~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Neha Eldho
Student ID: x21217793

School of Computing
National College of Ireland

Supervisor: Qurrat Ul Ain

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Neha Eldho
Student ID: x21217793
Programme: MSc Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Qurrat Ul Ain
Submission Due Date: 14/08/2023
Project Title: Emotion Detection Using Deep Learning Models on Speech
and Text Data
Word Count: 4798
Page Count: [33]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Neha Eldho
x21217793

1 Introduction

This project is a comprehensive exploration of emotion detection from both text and
audio data using advanced machine learning and deep learning techniques. This manual
provides all the necessary information to set up, configure, and run the project in your own
environment. The Emotion Detection Project, encapsulated in a Jupyter notebook, util-
izes various Python libraries such as ‘pandas‘, ‘numpy*, ‘matplotlib‘, ‘seaborn’, ‘sklearn‘,
‘nltk‘, ‘re‘, and ‘keras‘ to preprocess data, build models, and evaluate their performance.
This manual will guide you through the process of installing these libraries and setting
up your environment to successfully run the project. The project involves several stages,
including data preprocessing, model building with LSTM networks, and evaluation of
the models. We will cover how to install and configure the required software, how to
use the notebook, and how to interpret the results. Additionally, we will provide some
troubleshooting advice for common issues. This manual assumes a basic understanding
of Python programming and familiarity with Jupyter notebooks. While knowledge of
machine learning concepts and natural language processing is beneficial, the Emotion
Detection Project notebook provides explanations and comments that make it accessible
to individuals new to these concepts.

2 Required Specifications

2.1 Expected Hardware Requirements

The exact hardware specifications can vary depending on the size of the data you are
processing, the following are general recommendations:

e Processor: Intel or AMD processor, 2 GHz or faster

e Memory: Minimum 8 GB RAM. For larger datasets or complex computations, 16
GB or more is recommended.

e Storage: At least 2 GB of free disk space for the installation of Python, required
libraries, and the project itself. Additional space will be needed for data storage.

2.2 Expected Software Requirements

e Operating System: Windows, macOS, or Linux. The project is platform-independent
as long as you can run Python and Jupyter notebooks.

e Python: Python 3.7 or newer. Python can be downloaded from the official website:
https://www.python.org/downloads/

e Jupyter Notebook: The project is provided as a Jupyter notebook. You can install
Jupyter via pip with pip install jupyter or if you prefer using Anaconda, you can
install it from there.

2.3 Actual System on Which Notebook was Executed
2.3.1 Hardware
e Processor: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz

e RAM: 32.0 GB (31.9 GB usable)

e System Type: 64-bit architecture

2.3.2 Software

Operating System: Windows 10 Pro
Edition: Windows 10 Pro

Version: 22H2

OS build: 19045.3208

e Experience: Windows Feature Experience Pack 1000.19041.1000.0

2.4 Python Packages Installation

Once Python is installed, the following packages are required to run the project. These
packages can be installed via pip, Python’s package installer. Open your terminal or
command prompt and run the following commands:

e Pandas: ‘pip install pandas’

e Numpy: ‘pip install numpy*

e Matplotlib: ‘pip install matplotlib‘

e Seaborn: ‘pip install seaborn'

e Scikit-learn (sklearn): ‘pip install -U scikit-learn

e NLTK: ‘pip install nltk’

e Regular expressions (re): This is a built-in module and does not require installation.
e Keras: ‘pip install keras’

e Tensorflow: Keras is a high-level API and needs a backend engine for computation.
Tensorflow is one such engine. Install it using pip install tensorflow

e tqdm: ‘pip install tqdm'

https://www.python.org/downloads/

e Wordcloud: ‘pip install wordcloud'

After installing NLTK, you need to download the 'punkt’ and ’stopwords’ datasets. Open
a Python shell (or a Jupyter notebook) and run the following commands: Figure [1|shows
the code for downloading "punkt’ and 'stopwords’.

import

Figure 1: downloading 'punkt’ and ’stopwords’

Please ensure that your Python and pip installations are set up correctly and are
accessible via the terminal or command prompt. If you encounter any issues, refer to the
official installation instructions provided by each package or consult the troubleshooting
section of this manual.

3 Data Collection

The Emotion Detection Project leverages two primary datasets, one for textual data and
the other for audio data. These datasets are essential for training and evaluating the
models built during the project.

3.1 Emotion Detection from Text

Source: https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text
Kaggle - Emotion Detection from Text

3.1.1 Description:

This dataset provides a collection of text entries labelled with their corresponding emo-
tions. It is ideal for training machine learning models that aim to detect or predict
emotions from textual data.

3.1.2 Download and Usage Instructions:
e Visit the dataset page on Kaggle: Emotion Detection from Text
e Click on the "Download” button to download the dataset as a ZIP file.
e Extract the ZIP file to get the dataset in CSV format.
e Load the CSV file into the project using pandas or any preferred data manipulation
library.

3.2 RAVDESS Emotional Speech Audio

Source: https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio

Kaggle - RAVDESS Emotional Speech Audio

3

https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text
https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio

3.2.1 Description:

The RAVDESS dataset consists of audio files of actors vocalising emotional expressions.
Each audio file is labelled with the emotion it represents. This dataset provides a rich
collection of emotional speech audio, which is valuable for training models for emotion
detection from audio data.

3.2.2 Download and Usage Instructions:

e Visit the dataset page on Kaggle: RAVDESS Emotional Speech Audio
e Click on the "Download” button to download the dataset as a ZIP file.
e Extract the ZIP file to access the audio files.

e Integrate the audio files into the project as needed.

Please ensure you have the necessary permissions to access and use these datasets for
your project. Always acknowledge the data source and respect any licensing or usage
constraints associated with the datasets.

4 Exploratory Data Analysis (Text)

4.1 Importing Libraries

This code is setting up the tools and materials needed for a project. Think of it as
gathering ingredients for a recipe.

e Firstly, it’s collecting a set of tools (or libraries) from a workshop. These tools help
in tasks like data organisation, drawing graphs, and processing language.

e Next, it adjusts some settings to make sure the pictures it draws are clear, and it
turns off any distracting or unnecessary alerts.

e Lastly, it fetches two special language tools to help it understand and break down
sentences into words.

In essence, this code is just preparing everything needed before the main work starts.

Figure 2] shows the code for preparing everything needed before the main work starts.

4.2 Loading and Preprocessing the Text Data

e Loads a dataset named ’text_emotion’ which has information about text content
and the sentiment (or emotion) associated with it.

e From the entire dataset, it chooses to work with two columns: the actual content
of the text and its sentiment.

e It then defines a set of cleaning steps for the text content. These steps include:
— Converting everything to lowercase.

— Removing mentions, links, and special codes.

4

import re

import nltk

import warnings

import numpy as np

import pandas as pd

from tgdm import tqgdm

import seaborn as sns

import matplotlib.pyplot as plt

from wordcloud import WordCloud

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

from sklearn.model selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification report, accuracy score
plt.rcParams["figure.dpi'] =
warnings.filterwarnings("ignore™)

nltk.download(" punkt')
nltk.download('stopwords"')

Figure 2:

— Breaking down the content into individual words.
— Removing common, unimportant words.

— Simplifying words to their basic form.

e With these cleaning steps defined, it goes through each text entry, applies the
cleaning, and then adds this cleaned version to the dataset.

e Finally, it displays the cleaned dataset. In essence, it’s about loading a dataset,
selecting important parts, cleaning the text content, and displaying the cleaned
dataset.

Figure [3| represents the code for Loading and Preprocessing the Text Data

4.3 Analysing Data

This code checks and counts any missing or incomplete information in the ‘emotion_data‘.
It then displays how many pieces of missing information are present for each feature (or
column) in the data. Figure [4] shows the code for analysing the Text data with the
distribution of sentiments. Figure |5/ shows the code for analysing the Text data with the
distribution of word counts in a content and the distribution of average word length in
content.

This Figure [6] below provides a quick summary of two specific features in the ‘emo-
tion_data:‘ the number of words (‘word_count‘) and the average length of words (‘avg_word_length").
It shows things like the average, minimum, and maximum values for these features.

This code in the Figure [7] does the following:

e It identifies the different types of sentiments (like happy, sad, or angry) present in
the emotion_data.

e For each type of sentiment, it gathers all the related text content.

e Using this content, it creates a visual called a ”word cloud” which shows words that
appear more often in a bigger size.

kext_emntiﬂn = pd.read. csv('Data/text_emotion.csv')
display(text_emotion)
emotion._data = text_emotion[['content’, "sentiment”]]

display({emotion_data.head()})

stemmer = PorterStemmer()
def preprocess text(text):
text = text.lower()
text re.sub{r'@w+', "', text)

text = re.sub{r'http\S+|ww\S+|httpsys+", "', text,
flags=re. MULTILINE)

text re.sub{r'&[a-z]+;", "', text)
text re.sub{r'[~wis]', "', text)
tokens = word_ tokenizel(text)

tokens = [word for word in tokens if word not in

tokens = [stemmer.stem{word} for word in tokens]

text = ' ".join(tokens)
return text

tgdm.pandas(desc="Cleaning and Preprocessing")
emotion data 'cleaned. content'] =
emotion. data["content'].progress._apply(preprocess, text)

display(emotion,data)

Figure 3: Loading and Preprocessing the Text Data

6

emption data,isnull().sum()

Sfipure(figsize=(2, 4))

.countplot (data=emotion data, y="sentiment')
.title('Distribution of Sentiments')

.xlabel ("Count")

.ylabel('Sentiment")

.show()

Distribution of Sentiments

empty
sadness
enthusiasm
neutral
WOrTy
SUrprise
love

fun

hate
happiness
boredom
relief
anger

Sentimeant

0 2000 4000 6000 8000
Count

Figure 1: Distribution of Sentiments

emotion data['word _count'] = emotion _data['content'].apply(lambda
x: len(x.split()))

plt.fipure(figsize=(%, 4))
sns.histplot(emotion data['word count'], bins=20, kde=True)

plt.title('Distribution of Word Counts in Content')
plt.xlabel('Word Count')

plt.ylabel (' Frequency’)

plt.show()

Figure 4: Analysing Text Data
7

Distribution of Word Counts in Content

4000 4 -
.-"'_"'\.H\ -
.. 3000 —// M""x _
|
£ 2000 - [
1000
i = - - - T T = .
0 5 10 15 X0 25 30 35

Word Count

Figure 2: Distribution of Word Counts in Content

emption _data["avg word_length'] =
emption_data[‘content’].apply(lambda x: sum(len(word) for word in
x.5plit()) / len(x.split()) if len(x.split()) > @ else 8)

plt.figure(figsize=(2, 4))

sns.histplot(emotion data["avg word_length’], bins=26, kde=True)
plt.title('Distribution of Average Word Length in Content')
plt.xlabel('Average Word Length')

plt.ylabel('Frequency')

plt.show()

Distribution of Average Word Length in Content

60000 4

50000 4

40000 4

Frequency
&
=2
=
=

|
20000 4
10000 -

oL A | | | | |

0 10 20 0 40 50 &0

Average Word Length
Figure 3: Distribution of Average Word Length in Content

Figure 5: Analysing Text Data
8

11i 'l-!ﬂ F|1.r E EI'I'H]HEII'l_d E'ta [[1 Wn rqu_l: il ﬂt 1 :
‘aug iord. length' 1].describe()

Figure 6: summary of two specific features in the ‘emotion_data

unique_sentiments = emotion_data['sentiment’].unique()

for sentiment in unique_sentiments:
content = ' '.join(emotion_data[emotion_data['sentiment'] ==

sentiment]["content®])

wordcloud = WordCloud(width= » height=
background color='black®).generate(content)

plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.title(f'Word Cloud for Sentiment: {sentiment}')
.axis('off")
.show()

Figure 7: code for type of sentiments

e It then displays these word clouds for each sentiment, allowing you to see which
words are most associated with each feeling.

Figure [8represents the word cloud of all the sentiments.

quo W/ =:

twitter |'. olE

Mother

lLove:
Happy :Mother

big

everything l -2ty

89

Figure 8: word cloud

4.3.1 Splitting the Data
This code in Figure [9] represents the splitting of data

e Take the cleaned-up text and their emotions.
e Divides them into a training set (to learn from) and a test set (to check the learning).

e Displays the number of items in each set.

10

X = emotion data['cleaned content']

y = emotion data['sentiment']

X_train, X test, y train, y test = train test split(X, v,
test size=f.2, random state=42)

print(X_train.shape)
print(y_train.shape)
print(X test.shape)
print(y_test.shape)

Figure 9: Splitting the Data

5 5 Modelling for Text Data

5.1 Machine Learning Model
This code in Figure [10;

e Prepares tools to work with text data and models.

Converts the text data into a format that’s easier for models to understand.

Sets up three different models (methods) to predict emotions from text.

e Combines these models into one unified model for better predictions.

Trains the unified model using the training data.

Tests the model’s predictions on new data.
e Displays how well the model did in the test.

Figure [11] represents the Classification report of the Ensemble model.

5.2 Base LSTM
This code in Figure [12| andFigure [13] :

e Sets up tools to work with and process text data.
e Converts the text into numbers and ensures they are of equal length.
e Converts emotions into a format the model can understand.

e Creates a model (a kind of neural network) to predict emotions based on the text.

11

import warnings

import pandas as pd

from sklearn.sym import SVC

from sklearn.ensemble import VotingClassifier

from .metrics import classification report

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear model import LogisticRegression

trom sklearn.feature extraction,text import TtidfvVectorizer
warnings.filterwarnings(“ignore™)

vectorizer = TfidfVectorizer()
X train tfidf = vectorizer.fit transform(X _train)
X test tfidf = vectorizer.transform(X_test)

LogisticRegression()
SVC(probability=True)
RandomForestClassifier()

ensemble = VotingClassifier(estimators=[('1lr", modell), ('svc’,
model2), ('rf’, model3)], voting="soft’)

ensemble. fit(X train tfidf, y_train)

y_pred = ensemble.predict(X test tfidf)

print{classification _report(y test, y_pred))

Figure 10: Ensemble model

12

precision recall fl1-score support

anger 2. 2. 22 2. 2e 19
boredom 2.a0 a.a8 &, 00 21
empty .33 2.91 .01 162
enthusiasm 0.0 2.0 e.00 163
fun 2.11 a.al 8.83 338
happiness ©.33 9.35 9.34 1928
hate .43 2.21 2. 28 268

love 2.48 .48 B8.43 762
neutral e.34 e.58 .43 1746
relief 2.37 2.23 &. a6 352
sadness 2.49 2.25 8,31 1246
surprise e.32 0.84 0.07 425
worry ©.33 9.49 9.40 1666
accuracy .35 8000
macro avg 2.27 2.13 .18 S0
weighted avg e.34 9.35 9.32 2000

Figure 11: Classification report of ensemble model

e Trains this model with the training data.
e Plots how well the model learned over time.
e Saves the trained model for future use.

The Accuarcy and Average loss of the model is shown in Figure

5.3 Tuned-LSTM
This code in Figure [15] and Figure
e Prepares tools for processing text data and building a neural network.
e Converts text data into a numeric format, making sure they’re all the same length.
e Turns emotions into a format the model understands.
e Divides the data into a training set and a test set.
e Designs a slightly more advanced model to predict emotions from text.
e Trains this model with the training data.
e Displays how well the model learned over time.
e Saves the trained model for future use.

The Accuarcy and Average loss of the model is shown in Figure

13

keras.models import Sequential
keras
keras
keras

tokenizer = Tokenizer()

tokenizer.fit _on_texts(¥ train)

¥ _train_seq = tokenizer.texts_ to seguences(X _train)
¥ _test. seqg = tokenizer.texts_ to.seguences(¥ _test)

¥ _train_pad = pad_seguences(X train.seq, maxlen= }
¥ _test_pad = pad_sequences(¥X_test seq, maxlen=)

y_train = pd.get_dummies(y _train)
v test = pd.pet. dummies(y_test)

vocab_ size = len(tokenizer.word_ index) +

hase_lstm model .t = Sequential()

hase _lstm model t.add{Embedding{input_dim=vocab_size,
output. dim=22))

hase _lstm model _t.add{L5TM(=2))

hase _lstm model t.add{Dense{y_train.shape[1],
activation="softmax'))

hase . lstm model . t.compile{optimizer="adam’,
loss="cateporical crossentropy', metrics=['accuracy'])
hase _lstm model t.summary()

hase _lstm history.t = bhase_lstm model t.fit(X train_pad, y_train,
epochs=20, walidation data=(X test_pad, y _test))

import numpy as np
import matplotlib.pyplot as plt

def plot_model performance(history):

Figure 12: Code for Base LSTM
14

plt.
plt.
plt.
plt.

fipure(figsize=(12, 4})

subplot{l,

%
> 1)

plot{history. history["accuracy'])
plot{history. history[‘val accuracy'])

plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

print('Average accuracy: ',

title('Model accuracy')
ylabel(Accuracy')
x1abel('Epoch")

legend(['Train', "Test'], loc="upper left')

subplot({l, 2, 2)
plot{history.history['loss"])

plot{history.history["val loss'])

title('Model loss")
ylabel('Loss")
x1label('Epoch")

legend(['Train’, 'Test'], loc='upper left’)

show()

-

np.meanfhistory, history[

accuracy

‘1))

print('Average loss: ', np.mean{history.history['loss']))

plot_model performance(base_lstm history t)

hase 1stm model .t.savel base lstm text model.

Figure 13: Code for Base LSTM

Mogel accuracy

oS Tr e e ——
Tarsl e
os P
o.F .r""/f
+
-
¥ e "-r =
5 / &
<o
0. s
o
5 1 1% 0 F LE
Epach
& e THIMPFEE N SSE TS
Rl £ TEERd 1 SEE F TED

Mocie] BOss

Figure 14: Accuarcy and Average loss of the Base LSTM

15

keras,models import Sequential
tensorflow.keras.optimizers import Adam
keras,preprocessing,text import Tokenizer

sklearn.model selection import train_ test split
keras,preprocessing,sequence import pad sequences

keras, layers import Dense, Embedding, LSTM, Bidirectional

tokenizer = Tokenizer({num _words= » 00v_token="<00V>")
tokenizer,fit_on_ texts(emotion data['cleaned content'])
sequences =

tokenizer,texts to sequences(emotion data['cleaned content'])
padded_seguences = pad sequences(sequences, maxlen=200,
padding="post’, truncating="post')

labels = pd.get dummies(emotion data['sentiment’])

X train, X test, y_train, y_ test =
train_test split(padded seguences, labels, test size=0.2,
random_state=42)

vocab5ize = len(tokenizer,word index) +
adam = Adam(learning rate=

tuned lstm model t = Sequential()

tuned lstm model t.add(Embedding(vocab5ize,

input _length=X train.shape[1]))

tuned lstm model t.add(Bidirectional(LSTM({1:Z,
dropout=0.2,recurrent_dropout=0.2, return_sequences=True}))
tuned lstm model t.add(Bidirectional(LSTM(54,

dropout=09.2,recurrent_dropout=0.2, return_sequences=True}))

Figure 15: Code for Tuned LSTM
16

tuned 1stm model t.add(Bidirectional(LSTH(=2,
dropout=£. 2, recurrent_dropout=0.2)))
tuned 1stm model t.add(Dense(’3, activation='softmax’))

tuned lstm model t.compile(loss="categorical crossentropy’,

optimizer=adam, metrics=[accuracy’])
tuned lstm model t.summary()

tuned 1stm history t = tuned lstm model t.fit(X train, y train,
epochs=26, validation data=(X test, y test))

plot model performance(tuned lstm history t)

tuned 1stm model t.save(tuned Istm text model.h5')

Figure 16: Code for Tuned LSTM

Model accuracy Model loss
Tt e T
055 /__,-— 244
k.
-
£ 45 . w 20
= # 3
=+ rd 18 4
T F,
ra L6 <
035 I \x"'\-\.____
a .
0.30 e —
. - - - 1 | - - -
LN 2 5.0 5 { Ta] 15 15.0 175 a 2.5 Le] 5 12.5 150 175
O Epac
AgF @
-age 1 s

Figure 17: Accuarcy and Average loss of the Tuned LSTM

17

5.4

Hybrid Model

This code in Figure (18 and Figure :

Prepares tools for processing text and building a neural network.
Converts text into numbers, ensuring they’re uniform in length.
Transforms emotion labels into a format the model can understand.
Splits the data into a part for learning and another for testing.

Designs a combined (hybrid) model using both filtering techniques and memory
units to predict emotions from text.

Trains this combined model using the learning data.
Displays how well the model learned over time.

Saves the trained model for later use.

The Accuarcy and Average loss of the model is shown in Figure

9.9

Classifying Custom Sample

This code in Figure 21] and Figure

Sets up tools for working with text and models.

Provides a list of sentences to identify emotions.

Loads three trained models from files.

Converts the sentences into a format the models understand.
Uses the models to predict the emotion for each sentence.

Displays the predicted emotions for each sentence, using each of the three models.

The classified report of the three models are shown in Figure [23]

6

6.1

Exploratory Data Analysis (Speech)

Loading and Preprocessing the Speech Data

This code in Figure [24;

Sets up tools to work with audio files.
Defines a method to pull out meaningful characteristics from audio.
Defines a method to determine the emotion based on a file’s name.

Goes through each audio file in a folder, extracts its characteristics and determines
its emotion.

Gather these characteristics and emotions into a table for viewing.

18

from keras.models import Sequential

T rom

T rom

from

T rom

T rom

trom keras,layers import Dense, Embedding, LSTM, SpatialDropoutlD,
ConvlD, MaxPoolinglD, Flatten

max_fatures =

tokenizer = Tokenizer({num_words=max fatures, split=" ")
tokenizer.fit_on_texts(emotion data["cleaned content'].values)

X =

tokenizer.texts to sequences(emotion data["'cleaned content'].value
5)

X = pad_seguences(X, maxlen=

label encoder = LabelEncoder()
F:
to_categorical(label encoder.fit transform{emotion_data["'sentiment

‘1)

X train, X test, y.train, y_test = train_test split(X, y,
test size= , random state=4127)

hybrid model t = Sequential()

hybrid _model t.add({Embedding(max fatures, » input_length =
X.shape[1]))

hybrid model t.add(SpatialDropoutlD(1)

hybrid model t.add({ConviD({ » 5, activation="relu’}))

hybrid model t.add(MaxPoolinglD{pool size=1}}

hybrid model t.add(LSTM(» dropout=0£.2, recurrent_dropout= 3}
hybrid model t.add(Dense(y.shape[l],activation="softmax"))
hybrid _model t.compile(loss = 'categorical crossentropy’.,
optimizer="adam’ ,metrics = ['accuracy'])

hybrid model t.summary()

Figure 18: Code for Hybrid model
19

hybrid_history t = hybrid model t.fit(X train, y _train, epochs =
» batch _size=27, wvalidation data=(X _test, y _test))

plot model performance(hybrid_history t)

hybrid _model t.save("hybrid_text model.h5")

Figure 19: Code for Hybrid model

Model accuracy' Model loss

0."a »
— Traim — 300 Traan

0.&5 Test e 2.75 Tast

0.&0 .50 1
0.55 2.25 1
0. 50 00 4
\'\-\.
0.45 1.75 1 "‘x\\\
0.40 150 4 ‘“a_xh.
1.25 4 s

0,35 f T—
’ —
0. %0 Lo} ——

Becuracy
Lits

] L b] i5 20 25 a0 Q L 1a] 1% m 2% B0
Epoch Epoch

Average A Custily o B ST A IS TTISIT
average loss: 1.Z78zes55312911

Figure 20: Accuarcy and Average loss of the Hybrid Model

6.2 Analysing Data
This code Figure [25;
e Displays a summary of the data’s characteristics.
e Shows how often each emotion appears in the data.
e Visualises how the data’s characteristics relate to each other.

e Displays the distribution of each characteristic in the data.

Figure [26] shows the distribution of emotions in the speech data. while Figure [27the
Correlation Matrix of MFCC Features in speech. And Figure Numerical Feature
Distribution (MFCC).

7 7 Modelling for Speech Data

7.1 Machine Learning Model for Speech
This code in Figure [29;
e Prepares tools for working with data and models.

e Splits the data into what we want to predict (emotions) and the characteristics used
for predictions.

20

import warnings

trom keras.models import load model
from

from

from
warnings.filterwarnings(“ignore™)

sentences = |

"He's owver the moon about being accepted to the
university”,

"Your point on this certain matter made me outrageous,
how can you say so? This is insane.”,

"I can't do it, I'm not ready to lose anything, just
leave me alone™,

"Merlin’s beard harry, you can cast the Patronus
charm! I'm amazed!"

"""I am extremely delighted to announce that after
months of hard work and dedication, our team has finally managed
to successfully complete the project well ahead of the
deadline. """

»

]

base _lstm_model = load model(’'Trained
Models/base lstm text model.h5")

tuned_lstm model = load model(' Trained
Models/tuned lstm text model.h5")

hybrid _model = load model(Trained Models/hybrid text model.hS5')

tokenizer = Tokenizer()
tokenizer,.fit_ on_texts(sentences)
sequences = tokenizer.texts to _seguences(sentences)

padded_seguences = pad seguences(sequences, maxlen=

base lstm_predictions = base lsitm model.predict(padded sequences)
tuned lstm predictions =

tuned_lstm model,predict(padded sequences)

hybrid_predictions = hybrid_model.predict{padded sequences)

Figure 21: Code for Classifying Custom Sample

21

1abel encoder = LabelEncoder()
label encoder, fit([empty’, 'sadness’, 'enthusiasm’, 'neutral’,

‘worry', ‘surprise’, ‘love’, "fun’, ‘hate’,
‘happiness’, 'boredom’, ‘relief’, anger’])

print('Base LSTM Model Predictions:’)

for sentence, prediction in zip(sentences, base lstm predictions):
print(f'Sentence: {sentence} \nPredicted emotion:
{13bel encoder,inverse transform([np,argmax(prediction)])}’)

print("\nTuned LSTM Model Predictions:’)
for sentence, prediction in zip(sentences,

tuned lstm predictions):
print(f Sentence: {sentence} \nPredicted emotion:

{13bel encoder,inverse transform([np,argmax(prediction)])}’)

print("\nHybrid Model Predictions:")

for sentence, prediction in zip(sentences, hybrid predictions):
print(f'Sentence: {sentence} \nPredicted emotion:

{13bel encoder,inverse transform([np,argmax(prediction)])}’)

Figure 22: Code for Classifying Custom Sample

22

Base LSTM Model Predictions:

Sentence; He's over the moon about being accepted to the university

Predicted emotion: ['happiness']

Sentence: Your point on this certain matter made me outrageous, how can you say so? This is insane.
Predicted emotion: ['worry']

Sentence: I can't do it, I'm not ready to lose anything, just leave me alone

Predicted emotion: ['love']

Sentence: Merlin's beard harry, you can cast the Patronus charm! I'm amazed!

Predicted emotion: ['happiness')

Sentence; I am extremely delighted to announce that after months of hard work and dedication, our team has finally managed to s
uccessfully complete the project well ahead of the deadline,

Predicted emotion: ['sadness’)

Tuned LSTH Model Predictions:

Sentence; He's over the moon about being accepted to the university

Predicted emoticn: ['neutral’]

Sentence: Your point on this certain matter made me outrageous, how can you say so? This is insane.
Predicted emotion: ['neutral’]

Sentence; I can't do it, I'm not ready to lose anything, just leave me alone

Predicted emotion: ['neutral’]

sentence: Merlin's beard harry, you can cast the Patronus charm! I'm amazed!

Predicted emotion: ['neutral’]

Sentence; I am extremely delighted to announce that after months of hard work and dedication, our team has finally managed to s
uccessfully complete the project well ahead of the deadline,

Predicted emoticn: ['neutral’]

Hybrid Model Predictions:

Sentence; He's over the moon about being accepted to the university

Predicted emotion: ['happiness']

sentence: Your point on this certain matter made me outrageous, how can you say so? This is insane,
Predicted emotion: ['worry']

Sentence; I can't do it, I'm not ready to lose anything, just leave me alone

Predicted emotion: ['love']

Sentence: Merlin's beard harry, you can cast the Patronus charn! I'm amazed!

Predicted emotion: ['love']

Sentence: I am extremely delighted to announce that after months of hard work and dedication, our team has finally managed to s
uccessfully complete the project well ahead of the deadline.

Predicted emotion: ['sadness’]

Figure 23: Classifying the Custom Samples using 3 Models

23

import gs

import numpy as np

import pandas as pd

def extract. features(file_path):

audio, sample_rate = librosa.load(file_path,
res type="kaiser.fast")

mfccs = librosa,feature.mfcc(y=audio, sr=sample_rate,
n_mfcc=44)

mfccs_processed = np.meani(mfccs. T, anis=0)

return mfccs_processed

def parse. emotion . from filename(filename):

emotion. mapping = {'@1': ‘neutral’, "©2°': "calm', '83':
'happy ", '84"': "sad"', '@5"': "angry', "@8": "fearful", '@7":
'disgust®, "@8': 'surprised’}

emotion = filename.split('-")[2]

return emotion.mapping[emotion]

features = []

labels = []

for folder in gs.listdir('Data/sAudio Speech_Actors_©81-24"):
for file in

os.listdir{os.path.join('Data/Audio Speech_Actors 81-24°,

folder)):

file _path = os.path.joinf Data/Audio_Speech_ Actors @1-24',
folder, file)
features, append(extract, features{file path))

labels.append{parse_emotion from filename(file))

df = pd.DataFrame(features)
df["emotion"'] = labels
display(df)

Figure 24: Loading and Preprocessing the Speech Data
24

import seaborn as sns
import matplotlib.pyplot as plt

display(df.describe())

plt.figure(figsize=(18,5))

sns. countplot(data=df, x='emotion')
plt.title('Distribution of Emotions')
plt. show()

corr = df.corr()

plt.figure(figsize=(10,18))

sns,heatmap(corr, cmap="coolwarn’, annot=True)
plt.title('Correlation Matrix')

plt. show()

df.drop('emotion’, axis=1).hist(bins=30, figsize=(15,15),
layout=(8,5))

plt.tight layout()

plt. show()

Figure 25: Analysing Speech Data
25

Distribution of Emotions

200 1

175 1

150 +

125 1

count
—
[=]
(=]

neutral calm happy sad angry fearful disgust surprised
emotion

Figure 26: Distribution of Emotions

e Converts emotion names into numbers for the model to understand.
e Divides the data into a learning part and a testing
e Sets up three different methods to predict emotions based on the characteristics.

e Combines these methods into one unified method for v Teaches this unified method
using the learning data.

e Checks the method’s predictions on new data.
e Displays how well the method did in the test.

The classification report of the ensemble model for speech data is in Figure

7.2 Base LSTM for Speech
This code in Figure 31] and Figure 32):

e Prepares tools for working with data and building a neural network.

Splits the data into characteristics and the emotions to predict.

Converts emotion names into a format the model can understand.

Divides the data into a learning part and a testing part.

Adjusts the data’s shape for a special kind of model called LSTM.

26

Correlation Matrix

0T ZEY S99 LB 6 OTTIZIETPTISTIOTLIBIOTOCTLECECPESLOE LEBLOZ0ETE CEEE PEGEQE LEGEBE

OHMNMTT O ~O,

Figure 27: Correlation Matrix of MFCC Features in speech

27

100

100

100

150
100

100

150

130
100

Figure 28: Numerical Feature Distribution (MFCC)

)
e
=
wn
-
=

28

=50 §

0 1 2 3 ']
100
100 160 100
L]
i 5 50
[o] b
=60 [T T 1] =60 -0 -0 0 W 1] 0 i =0 0 n
5 [1 B 9
150
hLl
100 100
1
50 160
A 50
1] 1]] b4
=0 =10 0 W A = =0 =10 0 1 =20 =10 0 10 =10 =10 0 =0 0 0 N X
10 1 u
200
150
100 100
9
1] b
=i =10] 0 =10 1] 10 i =10 1] 10
15 17 18
-10 [1 [} 10 il B0 1]
20 i H
=10] 10 S50 5 -5 0 5 W -10] 10
5 6 n F.]
150 15
100 10
L] 50
[]
0 10 0 =5] b1 b1} =4 0 -] 1 13 =2] L] 10 =2] 4 1
30 i Erd 3 M
150 150
ii 14 100
80 0
[]
40§ uw ECO T -5 LI S| g 1] -5] g 10
EH i 7 i n
150 144 15
100 100 00
0 5) 9
1]] b
=5 [5 10

i
]
=
wn

import warnings

from sklearn.svm import SVC

from sklearn.preprocessing import LabelEncoder

trom sklearn.metrics import classification report
trom sklearn.linear model import LogisticRegression
from sklearn.model selection import train_test split
from sklearn.ensemble import RandomForestClassifier,
VotingClassifier

warnings.filterwarnings("ignore”)

df .drop('emotion’, axis=1)
df["emotion’]

encoder = LabelEncoder()
y = encoder.fit transform(y)

X train, X test, y_ train, y_.test = train_test split(X, vy,
test size=0.2, random state=12)

modell = LogisticRegression()
model? = SVC(probability=True)
model3 = RandomForestClassifier()

ensemble = VotingClassifier(estimators=[("1lr’', modell), ('svc’,
model2), ('rf', model3)], voting="soft’)

ensemble.fit(X _train, y_train)

v _pred = ensemble.predict(X _test)

print{classification _report(y _test, y_pred,
target_ names=encoder.classes })

Figure 29: Ensemble model for speech data

29

precision recall fl-score support

angry B8.66 2.69 8.67 42
calm a.45 8.77 e.57 a4
disgust 8.39 8.59 e.47 32
fearful 8.65 8.62 B8.63 32
happy .38 a.32 .35 34
neutral a.44 a.28 8.28 28
sad 8.48 .28 B.35 39
surprised 2.638 2.42 8.52 45
accuracy 2.51 288
macro avg 8.52 2.49 B.48 2B8
weighted avg 8.53 8.51 a.58 2B8

Figure 30: classification report for speech data

Designs an LSTM model to predict emotions based on the characteristics.

Teaches this model using the learning data.
e Shows how well the model learned over time.

e Saves the trained model for future use.

The Accuracy and Avg loss of the base LSTM model for speech is shown in Figure [33]

7.3 Tuned-LSTM for speech
This code in Figure [34 and Figure 35 :

e Prepares tools for working with data and designing a neural network.
e Organises the data into characteristics and emotions.

e Converts emotion names into a model-friendly format.

e Divides the data into learning and testing portions.

e Adjusts the shape of the data for a neural network.

e Designs a more advanced model (with layers that remember and use both directions
of data) to predict emotions.

e Trains this model with the learning data.
e Visualises the model’s learning progress.

e Stores the model for later use.

The Accuracy and Avg loss of the Tuned LSTM model for speech is shown in Figure

30

df.iloc[:, :-1].values
df.iloc[:,].values

encoder = LabelEncoder()
y = encoder.fit transform(y)

to_categorical(y)

X train, X test, v _train, y_test = train_test split(X, vy,
test size= » random state=42)

X train = np.reshape(X _train, (X_train.shape[©], 1,
X train.shape[1]))
X test = np.reshape(X _test, (X _test.shape[©], 1, X test.shape[1])})

base _lstm_model s = Sequential()

base lstm_model s.add{LSTM(>2, input _ shape=(X _train.shape[1],
X _train.shape[2])))

base _lstm_model s.add(Dense(y _train.shape[1],
activation="softmax"'))

base _lstm model s.compile(loss="categorical crossentropy’,
optimizer="adam’, metrics=["accuracy’])
base lstm_model s.summary()

base lstm_history s = base lstm model s.fit(X train, y_train,
epochs=166, batch _size=27, validation data=(X test, y_test))

Figure 31: Base LSTM for speech data
31

plot model performance(base lstm_history s)

base lstm model s.save('base lstm_

Figure 32: Base LSTM for speech data

Model accuracy Model loss
=0 .y o™y A o rnin
Fes '} o Test
045 it wﬂ‘_‘“ﬁﬁ_ﬂ_ J ~ " >0 - Tl
(A1 =] sy J L
M_,-"\-w’-_ h 1.9
CELE o
" L - 18
S 0304 ‘lu‘l ” g
% oo 4 1.7 —
™
-1 | L6 e
f N
oasq M . e
" ——
LR
0 0 40 (i) A 100 o] 40 &0 (i) Loo
Eposcin E paoe

Avarage SCouracy: B_4ALBELI TS5 IFSELS
Average losst 1.67ETTO0000 7052

Figure 33: Accuracy and Loss Plot of Speech Base-LSTM Model

7.4 Hybrid Model for speech
This code in Figure [37] and Figure

e Organises the data into characteristics and emotions.
e Converts emotion names into a model-friendly format.
e Splits the data into training and testing sets.

e Adjusts the data’s shape for the neural network.

e Designs a combined model using both filtering techniques and memory units to
predict emotions.

e Trains this model using the training data.
e Shows the model’s learning progress.
e Saves the model for later use.

The Accuracy and Avg loss of the Hybrid Model for speech is shown in Figure [39|

7.5 Classifying Custom Sample for speech data
This code in Figure [{0] and Figure

e Prepares tools and loads pre-trained models for emotion prediction.

32

from
from
from
from
from
Embedding, Bidirectional

df.iloc[:, :-1].values
df,iloc[:,].values

encoder = LabelEncoder()
y = encoder.fit _transform(y)

y = to_categorical(y)

X train, X test, y_train, y_test = train_test split(X, y,
test size= » random_state=12)

X train = X _train.reshape(({X _train.shape[©], X_train.shape|
X test = X _test.reshape((X_test.shape[©], X_test.shape[1],

tuned_lstm model s = Sequential()

tuned_ lstm model s.add(Bidirectional (LSTM(» dropout=
recurrent_dropout= » Meturn seguences=Irue,
input_shape=(X_train.shape[1], 1)))})

tuned lstm model s.add(Bidirectional(LSTM{54, dropout=
recurrent_dropout=6.2, return_sequences=True}))

tuned_ lstm model s.add(Bidirectional(LSTM(>Z, dropout=
recurrent_dropout=6.2}}))

tuned_ lstm model s.add(Dense(y_train.shape[l],
activation="szoftmax’)}

tuned_ lstm model s.compile(loss='categorical crossentropy’,
optimizer="adam’, metrics=["accuracy’])
tuned_ lstm model s.build((Mone, X _train.shape[l1], 1))

Figure 34: Tuned LSTM for speech data
33

Tuned l1stm model =s.summaryd)

Tuned l1stm history s = tuned_ lsitm model s._fit(X train, y_train.
epochs= » batch _size=22, walidation_ data=(X _test, y _test))

plot _model performancel{tuned lstm history s)

Figure 35: Tuned LSTM for speech data

Mode] acCuracy Pociel lass

Train L 20 — Train

[-X.] Bear e Tat
,-"‘V"-, i\
pe 184
P h -
as . ey
- P | Ty,
g ey o 2 .
o o J,l".- 3 T
g ' M
o 1.4 4 -
Ky .
o .
£} e
{ 1.24 T
|I wﬂ-\'
[+ %] i 1.0 4 H"
. ' ' . ' ' ' ' v
a 10 20 30 &0 S0 o 10 20] 40 w0
Epoch Epoch

LR D G L G

1283 ILBE

AwErago accermsy

Figure 36: Accuracy and Loss Plot of Speech Tuned-LSTM Model

e Lists several audio files.
e For each audio file:

— Identifies the actual emotion from its name.

— Loads the audio and processes it to extract features.

— Adjusts the shape of the features for different models.

— Uses each model to predict the emotion from the audio’s features.

— Displays the real emotion and the predicted emotions.

The classification of the samples using three models are shown in Figure

34

from keras.models import Sequential
from keras,layers import Dense, Embedding, LSTM, SpatialDropoutilD,
ConvlD, MaxPoolingilD

df .drop(' emotion’, axis=1).values
df["emotion’].values

label encoder = LabelEncoder()
y = to_categorical(label encoder.fit transform(y))

X train, X _ test, yv_train, y_test = train_test split(X, v,
test size= , random state=412)

X train = np.reshape(X_train, (X_train.shape[©], X_train.shape[1].

)
X test = np.reshape(X _test, (X _test.shape[©], X test.shape[1], 1))

hybrid _model s = Sequential()

hybrid model s.add(ConviD(s 5, activation="relu’,
input_shape=(X_train.shape[1], 1)))

hybrid model s.add(MaxPoolinglD{pool size=1))

hybrid model s.add({LSTM(» dropout=6.2, recurrent_dropout= })
hybrid model s.add(Dense(y.shape[l], activation="softmax’))

hybrid _model s.compile{loss="categorical crossentropy’,
optimizer="adam’', metrics=["accuracy’'])
hybrid model s.summary()

hybrid_history s = hybrid model s.fit(X_ train, y_train,

Figure 37: Hybrid Model for speech data

batch_size=32,

plot _model performance(hybrid history s)

validation data=(X_test, ¥ _test))

hybrid _model s.save("hybrid_ speech_model.hS")

Figure 38: Hybrid Model for speech data

Model accuracy

Accuracy

50

30 40

10 20
Epoch

Average accuracy: @.635868057@12558
Average loss: 1.882738163471222

36

Model loss

Epoch

Figure 39: Accuracy and Loss Plot of Speech Hybrid Model Model

from keras.models import load model
warnings.filterwarnings(“ignore™)

base lstm_model = load model('Trained
Models/base_lstm_speech_model.h5")

tuned_ lstm model = load model(' Trained
Models/tuned_lstm_speech_model.h5"})

hybrid _model = load model('Trained Models/hybrid speech model.h5")

audio files = ['83-61-81-61-61-81-24 . wav', '83-81-83-02-01-81-
13.wav', '83-81-83-82-82-081-21.wav’,

'@3-981-64-81-82-81-16.wav’', '83-81-68-082-01-82-
86.wav "]

emptions = ['neutral’, ‘calm’, “happy', 'sad’', 'angry', "fearful’,
‘disgust’, ‘surprised’]

for file in agudio_ files:

actual emotion = file.split{'-")[2]

data, sampling rate = librosa.load('Data for Prediction/" +
file)

features = np.mean(librosa.feature.mfcc(y=data,
sr=sampling rate, n_mfcc=46).T, axis=8)

features base_lstm = np.reshape(features, (1, 1,

features.shape[&]))
features _tuned lstm = np.reshape(teatures, (1,

features.shape[©], 1))
features _hybrid = np.reshape(features, (1, features.shape[@],

)

Figure 40: Classifying Custom Sample for speech data

37

prediction base lstm =
base lstm_model.predict(features _base_ lstm)
prediction tuned_ lstm =
tuned lstm model ,predict{features tuned lsim)
prediction _hybrid = hybrid_model.predict(features hybrid)

print(f'The actual emotion for {file} is
{emotions[int(actual emotion)-1]}")

print{f’'The predicted emotion for {f
is {emotions[np.argmax(prediction base 1

le} u_f.ing base LSTM model

stm)]}

print{f'The predicted emotion for {file}

model is {emotions[np.argmax(prediction . tur
print(f'The predicted emotion for {fil:

{emotions[np.argmax(prediction hybrid)]}®

Figure 41: Classifying Custom Sample for speech data

The actual emotion for @83-81-81-81-81-81-24.wav is neutral

The predicted emotion for 83-81-81-81-81-81-24.wav wsing base LSTM model is calm
The predicted emotion for 83-81-81-81-81-81-24.wav uwsing tumed LSTH model is fearful
The predicted emotion for 83-81-81-81-81-81-24.wav wsing hybrid model is fearful

The actual emotion for @3-81-83-82-01-81-13.wav is happy

The predicted emotion for 83-81-83-82-81-81-13.wav wusing base LSTM model is angry
The predicted emotion for 83-81-83-82-81-81-13.wav using tumed LSTM model is angry
The predicted emotion for 83-81-83-82-81-81-13.wav wsing hybrid model is angry

The actual emction for 83-91-83-82-02-81-21.wav is happy

The predicted emotion for 83-81-83-82-82-81-21.wav uwsing base LSTM model is angry
The predicted emotion tor B3-81-83-82-82-81-21 . wav uwusing tumed LSTM model 1s sad
The predicted emotion for B3-81-83-02-82-81-21.wav using hybrid model is angry

The actual emotion for 83-81-84-81-82-81-10.wav is sad

The predicted emotion for 83-81-84-91-82-91-18.wav using base L5TM model is calm
The predicted emotion for 83-81-84-81-82-81-10.wav uwsing tumed LSTHM model is disgust
The predicted emotion for 83-81-84-81-82-81-18.wav wsing hybrid model is disgust

The actual emotion for 83-91-88-82-01-82-06.wav is surprised
The predicted emotion for @3-81-88-82-81-82-86.wav using base LSTM model is angry

The predicted emotion for B83-81-88-82-81-982-86.wav using tumed LSTM model is surprised
The predicted emotion for 03-81-88-92-81-02-06.wav using hybrid model is surprised

Figure 42: Classifying the Custom Speech Samples using 3 Models

38

	Introduction
	Required Specifications
	Expected Hardware Requirements
	Expected Software Requirements
	Actual System on Which Notebook was Executed
	 Hardware
	Software

	Python Packages Installation

	Data Collection
	Emotion Detection from Text
	Description:
	Download and Usage Instructions:

	RAVDESS Emotional Speech Audio
	Description:
	Download and Usage Instructions:

	Exploratory Data Analysis (Text)
	Importing Libraries
	Loading and Preprocessing the Text Data
	Analysing Data
	Splitting the Data

	5 Modelling for Text Data
	Machine Learning Model
	Base LSTM
	Tuned-LSTM
	Hybrid Model
	Classifying Custom Sample

	Exploratory Data Analysis (Speech)
	Loading and Preprocessing the Speech Data
	Analysing Data

	7 Modelling for Speech Data
	Machine Learning Model for Speech
	 Base LSTM for Speech
	Tuned-LSTM for speech
	Hybrid Model for speech
	Classifying Custom Sample for speech data

