
Configuration Manual

MSc Research Project

Data Analytics

Sureshkumar Durairaj
Student ID: x21178933

School of Computing

National College of Ireland

Supervisor: Qurrat Ul Ain

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sureshkumar Durairaj

Student ID: x21178933

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Qurrat Ul Ain

Submission Due Date: 14/08/2023

Project Title: Configuration Manual

Word Count: 2892

Page Count: 5

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

57

Configuration Manual

Sureshkumar Durairaj
x21178933

1 Introduction

The configuration manual illustrates the sequential step-by-step guide to execute the
modules associated in the research project and the steps to evaluate the same. The steps
provided comprising of various requisites starting from software installation to model
building process. This project comprises of two different stages such as identify the
product similarity using image data sets using Image based CNN algorithm and concat-
enating the same with text-based vectorisation methods for matching the corresponding
product label description. The individual code snippets to perform the same is provided
in the upcoming sections.

2 System Configuration

2.1 Software Requirements

The research project was developed using the open-source IDE called Jupyter Notebook
as well as using Google colab an open-source framework for AI/ML projects in google
ecosystem. This environment works based on python module. All these packages need
to be installed before building the project.

2.2 Hardware specifications

• System Name: DESKTOP-SM51BMP

• Processor: Intel(R) Core (TM) i7-6500U CPU @ 2.50GHz, 2601 Mhz, 2 Core(s), 4
Logical Processor(s)

• Installed RAM: 16.00 GB

• Storage Size: 1TB SSD (109,951,162,7776 bytes)

• OS type: 64-bit operating system, x64-based processor

3 Installation and Environment Setup

• Python

1

Python module was used in this project. Since, it has many in-build libraries which
support most of the Deep Learning and Machine Learning Projects. It ease the model
building and analyse with various plots. The first requirement is to install the latest
version python in the system. Based on the operating system, the package installer can
be downloaded from the website 1 through browser. After successful installation of python
from the website as shown below figure 1, type ’python -version’ in the command prompt
to verify it.

Figure 1: Python Official page

• Anaconda

Anaconda package comprises of several IDE which will be useful for developing the code
and for analysing the outputs through the python package. This package can be down-
loaded and installed from the website 2as shown in the Figure 2 . From the anaconda
navigator, Jupyter notebook and it’s tasks are launched in the browser tabs. Initially
python notebook is created and saved as .ipynb format.

Figure 2: Anaconda Downloads Page

• Jupyter Notebook

The python libraries are installed during the implementation of code using pip command.
The required libraries for this project are numpy, pandas, tensorflow, matplotlib, seaborn
and plotly. There were lot of different IDE available in this navigator. In this project,
Jupyter Notebook is used for building the model.

Command: pip install ’LibraryName’

1https://www.python.org/downloads/
2https://www.anaconda.com/products/individual

2

https://www.python.org/downloads/
https://www.anaconda.com/products/individual

4 Data Collection

There were two datasets used for this project which is taken from kaggle 3. Following
sections are divided into two sections with one containing the data sets of product images
and other containing a csv file with label description of the products title both are being
contained into a variables for preprocessing as shown in the Figure 4. These are used in
the respective image and text processing models , which is concatenated at the end yield
an output used to satisfy the research objectives.

5 Implementation

5.1 Importing Libraries

The implementation of the project using the python is described in the below sec-
tions.Please run them step by step as described. Before we begin the implementation
the first step is to perform the preprocessing for the given data. the below figure 4 shows
the libraries needed for the startup ,

Figure 3: Importing Required Libraries

5.2 Splitting of Train and Test Data

The given data set comprises of image and text data , while the image dataset are not
considered in the pre-processing now , let us consider the csv fie with the label description
as shown in the Figure below ,

3https://www.kaggle.com/competitions/shopee-product-matching/data

3

https://www.kaggle.com/competitions/shopee-product-matching/data

Figure 4: Train / Test Split

5.3 Data Analysis and Data augmentation

5.3.1 Data Analysis

The analysis on the given data containing the csv file is performed as shown in the figure
5 below ,

Figure 5: Text Data Analysis

4

Figure 6: Images Distribution

5

[18]: posting_id
2 6979
3 1779
4 862
5 468
6 282

[27]: # for group_img_dist, combine 1 to 3, and sum the posting_id count
img_count_1_3 = group_img_dist.loc[2:3].sum()
img_count_4_10 = group_img_dist.loc[4:5].sum()
img_count_11_more = group_img_dist.loc[6:].sum()

[28]: img_dist = [img_count_1_3, img_count_4_10, img_count_11_more]

[29]: img_dist = pd.DataFrame(img_dist)

[34]: # insert first column to img_dist as "image_count" and set the value to "Less␣
↪than 3 images", "4 to 10 images", "11 and more images"

img_dist.insert(0, "image_count", ["Less than 3 images", "4 to 5 images", "6␣
↪and more images"], True)

rename the column name
img_dist.rename(columns={0: "count"}, inplace=True)

reset the index
img_dist.reset_index(drop=True, inplace=True)

[45]: img_dist

[45]: image_count image_count image_count posting_id
0 Less than 3 images Less than 3 images Less than 3 images 8758
1 4 to 5 images 4 to 5 images 4 to 10 images 1330
2 6 and more images 6 and more images 11 and more images 926

[36]: # plot the pie chart
plt.figure(figsize=(10,10))
explode = [0.05]*len(img_dist) # add a slight separation between pie slices
colors = ['#007acc', '#52c41a', '#faad14', '#f5222d'] # custom color palette
plt.pie(img_dist['posting_id'], labels=None, autopct='%.

↪1f%%',textprops={'fontsize': 30}, shadow=True, startangle=90,␣
↪explode=explode, colors=colors)

plt.legend(labels=img_dist['image_count'], title='Number of Images',␣
↪title_fontsize=20, loc="best", bbox_to_anchor=(1, 0.5), fontsize=20)

plt.title('Number of Images in the Same Group', fontsize=26)
plt.axis('equal')
plt.show()

46

[37]: # make a pie chart for the distribution of the number of posting in each group
group_posting_dist = train.groupby('label_group').count().

↪sort_values(by='posting_id', ascending=False)['posting_id'].value_counts()

change group_posting_dist to dataframe
group_posting_dist = pd.DataFrame(group_posting_dist)
group_posting_dist.head()

[37]: posting_id
2 6979
3 1779
4 862
5 468
6 282

[39]: posting_count_1_3 = group_posting_dist.loc[2:3].sum()
posting_count_4_10 = group_posting_dist.loc[4:5].sum()
posting_count_11_more = group_posting_dist.loc[6:].sum()

57
7

[43]: posting_dist = [posting_count_1_3, posting_count_4_10, posting_count_11_more]
posting_dist = pd.DataFrame(posting_dist)

insert first column to posting_dist as "posting_count" and set the value to␣
↪"Less than 3 posting", "4 to 10 posting", "11 and more posting"

posting_dist.insert(0, "posting_count", ["Less than 3 postings", "4 to 5␣
↪postings", "6 and more postings"], True)

[44]: posting_dist

[44]: posting_count posting_id
0 Less than 3 postings 8758
1 4 to 5 postings 1330
2 6 and more postings 926

[46]: # plot the pie chart
plt.figure(figsize=(10,10))
explode = [0.05]*len(posting_dist) # add a slight separation between pie slices
colors = ['#007acc', '#52c41a', '#faad14', '#f5222d'] # custom color palette
plt.pie(posting_dist['posting_id'], labels=None, autopct='%.

↪1f%%',textprops={'fontsize': 30}, shadow=True, startangle=90,␣
↪explode=explode, colors=colors)

plt.legend(labels=posting_dist['posting_count'], title='Number of Postings',␣
↪title_fontsize=20, loc="best", bbox_to_anchor=(1, 0.5), fontsize=20)

plt.title('Number of Postings in the Same Group', fontsize=26)
plt.axis('equal')
plt.show()

6

8

8

[47]: def show_same_img():
choose randomly two instances per each class
labels_to_show = np.random.choice(train.label_group.unique(),

replace=True, size=27)
img_to_show = []
for label in labels_to_show:

rows = train[train.label_group==label].copy()
pair = np.random.choice([i for i in range(len(rows))],

replace=True, size=2)
img_pair = rows.iloc[pair][['image', 'title']].values

img_to_show += list(img_pair)

fig, axes = plt.subplots(figsize = (18, 12), nrows=2,ncols=2)
for imp, ax in zip(img_to_show, axes.ravel()):

img = cv2.imread(PATH_TO_IMG + imp[0])
title = '\n'.join(wrap(imp[1], 20))
ax.set_title(title)
ax.imshow(img)
ax.axis('off')

fig.tight_layout()

79

[48]: import os
import numpy as np
import pandas as pd
import cv2
import matplotlib.pyplot as plt
from textwrap import wrap
from wordcloud import WordCloud

[49]: num_imgs = len(os.listdir(PATH_TO_IMG))
print("Number of images in train set: ", num_imgs)

Number of images in train set: 32442

[52]: test_df = pd.read_csv(extract_path + "/test.csv")
compute_cv = len(test_df) <= 3

if compute_cv:
train_df = pd.read_csv(extract_path + "/train.csv")
target_dict = train_df.groupby("label_group")["posting_id"].agg("unique").

↪to_dict()
train_df["target"] = train_df["label_group"].map(target_dict)
data = train_df

else:
data = test_df

[53]: num_unique_label=len(data["label_group"].unique())
print("Number of unique label groups: ", num_unique_label)

Number of unique label groups: 11014

[54]: unique_hash=len(data['image_phash'].unique())
print("Number of unique image phash: ", unique_hash)

Number of unique image phash: 28735

[55]: duplicates = data[data.duplicated(subset='image_phash', keep=False)]

Group duplicates by image_phash, and count the number of unique label_groups␣
↪for each image_phash

counts = duplicates.groupby('image_phash')['label_group'].nunique()

Filter the counts to show only the image_phash values that have more than one␣
↪label_group

counts = counts[counts > 1]

Plot the histogram
counts_int = counts.values.astype(int)

8
10

plt.hist(counts_int, bins=10)
plt.xlabel('Number of label group')
plt.ylabel('Count of duplicated image')
plt.title('Distribution of different counts of label groups for duplicated␣

↪images')

Set X axis tick labels to integers only
plt.xticks(np.arange(counts_int.min(), counts_int.max()+1, 1.0))

plt.show()

[56]: target_counts = data['label_group'].value_counts()

Plot the distribution of target counts
fig, ax = plt.subplots()
ax.hist(target_counts, bins=50)
ax.set_xlabel('Target count')
ax.set_ylabel('Frequency')
ax.set_title('Distribution of target count')

91111

plt.show()

[58]: def show_random_images():
n_rows, n_cols = 1, 2
n_images = n_rows * n_cols
label_groups = np.random.choice(data["label_group"].unique(),␣

↪size=n_images, replace=False)

fig, axes = plt.subplots(figsize=(20, 10), nrows=n_rows, ncols=n_cols)
img_to_show = []
for label_group in label_groups:

rows = data[data["label_group"] == label_group].sample(n=2,␣
↪replace=False)

img_to_show += rows[["image", "title"]].values.tolist()

if len(img_to_show) > n_images:
img_to_show = img_to_show[:n_images]

for i, (img_path, title) in enumerate(img_to_show):

10
12

img = cv2.imread(os.path.join(PATH_TO_IMG, img_path))
title = "\n".join(wrap(title, 44))
ax = axes.flat[i]
ax.set_title(title, fontsize=30)
ax.imshow(img)
ax.axis("off")

fig.tight_layout()
show_random_images()

11

13

14

15

16

17

57

	Introduction
	System Configuration
	Software Requirements
	Hardware specifications

	Installation and Environment Setup
	Data Collection
	Implementation
	Importing Libraries
	Splitting of Train and Test Data
	Data Analysis and Data augmentation
	Data Analysis

