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Emotion Detection Using Deep Learning Models on
Speech and Text Data

Neha Eldho
x21217793

Abstract

With the incorporation of artificial intelligence and deep learning techniques,
emotion detection, a multidisciplinary area rooted in psychology, cognitive science,
and computer science, has seen major breakthroughs. This research goes into the
historical progression of emotion recognition, from Paul Ekman’s founding work to
today’s cutting-edge deep learning models. A comparison of emotion identification
in text and voice modalities was performed, showing the distinct problems and
benefits that each brings. The paper assesses several models, including classic
machine learning techniques, LSTMs, hybrid models, and ensemble approaches,
on both text and speech data through a series of experiments. The results show
that, while both modalities have advantages, voice data frequently delivers greater
emotional clues, even when using the same model architecture. The paper also
highlights the use of multi-modal data in improving emotion identification accuracy.
The integration of different modalities, the use of transformer topologies, and ethical
issues in emotion detection are all possible future avenues. The main objective is
to use technical advances to better comprehend and interpret human emotions,
opening the door for more empathic and responsive artificial intelligence systems.

1 Introduction

1.1 Background

Scholars from all eras and disciplines have been fascinated by the complex web of human
emotions for centuries, from the depths of psychological research to philosophical musings.
As a result of the digital transformation, this investigation set out on a novel course that
penetrated the areas under computational study. A paradigm change occurred, and data-
centric methodologies were employed in order to better understand the once-mysterious
enigma of emotions, which was previously restricted to the field of human introspection.
In the second half of the 20th century, researchers demonstrated their inventive efforts to
comprehend the complexities of human emotions. These researchers utilized the power of
computer approaches. Happiness, sorrow, fear, disgust, wrath, and surprise were listed
as the six cardinal emotions by Ekman in his seminal work from the 1970s, providing the
groundwork for later explorations into the field of emotion detection Ekman (1971). The
turn of the millennium saw the emergence of sentiment analysis, with a preference for
interpreting the tenor of public opinion enclosed inside textual data, notably drawn from
virtual platforms Pang et al. (2008). The frontiers of speech emotion recognition started
to advance at the same time. Savants understood that communication has an emotional
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undertone in addition to its semantic content. A crucial development in this direction
was orchestrated by Schuller et al. (2011), who highlighted the untapped potential of
extracting acoustic characteristics from speech data. However, a true revolution in this
field was only possible because of the development of deep learning. While effective,
the formerly conventional confines of traditional machine learning frequently required
complex feature engineering moves. As opposed to this, deep learning architectures,
particularly the Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) structures, demonstrated an innate ability to autonomously abstract features,
spanning both the textual and vocal domains, making them ideally suited for the task of
emotion detection Zhang et al. (2018). This research unfolds within this grand scene at
the confluence of these evolutionary leaps, aiming to leverage the dynamic potential of
deep learning paradigms in the vocabulary of interpreting emotions, encased both within
textual cadences and voice modulations. By doing this, this project aligns with the course
of this broad, interdisciplinary journey and adds to the collective exploration’s quivering
vitality.

1.2 Motivation

Understanding and constructing the complexities present in the range of human emotions
is a field of study with roots that date back to the dawn of human civilization. Emotions
are persistently regarded as crucial architects of the matrix that determines our conscious
decisions, our complex interactions, and the overall picture of our general well-being.
They inevitably leave their marks on our mental reflections, orchestrating the rhythm of
our social behavior, and even embedding themselves into the structure of our physical
reactions. The wise words of Aristotle resonate in the records of human knowledge: ”The
provocation of ire is facile—yet to channel anger towards the apt individual, calibrated to
the precise extent, at the opportune juncture, for the fitting rationale, and orchestrated
in a judicious manner—this, indeed, is the arduous endeavour.”

The ability to accurately perceive and understand emotions has become increasingly
important in the modern digital era, as human interactions are increasingly mediated by
electronic intermediaries. Consider the customer service precincts, for instance. An auto-
mated system that can recognize the emotional undertone included in a customer’s voice
or text message can customize its responses, resulting in the emergence of an ecosystem
of encounters that are both effective and infused with empathy. In a parallel story, the
outlines of mental health are being played out; early emotional disturbance detection
through the preservation of digital artifacts can create a channel for the expression of
prompt interventions.

Additionally, the expansion of platforms that reflect the social media space has resul-
ted in a precipitation of user-generated content. The ability to assess public mood toward
a variety of topics, from the launch of new products to the height of political campaigns,
is made possible by this vast pool of information, which is packed with emotive cues. This
prospect has never been realized. A thorough integration with this resource offers busi-
nesses, decision-makers, and researchers a collection of insights that are unquestionably
unmatched in value.

Despite this, this vast array of data reveals the mystery in the powerful combination
of amplitude, celerity, and heterogeneity. Even the traditional practitioners of computer
approaches run into problems when trying to capture the intricacies which lay within the
pathways of human emotions. Manual reading extends into an impracticable domain.
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The promise made by the supremacy of deep learning architectures—deft in their ability
to navigate through expansive datasets and abstract intricate motifs—reaches its peak of
significance at this very moment.

As a result, the research is motivated by a confluence of factors, such as the traditional
interest with comprehending emotions, the current issues caused by the digital flood, and
the promising potential of today’s computational tools. The study is motivated by the
vision of a world where technology understands and responds to human emotions rather
than commands, encouraging more sympathetic and meaningful interactions between
humans and machines.

1.3 Research Question

Many different modalities merge within the broad scope of the emotion detection do-
main, each bringing a distinctive set of difficulties and opportunities. The realm of words
presents us with a patchwork that is distinct from the rhythmic timing and tonal mod-
ulations that characterize speech, enriched with its complicated interplay of meanings
and syntactic patterns. Both dimensions have emotional indicators that are imprinted
on them, but it’s important to note that these signs are interconnected and elevated in
modality-specific details that change with a noticeable degree of difference. This leaves
us with the following insightful question, which serves as the basis for this study:

How does the performance of emotion detection models vary between text
and speech data when using the same model architectures?

The basic goal of this research is to uncover the correlation and difference concealed
within the modulations of identical model designs as they move across various data mod-
alities. It highlights how important it is to understand not just the concepts themselves
but also their inherent features as they penetrate the data they are embedded in. This
research mainly covers the use of deep learning to analyze and forecast emotions from
textual data and to implement advanced models to determine emotions from speech sig-
nals by analyzing the patterns and variances embedded in spoken words. By doing so,
this study intends to offer an in-depth analysis of emotion detection using the comparison
of these two mediums, highlighting their contrasts and possible overlaps.

The following is an outline of the structure of this report. Section 2 studies a related
literature review in this field of study, and Section 3 carries out an acceptable approach.
The design specification is covered in Section 4. While the implementation is described
in section 5. Section 6 elaborates onthe evaluation of the models and is followed by
conclusion and future work.

2 Related Work

This section will look at numerous studies that aid in the process of gaining domain
knowledge by understanding and mastering a variety of research methodologies that are
offered by researchers

2.1 Emotion Detection in Text

The technique of understanding the emotive rhythm or sentiment encoded within a tex-
tual composition falls under the category of emotion detection, which is often referred to
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as sentiment analysis or emotion recognition. The rapid expansion of user-generated ma-
terial, which includes reviews, tweets, and remarks but emerges across the digital tapestry,
emphasizes the relevance of this field. This collection is an ideal platform for perspect-
ives and affective expressions. The early excursions into the field of emotion recognition
in the context of text were mostly grounded in lexicon-based approaches. These meth-
ods relied on precisely compiled lexicon compendia that matched certain lexical entries to
specific emotional or attitude registers. It is notable that while ”sad,” ”angry,” and ”frus-
trated” grew within the storehouse of negative sensations, words like ”happy,” ”joyful,”
and ”elated” found their roots in the positive sentiment Pang et al. (2002). A change in
perspective was sparked by the development of machine learning, with the focus shifting
to feature-driven techniques. These approaches relied on the extraction of multidimen-
sional features from the textual corpus, including things like n-grams, part-of-speech tags,
and grammatical structures.Then, using Support Vector Machines (SVM) or Naive Bayes
classifiers, the collected characteristics were fed into the workflows of traditional machine
learning methods Go et al. (2009). The arrival of deep learning paradigms has sparked
a renaissance that has been visible in recent years. This paradigm is notable for the rise
of neural network architectures, particularly Recurrent Neural Networks (RNNs) and
their iterations Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs),
which have become the foundation of the most advanced framework governing emotion
detection within textual frontiers. According to performance benchmarks, these designs
clearly outperform conventional techniques Zhou et al. (2014). They also demonstrate an
inherent talent for understanding the complex webs of dependency weaved into textual
articulations. Word embeddings, exemplified by companies like Word2Vec and GloVe,
which enable the encoding of words within the confines of continuous vector spaces, have
proven crucial in strengthening the effectiveness of deep learning constructs, adding to
this trend. These embeddings open up a window through which the semantic connect-
ive tissues connecting words may be seen, giving models the insight to recognize more
intricate details and contextual cues with greater precision Mikolov et al. (2013).

Emotion recognition in textual planes has resonances in a wide range of applications
in the modern era. Its application resonates in corporate settings in areas like brand
monitoring and customer feedback analysis. In the field of healthcare, it takes on the role
of a tool for helping to monitor patients’ psychological health through the lens of their
literary formulations. It also establishes its significance within the parameters of social
science research, materializing as an instrument that gauges public opinion on a variety of
topics. Additionally, the discipline unfolds toward new thresholds of advancement when
contrasted with the ascension of transformer-based paradigms exemplified by enormous
structures like BERT and GPT. These paradigms, which are founded on pre-training
over enormous datasets, serve as precursors to revised standards for emotion detection
projects, highlighting the potential hidden within the transfer learning field Devlin et al.
(2018). As per the recent research, Ameer et al. (2023) analyses the usage of LSTM and
Transformer Networks via Transfer Learning for multi-label sentiment categorization and
offer a novel method that makes advantage of numerous attention mechanisms. They
use the Ren-CECps dataset for Chinese and the SemEval-2018 E-c dataset for English to
assess their models. On the complex SemEval-2018 E-c database for English, their top-
performing RoBERTa-MA (RoBERTa-Multi-attention) model obtained 62.4% accuracy,
a 3.6% increase over the state-of-the-art. On the Ren-CECps dataset for Chinese, the
XLNet-MA (XLNet-Multi-attention) model fared better than other suggested models,
obtaining 45.6% accuracy.
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Despite great breakthroughs, there are still a number of problems with emotion detec-
tion in text. Language ambiguity can cause misunderstandings since words might mean
different things depending on the situation. According to Riloff et al. (2013), current
models frequently misclassify the intended emotion when attempting to detect sarcasm
and irony. Emotions conveyed in the text can differ between cultures, which can lead to
biases in models developed using particular datasets. Deep learning methods are depend-
ent on huge datasets, which limits their application for languages with limited resources
Tang et al. (2014).

2.2 Emotion Detection in Speech

Speech emotion recognition (SER), a term used to refer to the field of emotion detec-
tion within the arena of vocal expressions, aims to navigate the path of unraveling and
categorizing these emotive specifics, supported by the medium of vocal signals. The
beginning of SER may be traced to the final decades of the 20th century, which were
characterized by developing forays focused on fundamental emotions including happi-
ness, sadness, rage, and terror. Pitch, energy, and formant frequencies, which served as
the markers dividing emotional levels in the vocal rhythm, were deeply rooted in the
earliest methodology as part of the handcrafted concept Davis and Mermelstein (1980).
The preprocessing, feature extraction, and classification domains are what set apart cur-
rent SER systems from earlier iterations. Preprocessing usually includes noise reduction
and normalization as a first step, providing a productive vessel where the vocal founda-
tion can be reduced to its vital elements. Mel-frequency cepstral coefficients (MFCCs),
a construct that has demonstrated its effectiveness in capturing the fundamental char-
acteristics of human vocal expressions, are frequently used in feature extraction as the
next phase Logan et al. (2005). The deployment of a variety of machine learning frame-
works, from Support Vector Machines’ vectored stance to Convolutional Neural Networks
and Recurrent Neural Networks’ (CNNs’) sculpted architecture, brings in the conclusion
of classification, which constitutes the conclusive levelHan et al. (2014). Krishna et al.
(2022) note that speech containing emotions like fear, rage, and joy typically has a more
intense and more significant variation in pitch, whereas emotions containing low pitch
range are perceived differently. By identifying speech emotions, this effort aims to im-
prove human-machine interactions. The paper uses Support Vector Machine (SVM)
and Multi-layer Perception classification techniques to achieve emotion detection. In
order to extract pertinent information from the speech data, additional audio features
including MFCC (Mel-frequency cepstral coefficients), MEL, chroma, and Tonnetz are
used. These models have been taught to identify feelings including tranquillity, neutral-
ity, surprise, joy, sorrow, rage, fear, and disgust. The findings indicate that the suggested
method recognizes emotions with an accuracy of 86.5%. The model performs as well when
tested with input audio, indicating that it can accurately identify emotions in fresh voice
samples. Deep learning networks’ capacity for feature extraction has recently assisted
them to grow more popular in SER. However, deep learning models tend to have a tend-
ency to overfit speaker-specific features in speaker-independent tasks. Liu et al. (2023)
suggests an attention-based bidirectional long short-term memory network (ABLSTM),
multi-task learning, and CNN as part of an SER technique to address this. The paper
makes several contributions, including the development of a new technique for obtaining
time-domain and frequency-domain data from log-Mel spectrograms, investigation of the
effects of various additional tasks in multiple-task training for speaker-independent SER,
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and assessment of gender-related variations in SER results, with male gender results be-
ing superior to female results in terms of recall. Both IEMOCAP and MSP-IMPROV
are used for this study. On both databases, the effectiveness of seven auxiliary tasks is
evaluated, and the most favorable outcomes have been achieved with 70.27% Weighted
Average Recall (WAR) and 66.27% Unweighted Average Recall (UAR) on IEMOCAP
and 60.90% WAR and 61.83% UAR on MSP-IMPROV. SER confronts difficulties despite
advancements such as individuals can display emotions in a variety of ways, making it
challenging to generalize over a wide range of groups Schuller et al. (2015). In various cir-
cumstances, the same vocal tone may convey a variety of emotions Batliner et al. (2003).
The availability of high-quality, tagged speech emotion datasets is scarce, particularly for
certain languages or emotions Zhang et al. (2014). Corresponding to Cowie et al. (2001),
emotions might be transient or mixed, making it difficult to discern them. According
to Baltrusaitis, Zadeh, Lim and Morency (2018), few studies have looked at how mixing
speech with other modalities, such as facial expressions, might help people better identify
emotions. Many SER systems are tested in lab settings, which do not accurately rep-
resent the noise and variability that exist in the real world. Similar to text, using SER
without user permission might provide privacy concerns, particularly when used in public
areas or in delicate situations.

2.3 Comparative Studies on Text vs. Speech Emotion Detec-
tion

Given the distinct difficulties and benefits each brings, comparing emotion recognition
in text and speech modes has been a focus of research Schuller et al. (2011). For a
fair comparison, researchers frequently utilize uniform machine learning models for both
modalities. The embedding of words for text Mikolov et al. (2013) and Mel-frequency
cepstral coefficients (MFCCs) for speech Davis and Mermelstein (1980)are examples of
features that are frequently input to models like SVMs or CNNs Kim (2014). The recent
development of deep learning within the context of emotion detection is the precursor of
a genuine revolution, covering a major break from the domains dictated by conventional
aspects of machine learning paradigms LeCun et al. (2015). Deep learning constructs
have demonstrated their dominance in this domain by successfully encapsulating the
complex emotional variations contained in datasets. This is a result of their ability to
independently integrate layered representational systems Schuller et al. (2013). Convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs) have emerged
as the neural network architectures that serve as the cornerstone for emotion detection
effortsHochreiter and Schmidhuber (1997). Notably, the CNNs, distinguished through
their spatial hierarchies, are extremely skilled in processing organized grid data domains,
as demonstrated by pictures or spectrograms, making them the esteemed choice in the
field of voice emotion recognition Sainath et al. (2013). In addition, the development
of transformer architectures, illustrated by iterations like BERT and its numerous chil-
dren, has resulted in new milestones for emotion recognition based on textual substrates
Devlin et al. (2018). These constructs’ pre-equipped skills, large amounts of databases,
manifests as an entity that can be tuned and refined for the particular purposes of emo-
tion identification. This method makes use of the linguistic wisdom that is embedded
in their fundamental architecture Vaswani et al. (2017). Deep learning model strengths
are not resistant to difficulties, either. They fall under the authority of ongoing study
because of their fondness for large amounts of labeled data, the threat of overfitting lying
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in the shadows, and the unresolved issues surrounding the boundaries of interpretability
Zhang and Sabuncu (2018). Despite the complex paths these problems take, the pic-
ture they provide of the thorough detection and understanding of human emotions places
them as indispensable, powerful tools of modern emotional analytics Goodfellow et al.
(2016). When textual and audio data are combined, advances in the field of multi-modal
emotion recognition paths push boundaries even furtherBaltrušaitis, Ahuja and Morency
(2018). The goal of these constructs is to combine the advantages that each of these
modalities has over the other, providing a view that emphasizes a more comprehensive
understanding of emotional experiences. Adesola et al. (2023) attempts to solve the issue
of machine understanding of human affective actions and enhance emotion recognition
utilizing multimodal methods for deep learning. In particular, information from both
spoken words and text recordings are extracted using three-dimensional deep convolu-
tional neural networks (3D CNNs), allowing the model to successfully recognize emotions
across various modalities. The study offers an in-depth dual recurring encoder model that
successively employs text information and sound impulses to better understand speech
data and categorize it into categories for emotions like happy, sad, neutral, and furious.
Dual recurrent neural networks (RNNs) are used in the framework to encrypt data from
speech and text patterns, merging it to determine the emotion class. Unlike models that
only consider audio features, this design enables the algorithm to evaluate speech signals
from the level of the signal all the way down to the language level. The model’s perform-
ance in classifying statements into one of the four emotion categories was tested using
the USC-IEMOCAP dataset, and it showed an accuracy of 68.26% In order to advance
the field of emotion detection, this study tries to comprehend how similar model designs
perform across both modalities.

3 Methodology

The project’s methodology is described in this section. This study employed Knowledge
Discovery in Databases (KDD) approach. KDD is a thorough way for drawing out im-
portant knowledge and insights from huge databases. As this approach is an iterative
process, feedback from a particular stage can affect choices and actions made in a later
phase. Due to its iterative nature, outcomes can be improved and refined over time.

3.1 Data Selection and Data Understanding

In the realm of emotion detection, the choice of data is dominant. The data serves as
the base upon which models are built and trained, and its quality and relevance directly
influence the outcomes of any analysis. For this research, we accurately selected two
distinct datasets from Kaggle, representing two modalities: text and speech. This section
skim over the specifics of these datasets, their inherent characteristics, and their relevance
to our key research question.

3.1.1 Description of Datasets

• Text Dataset - Emotion Detection from Text: This dataset comprises written ex-
pressions from various sources, capturing a wide range of emotions. Each entry
in the dataset is a textual representation of an emotion, labelled with its corres-
ponding emotional category. The diversity in the dataset, stemming from different
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contexts and sources, ensures a comprehensive coverage of textual emotional ex-
pressions. It contains around 13 different emotions and over 40000 records. The
dataset is merely a list of tweets with annotations describing the feelings they eli-
cited. Tweet id, emotion, and content all have three columns. The original tweet
is found under ”content.” The sentiment of a tweet captures the sentiment of the
tweet. Figure 1 represents the word cloud for anger in the text data.

Figure 1: Word Cloud for Anger

• Speech Dataset - RAVDESS Emotional Speech Audio: Unlike the text dataset, this
collection is a combination of audio recordings from different speakers, each convey-
ing a specific emotion. The dataset captures the traces of vocal intonations, pitch
variations, and rhythm, which are pivotal in detecting emotions in speech. The
RAVDESS features 24 trained actors—12 male and 12 female—who each deliver
two lexically related lines with a neutral North American accent. Speech expres-
sions might be peaceful, joyful, sad, furious, afraid, surprised, or disgusted. Each
expression is produced in two emotion levels of intensity (normal and strong) and an
expression that is neutral. It contains around 1440 files where there is 60 trials per
actor. Figure 2 represents distribution of various emotions in the speech dataset.

Figure 2: Emotion distribution in speech

The choice of these datasets was driven by an authentic need to explore the complex
processes underlying emotion recognition across multiple modalities. The vocal rhythm
encoded inside speech emerges as a background onto which complex vocal emotions are

8



stitched, with textual structure developing a depth in contextual understanding. This
research unfolds within a combination of various modalities, with the ultimate goal of
solving the complexities and fluctuations on each domain’s involvement within the field
of emotion detection.

3.2 Data Processing

Data preprocessing is a foundational step, ensuring data is ready for modelling. Given
our two datasets - textual and auditory - the preprocessing varied accordingly.

3.2.1 Text Data

As a part of cleaning the textual data which contains around 40000 records. Several punc-
tuation mistakes, special characters, URLs, and HTML tags were removed. The sentences
are broken into words or tokens by the process of tokenization as this process converts
unstructured information into a format that allows for advanced text analysis, feature
extraction, and data analysis. Certain words like ‘and’, ‘the’, and ‘is’ were eliminated to
reduce the noise that frequently occurring, uninformative words produce in text analysis,
hence increasing text analysis’s effectiveness and efficiency. Inorder to normalize words
to make them more analytically logical and to make the vocabulary less dimensional the
process of stemming was done in which words were reduced to their base form. For the
machines to understand the data better the texts were converted into numerical vectors
using TF-IDF and word embeddings. This process is known as vectorization, which is
an essential step in preparing text input for machine learning algorithms because the
majority of these algorithms operate on numerical data.

Figure 3 represents the pre-processed text data.

Figure 3: Pre-processed Text data

3.2.2 Speech Data

The Speech dataset contained background noises which were removed as a part of the
noise reduction technique in order to improve the listening experience. In speech pro-
cessing, feature extraction involves transforming unprocessed audio signals into a col-
lection of relevant and informative features that may be applied to a variety of tasks,
including speech recognition, emotion analysis, speaker identification, and more. Al-
though speech signals are complex and packed with data, their raw form is frequently too
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detailed and high-dimensional for direct analysis. In order to reduce the dimensionality
and to capture the necessary characteristics from the speech dataset, MFCCs, Chroma
and Mel techniques were used to extract the features from this dataset. The consistency
and quality of the speech data can be improved by transforming the audio signals to a
normal scale. This process of normalisation is applied in order to ensure that the features
lie within a similar range. The longer audio files were divided into smaller chunks as a
part of segmentation. In essence, these steps ensured both text and speech data were
optimised for the modelling phase.

3.3 Data Transformation

Data transformation is the process of converting data into a format or structure that’s
more suitable for analysis or modelling. Given the distinct nature of the datasets, the
transformation process was tailored to each.

3.3.1 Text Data

The tokenized words in the dataset were transformed into dense vectors that capture
semantic meanings by utilizing pre-trained embeddings like Word2Vec and GloVe. These
embeddings represent the semantic connections between words in a continuous, dispersed
space. They increase model performance and produce more accurate results by allowing
models to comprehend and interact with the text’s fundamental interpretations. To
ensure uniform input length for our models, sequences were padded or truncated to a
fixed length. The process of uniformly lengthening variable-length sequences by adding
more elements (often zeros) is known as sequence padding. Using One-Hot encoding the
emotion labels were converted into a binary matrix representation which is suitable for
classification tasks.

3.3.2 Speech Data

The structure of the audio data were reshaped without affecting the content. Inorder
to match the specific algorithms that is used, reshaping is an essential factor. Audio
features, especially when extracted as MFCCs or Chroma, were reshaped to fit the input
requirements of deep learning models. The magnitudes of the audio signals were found
varying after the feature extraction. So to alter the audio signals’ loudness or dynamic
range to a desirable level scaling was initialized. Min-Max scaling was used to ensure
that the signals lie within a 0-1 range. For models like CNNs, spectrograms were treated
as images, allowing the model to capture patterns in frequency changes over time. The
transformation phase was pivotal, ensuring that the data was not only clean but also in
the right shape and form to be trained by the chosen model architectures.

3.4 Model Building

The research utilized identical model architectures for both text and speech data in effort
to comprehend the intricacies of emotion identification across various data modalities.
By using this method, it was guaranteed that any performance variations were due to
the data modality and not the model’s construction.
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3.4.1 Ensemble model

An ensemble model is created by combining three models namely, Logistic Regression,
SVM, and random forest. To create more effective and robust model, individual models
are combined together. Votingclassifier is used to combine all these three models. SVM
and Random Forest’s sophisticated modelling can be complemented by the clarity and
transparency of Logistic Regression. SVM may offset the linearity of Logistic Regression
by handling high-dimensional data and capturing complex connections while overfitting
in individual models can be prevented due to Random Forest’s ensemble nature and
robustness.

3.4.2 Base LSTM Model:

The foundational model in this study was a simple Long Short-Term Memory (LSTM)
network. LSTMs, with their inherent capability to remember long-term dependencies,
are aptly suited for sequential data, be it text or audio sequences. By overcoming the van-
ishing gradient issue of conventional RNNs, LSTM is a kind of recurrent neural network
(RNN) that is intended to detect dependence over time in sequential data.

Figure 4 represents architecture of Base-LSTM.

Figure 4: Base LSTM architecture

3.4.3 Tuned Bi-LSTM Model:

Building upon the base LSTM, this model introduced additional layers and optimised
hyperparameters to capture more intricate patterns in the data. It was designed to
strike a balance between complexity and computational efficiency. A neural network
architecture that makes use of Bidirectional LSTM layers that have been specially tailored
or optimized for a given task or dataset is referred to as a Tuned Bi-LSTM (Bidirectional
Long Short-Term Memory) model. This will help to Enhance the model’s ability to
recognize patterns, dependencies, or correlations in the data will improve its performance
in terms of prediction or classification for the given task. Figure 5 represents architecture
of Tuned Bi-LSTM.

3.4.4 Hybrid Model:

This innovative model combined the strengths of Convolutional Neural Networks (CNNs)
and LSTMs. The CNN layers, known for their prowess in detecting local patterns, were
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Figure 5: Bi-LSTM architecture

employed to discern nuances in the data. These detected patterns were then processed
by an LSTM layer, ensuring the model’s capability to understand the sequential nature
of the data. Figure 6 represents architecture of Hybrid model.

Figure 6: Hybrid model architecture

By maintaining consistent architectures across both datasets, this study aimed to
provide a fair and unbiased comparison, focusing purely on the inherent characteristics
of text and speech in emotion detection.

3.5 Evaluation

Evaluating the performance of the emotion detection models was an integral part of
this research. It allowed us to gauge the effectiveness of the chosen architectures and
understand how they fared across text and speech modalities. Accuracy is the initial
matrix used for evaluation. This primary metric provided a direct measure of how often
our model’s predictions aligned with the actual labels. Given the balanced nature of our
datasets, accuracy was a reliable indicator of our model’s general performance. Figure 7
represents the equation for Accuracy.

The loss function, specifically categorical cross entropy in this study, quantified how
well the predicted probability distribution matched the true distribution of the labels. A
lower loss indicated better performance, with the model’s predictions being closer to the
actual labels. Figure 8 represents the equation for Loss.
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Figure 7: Accuracy

Figure 8: Loss

3.6 Model Performance

Each model’s accuracy and loss were monitored during training and validation phases.
This allowed us to observe the convergence patterns and ensure that the models were
learning effectively without overfitting. Vital factor to this research was the comparison
of model performances across the two modalities: text and speech. By analysing the
accuracy and loss metrics side-by-side for each dataset, the nuances and challenges each
modality presented in emotion detection was recognized. In summary, the evaluation
was streamlined and focused, emphasizing the direct comparison of model performances
on text versus speech data, shedding light on the capabilities and potential areas of
improvement for each architecture in the context of emotion detection.

4 Design Specification

This section explains the technical design and processes taken to implement the emotion
detecting system. The system’s components, design decisions, and implementation quirks
are all covered in detail in this detailed overview.

The emotion detection system is adept at processing both text and speech data. It’s
designed with the primary goal of classifying emotions using specialised deep learning
models. The Data ingestion module loads datasets and handles initial data checks. Two
datasets were gathered from a public source. The data collected is then preprocessed
which refines raw data into a model-friendly format, including text tokenization and
speech feature extraction. Then LSTM, Bi-LSTM and a hybrid model combining both the
CNN and LSTM are executed in the modelling module including ensemble model using
machine learning algorithms. After training the models with the specified algorithms the
performance of the model is being evaluated.
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5 Implementation

For implementing this research, Python 3.8 was chosen as given its extensive libraries
and community support. The key libraries used for this study was Keras (with Tensor-
Flow backend), Scikit-learn, and Librosa. As a part of Data handling procedure, after
tokenization, text data was transformed into sequences suitable for LSTM processing.
While for speech data, features like MFCCs were extracted to serve as the models in-
put. A straightforward LSTM setup ideal for sequence data was developed for the base
LSTM model. An advanced version of the base model is then implemented which was
optimised for better performance. The hybrid model ensures the strengths of CNNs and
LSTMs, aiming to capture both spatial and sequential patterns in the data. Utilizing
the beneficial qualities of both architectures to enhance performance across a variety of
natural language processing and speech-related tasks, a hybrid CNN-LSTM model can
offer improved capabilities for processing and analyzing text and speech input. Datasets’
training subset are used to train these models.Accuracy and loss metrics were evaluated
on the validation subset. The design emphasises modularity, ensuring that each compon-
ent can be updated or scaled independently. The choice of models was influenced by the
nature of the data sequence and the proven efficacy of LSTMs in handling such data.A few
challenges surfaced during implementation: Some emotions had fewer data points. The
data imbalance was dealt with data augmentation and oversampling techniques. Dro-
pout layers were introduced to prevent the models from memorizing the training data.
As deep models demand resources, efficient coding practies were adapted to manage this.
In essence, this section paints a detailed yet concise picture of the system’s architecture,
its design rationale, and the journey from idea to implementation.

5.1 Ensemble method

Necessary libraries have been imported as the initial stage of implementation. Both the
data are divided into train and test sets.

5.1.1 Text data

For text data, the data is converted in TF-IDF vectors using TfidfVectorizer function.
Three base models are defined: LogisticRegression, SVC (Support Vector Classifier), and
RandomForestClassifier. The VotingClassifier class is used to build an ensemble model.
Each models are specified with unique names( ’lr’ stands for logistic regression,’svc’ for
SVM, and ’rf’ for random forest, respectively). Class probabilities are used for voting
because the voting parameter is set to ”soft.”The fit approach is used to train the ensemble
model on the TF-IDF transformed training data.The forecast method of the ensemble
model is used to make predictions on the TF-IDF transformed test data. A thorough
classification report that includes precision, recall, F1-score, and support for each class
is printed using sklearn.metrics function called classification report.

5.1.2 Speech data

Features are divided into X and labels into Y, assuming that df is a DataFrame. The
LabelEncoder class, which transforms class labels into numerical values, is used to encode
the labels. The modelling is done same as that of the text data.To appropriately label
the report, the target names option is set to the class names obtained from the encoder.
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5.2 Base LSTM

For the purpose of creating and training the LSTM model, necessary Keras modules and
classes are loaded.

5.2.1 Text data

The text data is tokenized using the Tokenizer class. The tokenizer is fitted to the training
set using fit on texts. The tokenized texts are transformed into sequences of integer values
using the texts to sequences function.The sequences are padded to have a constant length
(in this instance, 200) using the pad sequences function.The pd.get dummies function is
used to one-hot encode the target labels (y train and y test). To create the model,The
length of the word index produced by the tokenizer is used to determine the vocabu-
lary size.To handle the tokenized input data, an embedding layer is implemented and to
process the sequential data, an LSTM layer is applied. While creating class probabil-
ities, a dense layer with softmax activation is added. The accuracy metric, categorical
cross-entropy loss, and Adam optimizer are all used in the model’s construction.The fit
approach is used to train the model on the padded training data. The padded test data
is set as the validation data parameter for training.

5.2.2 Speech data

The DataFrame df has been divided into features and labels. The LabelEncoder class is
used to encode the target labels (y), which are then one-hot encoded using the to categorical
function after being converted from class labels to numerical values.The train test split
function is used to divide the data into training and test sets.The X train and X test
features are reshaped to take on the sample, timestep, and feature shapes needed for
LSTM input.Using Keras, a sequential model is produced. A Dense layer with a soft-
max activation function is added to provide class probabilities, and an LSTM layer with
32 units is added as the input layer to determine the input shape.The accuracy metric,
the Adam optimizer, and the categorical cross-entropy loss function are used to build
the model.On the altered training data, the model is trained using the fit approach.The
batch size is set to 32, and 100 epochs of training are completed. For validation purposes
during training, the validation data parameter is set to the reshaped test data.

5.3 Tuned LSTM

5.3.1 Text Data

The Tokenizer class is used to tokenize text data, and sequences are created as a result.
To ensure constant sequence lengths, sequences are padded using pad sequences.Based
on the word index produced by the tokenizer, the vocabulary size is determined.In order
to handle tokenized input data, an embedding layer is implemented. Different configura-
tions of multiple bidirectional LSTM layers are added. Class probabilities are created by
adding a dense layer with softmax activation.Accuracy metric, the Adam optimizer, and
categorical cross-entropy loss are used in the model’s construction.The fit approach is used
to train the model on the training set of data.To keep track of the model’s performance
on the test set, validation data is offered.
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5.3.2 Speech data

The DataFrame df has been divided into features and labels.The LabelEncoder is used
to encrypt labels. Using to categorical, the encoded labels are one-hot encoded once
again.The X train and X test features are molded into a three-dimensional form with
the samples, timesteps, and features needed for LSTM input. Using Keras, a sequential
model is produced. Different configurations of multiple bidirectional LSTM layers are
added. Class probabilities are created by adding a dense layer with softmax activation
are used to create the bidirectional LSTM model.The training is carried out for 50 epochs
with a batch size of 32. For validation during training, the reshaped test data is set as
the validation data parameter.

5.4 Hybrid Model

The Hybrid model is created by the combination of CNN and LSTM.

5.4.1 Text Data

The text data is sequenced and padded. Keras is used to build a sequential model. The
handling of tokenized input data is added to an embedding layer. By removing complete
1D feature maps, a SpatialDropout1D layer helps avoid overfitting. To detect regional
text patterns, a Conv1D layer with maximum pooling is applied. Sequential data in the
text data is captured by an LSTM layer. Probabilities for each class are produced via a
dense layer with softmax activation. While training the model, Training is carried out
for 30 epochs with a batch size of 32.

5.4.2 Speech data

Keras is also used for the speech data. Conv1D layer is added to the input data to help
identify regional patterns. The spatial dimensions of the feature maps are condensed
using a MaxPooling1D layer. An LSTM layer extracts the data’s sequential information.
Probabilities for each class are produced via a dense layer with softmax activation. The
rest of the process is same as the text data.

6 Evaluation

The key findings that support the study question are outlined in this section. The suitab-
ility of the SER and TER models for usage in real-time applications has been evaluated
through a number of experiments. The proposed models are trained on both the text
and speech datasets.

6.1 Experiment 1: Ensemble Methods with Voting Classifier
for Text Data

• Key Findings:

– Overall Accuracy: 35%

• Insights:
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– The low accuracy suggests that ensemble methods may not be the best fit for
text-based emotion detection in our dataset.

– The ensemble approach, while robust in theory, failed to capture the complex-
ities of emotional nuances in text.

• Implications:

– The results indicate a need for more complex models capable of understanding
the sequential nature of text.

Within the initial experiment, the study embarked upon an expedition into the realm in-
habited by ensemble techniques, cast in the spotlight of the textual data. The ensemble
paradigm mirrors the act of soliciting diverse viewpoints to blend into a more sensible
outcome. Within this framework, the study harnessed the ability of three individuated
constructs of machine learning: the Logistic Regression, the Support Vector Machine,
and the Random Forest Classifier. Each of these constructs, weaving their individual
tapestries of strengths, conveys distinct views upon the data under scrutiny.The study
employed the assistance of the Voting Classifier in order to create a harmonious fusion
of these diverse viewpoints and to identify the trajectory holding the most promise.This
classifier, in essence, navigates within the sphere of a majority vote, concluding in the
selection of the model that gathers the most categorical ”votes” of trust and confidence
from the ensemble. The research findings from this exploration bring together an extens-
ive variety of understandings about the model’s performance vector across a wide range
of emotional categories: Figure 9 represents the ensemble approach for text data.

Figure 9: Ensemble model summary for text data

The overall accuracy of the model stood at 0.35. While these results provided valuable
insights, they also highlighted areas for improvement, setting the stage for subsequent
experiments.

6.2 Experiment 2: Base LSTM for Text Data

• Key Findings:

– Overall Accuracy: 78.24%

– Average Loss: 0.6708
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• Insights:

– The high accuracy indicates that LSTMs are well-suited for handling the se-
quential nature of text.

– The low loss further confirms the model’s efficacy.

• Implications:

– LSTMs could serve as a strong baseline model for text-based emotion detec-
tion.

In this experiment, the study utilised Long Short-Term Memory (LSTM) networks, a
type of recurrent neural network, to detect emotions in text data. LSTMs are adept
at processing sequences, making them suitable for text, which is inherently sequential.
Using a standard LSTM configuration, the study aimed to set a performance benchmark
for our dataset. The results were: Figure 10 represents the accuracy and avg. loss of
base LSTM approach for text data.

Figure 10: Accuracy and Loss Plot of Base LSTM.

• Average Accuracy: The base LSTM model achieved an accuracy of roughly 78.24%,
marking a notable improvement from the initial ensemble approach.

• Average Loss: The model reported a loss of 0.6708, indicating the difference between
the model’s predictions and the actual outcomes.

The outcomes highlighted the efficacy of LSTMs for the emotion detection task, suggest-
ing that deep learning could offer enhanced performance for the current dataset.

6.3 Experiment 3: Tuned LSTM for Text Data

• Key Findings:

– Overall Accuracy: 52.44%

– Average Loss: 1.4420

• Insights:
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– Despite tuning, the model performed worse than the base LSTM, suggesting
overfitting.

– The high loss indicates that the model’s predictions were often off the mark.

• Implications:

– Overfitting remains a challenge, emphasising the need for careful hyperpara-
meter tuning.

In this experiment, the study further explored LSTMs by using a ”tuned” model, optim-
ised with specific adjustments to its architecture and hyperparameters tailored for the
dataset. The goal was to determine if refined configurations could enhance performance
compared to the base LSTM. The results were: Figure 11 represents the accuracy and
avg. loss of tuned LSTM approach for text data.

Figure 11: Accuracy and Loss Plot of Tuned LSTM.

• Average Accuracy: The tuned LSTM reported an accuracy of about 52.44%. Sur-
prisingly, this was lower than the base model, suggesting potential overfitting where
the model might be too adapted to the training data, reducing its effectiveness on
new data.

• Average Loss: The model’s loss stood at 1.4420, higher than the base model, further
hinting at possible overfitting or sub-optimal tuning choices.

This experiment underscored the complexities of model tuning. A more intricate model
doesn’t guarantee better results, emphasising the need for meticulous hyperparameter
selection and the iterative nature of machine learning experimentation.

6.4 Experiment 4: Hybrid Model for Text Data

• Key Findings:

– Overall Accuracy: 57.26%

– Average Loss: 1.2702

• Insights:
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– The hybrid model offers a balanced performance, but still lags behind the base
LSTM.

– The model benefits from the spatial feature extraction of CNNs and the se-
quence understanding of LSTMs.

• Implications:

– Hybrid models could be a promising avenue for further research.

In the fourth experiment, we introduced a hybrid model, combining the strengths of
convolutional neural networks (CNNs) and LSTMs, aiming to harness both their cap-
abilities for emotion detection in text data. The hybrid model is designed to capture
spatial patterns using CNN layers and temporal sequences using LSTM layers, offering
a comprehensive approach to text analysis. The key outcomes: Figure 12 represents the
accuracy and avg. loss of hybrid model approach for text data.

Figure 12: Accuracy and Loss Plot of Hybrid model.

• Average Accuracy: The hybrid model yielded an accuracy of approximately 57.26%.
This result indicates a middle ground between the base LSTM and the tuned LSTM,
suggesting that the combination of CNN and LSTM layers can provide a balanced
performance.

• Average Loss: The model reported a loss of 1.2702. While this is an improvement
from the tuned LSTM, it’s still higher than the base model, indicating areas for
potential optimization.

This experiment illuminated the potential of hybrid architectures in emotion detection.
By merging the spatial feature extraction of CNNs with the sequence understanding of
LSTMs, the hybrid model showcased a promising avenue for further research and model
development.

6.5 Experiment 5: Ensemble Methods with Voting Classifier
for Speech Data

• Key Findings:
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– Overall Accuracy: 51%

– The model combined predictions from Logistic Regression, Support Vector
Machine, and Random Forest Classifier.

• Insights:

– The 51% accuracy suggests that ensemble methods are more effective for
speech data compared to text data in our experiments.

– The use of multiple models like Logistic Regression, SVM, and Random Forest
indicates that a collective approach may capture the nuances of speech data
better than individual models.

• Implications:

– The relatively higher accuracy for speech data implies that ensemble methods
could be a viable approach for emotion detection in auditory signals.

In the fifth experiment, we shifted the focus from text to speech data, employing ensemble
methods combined with a voting classifier. The ensemble approach amalgamates predic-
tions from multiple models, in this case, Logistic Regression, Support Vector Machine,
and Random Forest Classifier. The voting classifier then selects the best prediction, en-
suring a more robust and reliable outcome. The results from this experiment provided a
comprehensive view of the model’s performance across various emotion categories: Fig-
ure 13 represents the summary of Ensemble model for speech.

Figure 13: Summary of ensemble model for speech

This experiment underscored the complexities of emotion detection in speech data.
While ensemble methods offer a holistic approach by combining multiple models, the
unique characteristics of speech, such as tone, pitch, and rhythm, present distinct chal-
lenges. The results provide a foundation for further refinement and optimization in
subsequent experiments.

6.6 Experiment 6: Base LSTM for Speech Data

• Key Findings:

– Overall Accuracy: 40.48%
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– Average Loss: 1.6738

• Insights:

– The moderate accuracy suggests that while LSTMs are powerful, they struggle
with the complexities of speech data.

– The high loss indicates that the model often misclassified the emotions in the
speech data.

• Implications:

– LSTMs may require further tuning or a different architecture altogether for
speech data.

Transitioning from ensemble methods, the sixth experiment delved into the application
of a base LSTM model on speech data. As with the text data, the ”base” terminology
indicates that we employed a standard LSTM configuration without specific tuning or
modifications. The goal was to gauge the inherent capabilities of LSTM networks in
capturing the sequential nuances present in speech data. Key Outcomes: Figure 14
represents the accuracy and avg. loss of Base LSTM model approach for speech data.

Figure 14: Accuracy and Loss Plot of Base LSTM model for speech.

• Average Accuracy: The base LSTM model for speech data achieved an average
accuracy of approximately 40.48%. While this is a moderate figure, it’s noteworthy
that speech data, with its intricate patterns of pitch, rhythm, and tone, can be
inherently more challenging than text data.

• Average Loss: The model registered an average loss of 1.6738. This value, being
relatively high, suggests that the model’s predictions often deviated from the actual
outcomes. It underscores the complexities of emotion detection in speech and the
challenges LSTMs face in this domain.

This experiment highlighted the contrast between text and speech data when processed
using the same model architecture. While LSTMs have shown promise in text-based
emotion detection, their performance on speech data, at least in the base configuration,
indicates the need for further refinements. The results set the stage for subsequent
experiments that aim to optimise LSTM configurations specifically for speech data.
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6.7 Experiment 7: Tuned LSTM for Speech Data

• Key Findings:

– Overall Accuracy: 46.61%

– Average Loss: 1.4224

• Insights:

– The tuned LSTM showed improvement over the base model, but still not to a
satisfactory level.

– The model still struggles with the unique challenges presented by speech data,
such as tone and pitch.

• Implications:

– Further research is needed to optimise LSTMs for speech data

Building on the foundational insights from the base LSTM model applied to speech data,
our seventh experiment focused on a tuned LSTM configuration. The ”tuned” descriptor
signifies that this model underwent meticulous adjustments, both in its architecture and
hyperparameters, tailored to optimize performance on the speech dataset. Key Outcomes:
Figure 15 represents the accuracy and avg. loss of Tuned LSTM model approach for
speech data.

Figure 15: Accuracy and Loss Plot of Tuned LSTM model for speech.

• Average Accuracy: The tuned LSTM model for speech data achieved an average
accuracy of approximately 46.61%. This marked an improvement from the base
LSTM model, indicating that the tuning efforts bore fruit to some extent. However,
the accuracy still suggests room for further optimization.

• Average Loss: The model reported an average loss of 1.4224. While this is a
reduction from the base LSTM’s loss, it still points to discrepancies between the
model’s predictions and the actual outcomes, emphasizing the intricate challenges
of speech-based emotion detection.
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This experiment underscored the potential and challenges of tuning LSTM models for
speech data. While the refined model showcased better performance metrics than its base
counterpart, the results also highlighted the complexities inherent to speech data. Emo-
tion detection in speech, with its multifaceted rhythm and acoustic features, demands a
delicate balance of model complexity and adaptability. The outcomes from this experi-
ment serve as a stepping stone for further explorations and optimizations in the domain
of speech-based emotion detection.

6.8 Experiment 8: Hybrid Model for Speech Data

• Key Findings:

– Overall Accuracy: 63.59%

– Average Loss: 1.0027

• Insights:

– The hybrid model significantly outperformed both the base and tuned LSTMs,
indicating the benefits of a multi-architecture approach.

– The lower loss suggests that the model was more consistent in its predictions
compared to earlier models.

• Implications:

– Hybrid models combining CNNs and LSTMs could be the future of emotion
detection in speech data.

The chronicle of the eighth and culminating experiment charts an excursion into the
realm of methodological synthesis, unfolding a hybrid construct skillfully calibrated to
thread the varied of vocal data. This illusion of a model stands as a living testament to
a combination that twists the virtues of convolutional neural networks (CNNs) and the
simplicity of Long Short-Term Memory (LSTM) networks, all coordinated within the field
of vocal data. The basic goal of this work is to capture the spatial components entangled
in the embrace of CNNs and the temporal linked essence intrinsic to LSTMs. As a result
of this study, the following consequent insights reflected via a lens of significant results
that mark this journey engrave themselves in the records of understanding: Figure 16
represents the accuracy and avg. loss of Hybrid model approach for speech data.

• Average Accuracy: The hybrid model showcased an average accuracy of approxim-
ately 63.59%. This result is notably higher than both the base and tuned LSTM
models for speech data, underscoring the potential of combining different neural
network architectures to tackle the intricacies of speech-based emotion detection.

• Average Loss: The model reported an average loss of 1.0027. This figure, while
still indicative of some prediction discrepancies, is an improvement over the losses
reported in previous experiments with speech data.

The hybrid model’s proficiency performance serves as an impressive proof of the many be-
nefits of an approach characterized by multiple dimensions, which is especially important
when tackling the field of complex datasets like speech. Convolutional neural networks
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Figure 16: Accuracy and Loss Plot of Hybrid model for speech.

(CNNs) and long short-term memory (LSTM) networks’ strengths merged into a sym-
phonic convergence , allowing the model to unravel the intricate pattern of complicated
features enclosed within the span of vocal data with ease. The arrangement that resulted
from this carried out with greater authenticity; which increased the effort of emotion
detection.

6.9 Discussion

The discovery contained in the overarching goal of this research work lay in the pursuit
of understanding the variation in performance shown by emotion detection models when
expressed within the domains of textual and vocal data, even when enclosed by the means
of identical model architectures. This project developed in a meticulously constructed
patchwork of assessments, each carrying a mark of preparation. These conclusions, drawn
from the initial phase of the observed results, are the end result of these findings, which
were forged from the test of direct research.

6.9.1 Ensemble Methods with Voting Classifier:

• Text Data: The ensemble approach, which combined the strengths of Logistic Re-
gression, Support Vector Machine, and Random Forest Classifier, yielded an ac-
curacy of 35% for text data. This suggests that while ensemble methods can be
powerful, they might not be the most optimal choice for text-based emotion detec-
tion in our dataset.

• Speech Data: The accuracy for speech data was 51%, a noticeable improvement
over text data. This indicates that ensemble methods might be more adept at
capturing the nuances of speech data compared to text.

6.9.2 Base LSTM:

• Text Data: The base LSTM model for text data achieved an impressive accuracy of
78.24%, highlighting the potential of deep learning, especially LSTMs, in handling
sequential data like text.

• Speech Data: The accuracy dropped to 40.48% for speech data, suggesting that the
base LSTM configuration might not be as effective for speech as it is for text.
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6.9.3 Tuned LSTM:

• Text Data: The tuned LSTM model for text data reported an accuracy of 52.44%.
Interestingly, despite the tuning, the performance was lower than the base LSTM,
hinting at potential overfitting

• Speech Data: The accuracy improved to 46.61% for speech data, but it still lagged
behind the text data performance.

6.9.4 Hybrid Model:

• Text Data: The hybrid model, which combined CNNs and LSTMs, achieved an
accuracy of 57.26% for text data. This suggests that integrating different neural
network architectures can enhance emotion detection capabilities.

• Speech Data: The performance soared to 63.59% for speech data, making the hybrid
model the best-performing model for speech in our experiments.

6.9.5 Comparative Analysis:

• Text vs. Speech: While the base LSTM model performed exceptionally well for
text data, the hybrid model emerged as the most effective for speech data. This
underscores the idea that while certain architectures might be universally robust,
the nature of the data can significantly influence model performance.

• Overall Performance: In general, the models exhibited varied performance across
text and speech data. However, it’s noteworthy that the same architectures yielded
different results based on the modality of the data. This highlights the inherent
complexities and unique characteristics of each data type.

7 Conclusion and Future Work

Throughout the research journey, we delved deep into the realm of emotion detection,
exploring the intricacies of both text and speech data. The experiments, spanning across
various model architectures, provided valuable insights into the performance dynamics of
emotion detection models across different data modalities. One of the key takeaways from
the study is the profound influence of data type on model performance. While certain
architectures, like the base LSTM, showcased exceptional ability with text data, others,
like the hybrid model, emerged as frontrunners for speech data. The research also un-
derscored the importance of iterative experimentation. As observed, even refined models
like the tuned LSTM can sometimes underperform compared to their base counterparts,
emphasising the challenges associated with model tuning and the potential pitfalls of
overfitting. Building upon the foundation laid by the current research, there’s a plethora
of avenues to explore in the future. Centred around the research question, ”How can we
enhance emotion recognition accuracy by leveraging multi-modal data (speech and text)
and advanced machine learning models?”, here are some potential directions:

• Multi-modal Data Integration: Combining the strengths of both text and speech
data can potentially lead to more robust emotion detection models. Future research
can focus on developing models that can seamlessly integrate features from both
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data types, capitalising on the contextual depth of text and the prosodic nuances
of speech.

• Advanced Model Architectures: With the rapid advancements in machine learning,
newer architectures like Transformers and BERT have shown promise in various
tasks. Exploring these architectures for emotion detection can potentially lead to
significant improvements in accuracy.

• Transfer Learning: Leveraging pre-trained models and fine-tuning them for emotion
detection can expedite the training process and potentially enhance performance.
Models like GPT-3 or BERT, which have been trained on vast datasets, can be
fine-tuned for our specific task.

• Data Augmentation: To combat issues like overfitting and to enhance the diversity
of our training data, future work can explore advanced data augmentation tech-
niques, both for text and speech.

In conclusion, while the current research has paved the way for a deeper understanding of
emotion detection across text and speech data, the road ahead is rife with opportunities.
The confluence of multi-modal data and advanced machine learning models promises
a future where emotion detection models are not only accurate but also intuitive and
adaptable.
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