quantity. Please enter a valid number.")
            else:
                print("Fruit not found in the list.")
        end_time = time.time()
        elapsed_time = end_time - start_time
        print(f"Time taken: {elapsed_time:.6f} seconds")
```

Figure 51: Bill generation code

Time taken: 2.044621 seconds

Figure 52: Bill generated

References

Federation, N. R. (2020). The 2020 national retail security survey. Accessed on September 1, 2023. URL: https://cdn.nrf.com/sites/default/files/2020-07/RS-

 $105905_2020_N ational Retail Security Survey.pdf$