~

N\ National
College
Ireland

Configuration Manual of Research Project:
Topic Modelling of Online Reviews for
Airports In Europe

MSc Research Project
Data Analytics

Dona Elizabeth John
Student ID: x21228531

School of Computing
National College of Ireland

Supervisor: Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dona Elizabeth John
Student ID: x21228531
Programme: Data Analytics
Year: 2022-2023
Module: MSc Research Project
Supervisor: Catherine Mulwa
Submission Due Date: 14/08/2023
Project Title: Configuration Manual of Research Project: Topic Modelling
of Online Reviews for Airports In Europe
Word Count: 629
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: DONA ELIZABETH JOHN

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual of Research Project: Topic
Modelling of Online Reviews for Airports In Europe

Dona Elizabeth John
x21228531

1 Introduction

This configuration manual is a comprehensive documentation of the various configur-
ations and settings that influence the results of the study ”Topic Modelling of Online
Reviews for Airports in Europe.” The configuration techniques, software requirements
and an overview of the code artifacts used to achieve the goals of the research project are
described in great detail within the pages of this paper.

2 System specifications

The study was carried out using Google Colab, a cloud computing platform well-known
for its ability to code and run deep learning and machine learning models. TensorFlow
and Keras are combined in Google Colab, enabling faster execution rates than with a
CPU alone. If necessary, Google Colab can speed up execution by using a GPU or TPU.
The detailed specification is displayed in Figure

Platform Google colab
GPU 12GB VRAM

CPU 13GB RAM
Storage 18GB

Driver NVIDIA Tesla K80

Figure 1: Platform specification

3 Libraries

Gensim package was installed using pip command. The libraries were imported to colab
session and is displayed in Figure

¥ [1] pip install scikit-learn gensim

v [23]
from nltk.tokenize import RegexpTokenizer
from sklearn.feature extraction.text import Tfidfvectorizer
from sklearn.decomposition import LatentDirichletAllocation
import pandas as pd
from sklearn.feature extraction.text import Countvectorizer
import gensim
from gensim.corpora import Dictionary
from gensim.models.coherencemodel import CoherenceModel
import matplotlib.pyplot as plt
import numpy as np
import gensim.corpora as corpora

Figure 2: Library import

4 Data import

Data was imported using pandas package as shown in Figure

df = pd.read csv("airport reviews dataset.csv")

df.columns

Figure 3: Data Import

5 Data filtering

All irrelevant data is excluded from building topic model. This numeric tokens which will
impact in building topics. The exclusion of the data was displayed in Figure

dfl=df[~(df["content'].isna())].copy()
num_val=df1[df1.content.str.isnumeric()].copy()
df2=df1[~(df1['content'].isin(num_val.content))].copy()
df2['dt']=df2['date'].astype('str")

df2.dtypes

df2['yr']=df2['dt'].apply(lambda x: x.split('/')[2] if len(x.split('/'))>1 else '@")

df2.shape

Figure 4: Filtering

6 Preliminary Data Analysis

This section includes exploratory data analysis on the review columns. The distribution
of topics across years was displayed in Figure

df2['title'].value counts()

df2['yr'].value counts().plot.bar()

plt.xlabel("Year")

plt.ylabel ("NHumber of Reviews")

plt.title("Number of Reviews Posted in Different Years")

Figure 5: EDA

The plot is shown in Figure [f]

plt.xlabel("year")
plt.ylabel("Number of Reviews")
plt.title("Number of Reviews Posted in Different Years")

Text(®.5, 1.0, 'Number of Reviews Posted in Different Years')

Number of Reviews Posted in Different Years

2500 A
2000 1
[Ty}
=
2
>
g 1500 A
N
o
[
V
£
5 1000 -
=
500 -
0-
T ™~N M A~ N © @ W ~ W n T M ™o O
— — — - — — o o o o [=] o [=] o
o ©o ©o o o o © © ©o © © ©o © o
NN N N NN N NN N N N N N
Year

Figure 6: EDA Plot

7 Data transformation

Each review was converted as an item in a list. This is displayed in Figure [7]

val list=df2['content'].tolist()

Figure 7: Reviews in list

8 TF-IDF Implementation

The first phase of study includes the implementation of tf-idf LDA model. Each review
was transformed into tf-idf vectors. This is shown in Figure

¥ [12] # Initializing regex tokenizer
tokenizer = RegexpTokenizer(r'\w+")
Vectorizing the data using TF-IDF
tfidfvect = Tfidfvectorizer(lowercase=True,
stop_words="english"',
ngram_range = (1,1),

tokenizer = tokenizer.tokenize)

Fit and Transform the documents
tData = tfidfvect.fit transform(val list)

Figure 8: TF-IDF

9 TF-IDF Model

Model was built using TF-IDF vectors and is dsplayed in Figure [J]
v [13] # Defining the number of topics
n=15

Creating LDA object
ldaModel=LatentDirichletAllocation(n_components=n)

Fitting and transforming model on data
ldaMatrixl = ldaModel.fit transform(tData)

Getting components
ldaComponentsl=1daModel.components

Figure 9: TF-IDF Model

10 TF-IDF Evaluation

TF-IDF model was evaluated in this section., The topics were distributed and analyzed
as shown in Figure

¥ [14] # Printing the topics with their corresponding words
words = tfidfvect.get feature names out()

for index, component in enumerate(ldaComponentsl):
zipped = zip(words, component)
top_words_key=sorted(zipped, key = lambda t: t[1], reverse=True)[:7]
top words list=list(dict(top words key).keys())
print("Topic "+str(index)+": ",top _words list)

Figure 10: TF-IDF Evaluation

11 TF-IDF Stability test

The stability test was performed on TF-IDF model and the result were not convincing.
The test performed is shown in Figure

12 Count Vectorization

The second phase of implementation was Count Vectorization. The model was built
using this technique. The evaluation of the topics were performed after seggregating
LDA components and is displayed in Figure

13 Coherence Score

The count vectorization model performed better than TF-IDF model and the coherence
score for count vectorization model was calculated. It is shown in Figure

14 Topic distribution

The topic distribution from the count vectorization model was ploted as it is shown in
Figure

15 Count vectorization stability test

The stability test was performed for count vectorization model and is displayed in Fig-
ure

¥ [23] # stability test for TF-IDF Model
Number of subsets and stability threshold
subNum = 5

Performing model stability test

stabScores = []

num=15

for 1 in range(subhum):
Generating a random subset of data
subIndices = np.random.choice(tData.shape[®], size=int(tData.shape[e] * ©.8), replace=False)
subset = tData[subIndices]

Fitting LDA model
lda modell = LatentDirichletAllocation(n_components=num, random state=42)
1da modell.fit(subset)

Calculating jaccard similarity between topics of different subsets
jsimilarityl = []
for othersubIndices in range(subNum):

if othersubIndices == i:

continue

othersubset = tData[othersubIndices]

otherTopics = ldaModel.transform(othersubset)

currentTopics = ldaModel.transform(subset)

jsim = np.min(np.minimum(otherTopics, currentTopics).sum(axis=1))

jsimilarityl.append(jsim)

stabilityScore = np.mean(jSimilarityl)
stabScores.append(stabilityScore)

Calculating stability score
meanstab = np.mean(stabScores)
print("Mean Stability Score:", meanStab)

Figure 11: TF-IDF Stabilitry test

¥ [18] # Vectorizing the data using CountVectorization
cVect = CountVectorizer(stop_words="english', max_df=.1, max_features=5000)
X = cVect.fit_transform(val_list)

¥ [19] # Defining the number of topics
n=15
Creating LDA object
ldaModel2=LatentbirichletaAllocation(n_components=n)
Fitting and transforming model on data
ldamatrix2 = ldaModel2.fit_transform(x)
Getting components
ldaComponents2=1daModel2.components

¥ [20] # Printing the topics with their corresponding words

words2 = cVect.get feature names out()

fList=[]

for index, component in enumerate(ldaComponents2):
zipped = zip(words2, component)
top_words_key2=sorted(zipped, key = lambda t: t[1], reverse=True)[:15]
top_words_list2=list(dict(top_words_key2).keys())
print("Topic "+str(index)+": ",top _words_list2)
fList=fList+[top words_list2]

Figure 12: Count Vectorization

[27] # Coherence Score Test

def get_cv(ldaModel2, dfColumn):
topics = ldaModel2.components_

ntopwords = 15
cWords = [[word for word in doc.split()] for doc in dfColumn]

creating the dictionary
cDictionary = corpora.Dictionary(cWords)
Creating a gensim dictionary from the word count matrix

featureNames = [cDictionary[i] for i in range(len(cDictionary))]

Get the top words for each topic from the components_ attribute
topWords = []
for topic in topics:
topWords.append([featureNames[i] for i in topic.argsort()[:-ntopWords - 1:-1]])

cohModel = CoherenceModel(topics=topWords, texts=cWords, dictionary=cDictionary, coherence="c v')
coh = cohModel.get_coherence()
return coh

cohScore=get_Cv(ldaModel2,val_list)

¥ [25] cohScore

Figure 13: Coherence Score

16 Topic seggregation

The topics received from count vectorization model is analyzed and the certain topics
which have similar context which were captured in different topics were merged. The
travel desk topics were merged using Topic 6, Topic 7 and Topic 0 as shown in Figure

Similarly topics for parking desk and outlet desk were created by merging corres-
ponding similar topics and unwanted tokens were also removed. This is displayed in
Figure

Category column was created to segregate the reviews and were send to the corres-
ponding airport departments. and Figure

é ° # Aggregating the topic proportions across all data

Proportion

agTopic = np.sum(tAssign, axis=@)

Normalizing proportions
totbData = len(tAssign)
normTopic = agTopic / totData

Visualizing the normalized topic proportions
topicNum = len(normTopic)
topics = [f"Topic {i}" for i in range(topicNum)]

plt.bar(topics, normTopic)
plt.xticks(rotation="vertical")
plt.xlabel ("Topics™)
plt.ylabel("Proportion™)

plt.title("Topic Distribution Proportions™)
plt.show()

Topic Distribution Proportions

0.08 A

0.06 -

o

o

5
1

0.02

0.00 -
o A~ M~N M = M WO ~ O OO O ~H ~N m =T
N
S8 858585558t sstt
N =
_ 2 2 g g g
Topics

Figure 14: Coherence Score

¥ [31] # Number of subsets and stability threshold
subMNum2 = 5
#number of topics
num=15
Model stability test
stabilScores = []

for j in range(subNum2}:
Generate a random subset of data
subIndices2 = np.random.choice(X.shape[@], size=int(X.shape[®] * ©.8), replace=False)
subset2 = X[subIndices2]

Fit LatentDirichletAllocation model
lda_model2 = LatentDirichletAllocation(n_components=num, random_state=42)
lda_model2.fit(subset2)

Calculate Jaccard similarity between topics of different subsets
jsimilarity2 = []
for othersubIndices2 in range(subhum2):

if othersubIndices2 == j:

continue

othersubset2 = X[othersubIndices2]

otherTopics2 = ldaModel2.transform(othersubset2)

currentTopics2 = ldaModel2.transform(subset2)

jsim = np.min(np.minimum(otherTopics2, currentTopics2).sum(axis=1))

jsimilarity2.append(jsim)

stabScore = np.mean(jsimilarity2)
stabilScores.append(stabScore)

Calculating stability score
meanStab = np.mean(stabScores)
print("Mean stability Score:", meanStab)

Figure 15: Stability test for Count vectorization model

topic_travel desk=final list[6]+final_list[7]+final_list[@]
remove_desk=['did", "didn’, "english’,

‘went ',

‘need’, 'process’,

‘did’, "going’,

‘finally’,

‘canada’,

‘got’,

"tsa’',

"told’,

‘agent','10','3@",'20", 'morning’, 'quite’]
topic travel desk 1 = [ele for ele in topic travel desk if ele not in remove desk]

Figure 16: Topics for travel desk

topic_parking_desk=final list[11]+final list[12]+final list[13]

remove_park=["told', 'got','having’, '10', 'charge','luton’, 'did’, 'went','class’, 'efficient’, 'quite', 'city’, 'kong', 'hong', 'ticket', 'counters', 'station’, 'hall’, ‘star’,
"signage', 'lines’, 'confusing', 'signs’, 've', 'claim’,'tsa’, 'lax’, 'easy’, 'lot']

topic_park_desk 1 = [ele for ele in topic_parking desk if ele not in remove_park]

topic_restaurant_desk=final_list[9]

remove_rest=[‘don’, 'world', 'building’, 'toilets’, ‘worst','place’, 'country', ‘really’,’departures’, ‘need']

topic_rest_desk_1 = [ele for ele in topic_restaurant_desk if ele not in remove_rest]

Figure 17: Topics for parking desk

df2[' category"]="'Generic’
df2[' category'] = np.where(df2['content'].str.split().map(set).apply(lambda x: any(x.intersection(topic_travel desk 1))*1)==1, 'Travel desk',df2['category'])
df2[' category'] = np.where(df2['content'].str.split().map(set).apply(lambda x: any(x.intersection(topic_park_desk_1))*1)==1,'Parking desk',df2['category'])
df2[' category'] = np.where(df2['content'].str.split().map(set).apply(lambda x: any(x.intersection(topic_rest desk 1))*1)==1,'oOutlet desk',df2['category'])

df2[" category”].value_counts()

Figure 18: Topics for outlet desk

10

	Introduction
	System specifications
	Libraries
	Data import
	Data filtering
	Preliminary Data Analysis
	Data transformation
	TF-IDF Implementation
	TF-IDF Model
	TF-IDF Evaluation
	TF-IDF Stability test
	Count Vectorization
	Coherence Score
	Topic distribution
	Count vectorization stability test
	Topic seggregation

