

Configuration Manual

MSc Research Project Data Analytics

Sureshkumar Durairaj Student ID: x21178933

School of Computing National College of Ireland

Supervisor:

Qurrat Ul Ain

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Sureshkumar Durairaj
Student ID:	x21178933
Programme:	Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Qurrat Ul Ain
Submission Due Date:	14/08/2023
Project Title:	Configuration Manual
Word Count:	2892
Page Count:	57

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	11th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

 Attach a completed copy of this sheet to each project (including multiple copies).
 □

 Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).
 □

 You must ensure that you retain a HARD COPY of the project, both for
 □

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only						
Signature:						
Date:						
Penalty Applied (if applicable):						

Configuration Manual

Sureshkumar Durairaj x21178933

1 Introduction

The configuration manual illustrates the sequential step-by-step guide to execute the modules associated in the research project and the steps to evaluate the same. The steps provided comprising of various requisites starting from software installation to model building process. This project comprises of two different stages such as identify the product similarity using image data sets using Image based CNN algorithm and concatenating the same with text-based vectorisation methods for matching the corresponding product label description. The individual code snippets to perform the same is provided in the upcoming sections.

2 System Configuration

2.1 Software Requirements

The research project was developed using the open-source IDE called Jupyter Notebook as well as using Google colab an open-source framework for AI/ML projects in google ecosystem. This environment works based on python module. All these packages need to be installed before building the project.

2.2 Hardware specifications

- System Name: DESKTOP-SM51BMP
- Processor: Intel(R) Core (TM) i7-6500U CPU @ 2.50GHz, 2601 Mhz, 2 Core(s), 4 Logical Processor(s)
- Installed RAM: 16.00 GB
- Storage Size: 1TB SSD (109,951,162,7776 bytes)
- OS type: 64-bit operating system, x64-based processor

3 Installation and Environment Setup

• Python

Python module was used in this project. Since, it has many in-build libraries which support most of the Deep Learning and Machine Learning Projects. It ease the model building and analyse with various plots. The first requirement is to install the latest version python in the system. Based on the operating system, the package installer can be downloaded from the website through browser. After successful installation of python from the website as shown below figure 1, type 'python -version' in the command prompt to verify it.

Python	PSF	Docs	P	уРI	Jobs		Comm	nunity
python			Do	nate 🧠 Search	1		GO	
		4 233 377 610 987	The core of Python all argument	ons Defined of extensible programm lows mandatory and op s, and even arbitrary ar unctions in Python 3	otional argum gument lists.	nents, keyword More about		
		a programming la tegrate systems m						

Figure 1: Python Official page

• Anaconda

Anaconda package comprises of several IDE which will be useful for developing the code and for analysing the outputs through the python package. This package can be downloaded and installed from the website ²/_{as} shown in the Figure ²/₂. From the anaconda navigator, Jupyter notebook and it's tasks are launched in the browser tabs. Initially python notebook is created and saved as .ipynb format.

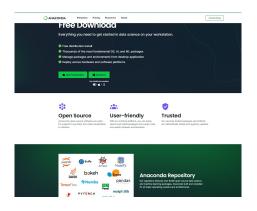


Figure 2: Anaconda Downloads Page

• Jupyter Notebook

The python libraries are installed during the implementation of code using pip command. The required libraries for this project are numpy, pandas, tensorflow, matplotlib, seaborn and plotly. There were lot of different IDE available in this navigator. In this project, Jupyter Notebook is used for building the model.

Command: pip install 'LibraryName'

¹https://www.python.org/downloads/ ²https://www.anaconda.com/products/individual

4 Data Collection

There were two datasets used for this project which is taken from kaggle ³. Following sections are divided into two sections with one containing the data sets of product images and other containing a csv file with label description of the products title both are being contained into a variables for preprocessing as shown in the Figure ⁴. These are used in the respective image and text processing models , which is concatenated at the end yield an output used to satisfy the research objectives.

5 Implementation

5.1 Importing Libraries

The implementation of the project using the python is described in the below sections. Please run them step by step as described. Before we begin the implementation the first step is to perform the preprocessing for the given data. the below figure 4 shows the libraries needed for the startup ,

1 EDA

```
[2]: from google.colab import drive
     import pandas as pd
     import matplotlib.pyplot as plt
    import numpy as np
     import cv2
     import textwrap as wrap
    zip_path = '/content/drive/MyDrive/shopee-product-matching.zip'
     extract_path = '/content/drive/MyDrive/path/shopee-product-matching'
    PATH_TO_IMG = '/content/drive/MyDrive/path/shopee-product-matching/train_images/'
    PATH_T0_TEST = '/content/drive/MyDrive/path/shopee-product-matching/test_images/
     train=pd.read_csv(extract_path + '/train.csv')
     train.head()
[2]:
             posting_id
                                                                    image phash
                                                        image
    0 train_129225211 0000a68812bc7e98c42888dfb1c07da0.jpg
                                                               94974f937d4c2433
    1 train_3386243561 00039780dfc94d01db8676fe789ecd05.jpg
                                                               af3f9460c2838f0f
      train_2288590299 000a190fdd715a2a36faed16e2c65df7.jpg
    2
                                                               b94cb00ed3e50f78
    3 train_2406599165 00117e4fc239b1b641ff08340b429633.jpg
                                                               8514fc58eafea283
    4 train_3369186413 00136d1cf4edede0203f32f05f660588.jpg a6f319f924ad708c
                                                   title label_group
    0
                               Paper Bag Victoria Secret
                                                            249114794
       Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO ... 2937985045
    1
    2
             Maling TTS Canned Pork Luncheon Meat 397 gr
                                                           2395904891
    3 Daster Batik Lengan pendek - Motif Acak / Camp ...
                                                        4093212188
                        Nescafe \xc3\x89clair Latte 220ml
                                                           3648931069
     4
```

Figure 3: Importing Required Libraries

5.2 Splitting of Train and Test Data

The given data set comprises of image and text data , while the image dataset are not considered in the pre-processing now , let us consider the csv fie with the label description as shown in the Figure below ,

 $^{^{3}}$ https://www.kaggle.com/competitions/shopee-product-matching/data

	te	st = pd.read_csv(e	<pre>xtract_path+'/test.csv')</pre>	
			1	
[6]:	tr	ain.head()		
[6]:		posting_id	image image_phash	N
		train_129225211		
		train_3386243561		
		train_2288590299		
		train_2406599165		
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg a6f319f924ad708c	
			title label_group	
	0		Paper Bag Victoria Secret 249114794	
	1		B 12 mm x 4,5 m ORIGINAL / DD 2937985045	
	2		Canned Pork Luncheon Meat 397 gr 2395904891	
	3		an pendek - Motif Acak / Camp 4093212188 escafe \xc3\x89clair Latte 220ml 3648931069	
	-		escale (xcs/xosciali Latte 220ml Sofossios	
[7]:	tr	ain.shape		
[7]:	(3	4250, 5)		
[8] :		ique_labels = trai n(unique labels)	n['label_group'].unique()	

Figure 4: Train / Test Split

5.3 Data Analysis and Data augmentation

5.3.1 Data Analysis

The analysis on the given data containing the csv file is performed as shown in the figure **5** below ,

32412									
<pre>train.groupby('label_group').count().sort_values(by='posting_id',u</pre>									
	posting_id	image	image_phash	title					
label_gro									
116356923			51	51					
159351600			51	51					
994676122			51	51					
311367810			51	51					
362774465	6 51	51	51	51					
		- 0		0					
235750817			2	2					
235737296			2	2					
235722129 235587835			2	2					
214188359			2	2					
	~		-	2					
			2						
[11014 ro	ws x 4 columns]							
# check t	itle length ra	nge by u							
# check t		nge by u		en(x)).desci	ribe()				
<pre># check t train['ti</pre>	itle length ra	nge by u		.en(x)).desci	ribe()				
<pre># check t train['ti</pre>	itle length ra tle'].str.spli	nge by u		en(x)).desci	ribe()				

Figure 5: Text Data Analysis

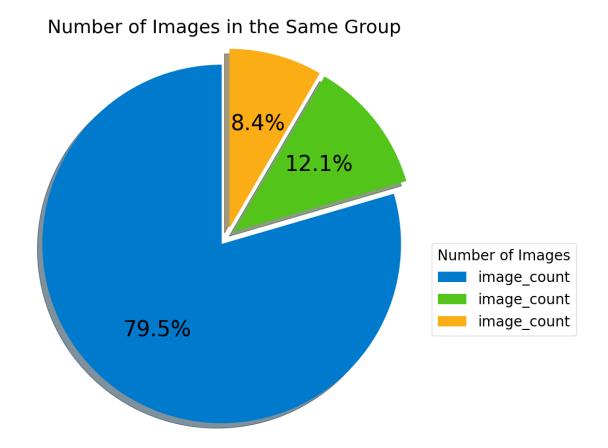
:	<pre>title_unique = train['title'].nunique() title_unique</pre>
:	33117
]:	<pre># check the id count posting_unique = train['posting_id'].nunique() posting_unique</pre>
:	34250
:	title_unique/posting_unique
:	0.9669197080291971
:	<pre>len(train['posting_id'])</pre>
:	34250
:	<pre>train["image_phash"].nunique() / len(train["image_phash"])</pre>
:	0.838978102189781
:	<pre># check the distribution of the number of images in each group group_img_dist = train.groupby('label_group').count()sort_values(by='posting_id', ascending=False)['posting_id'].value_counts()</pre>
]:	<pre># change group_img_dist to dataframe group_img_dist = pd.DataFrame(group_img_dist) group_img_dist.head()</pre>

Figure 6: Images Distribution

[18]:	posting_id
2	6979
3	1779
4	862
5	468
6	282

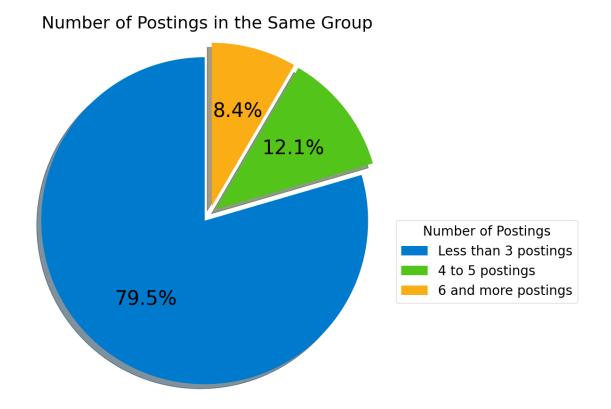
```
[27]: # for group_img_dist, combine 1 to 3, and sum the posting_id count
img_count_1_3 = group_img_dist.loc[2:3].sum()
img_count_4_10 = group_img_dist.loc[4:5].sum()
img_count_11_more = group_img_dist.loc[6:].sum()
```

[28]: img_dist = [img_count_1_3, img_count_4_10, img_count_11_more]


```
[29]: img_dist = pd.DataFrame(img_dist)
```

rename the column name
img_dist.rename(columns={0: "count"}, inplace=True)

reset the index
img_dist.reset_index(drop=True, inplace=True)


[45]: img_dist

[45]:		image	e_count	<pre>image_count</pre>	<pre>image_count</pre>	posting_id
	0	Less than 3	images	Less than 3 images	Less than 3 images	8758
	1	4 to 5	images	4 to 5 images	4 to 10 images	1330
	2	6 and more	images	6 and more images	11 and more images	926

<pre>group_posting_dist = train.g</pre>	
<pre>group_posting_dist = pd.Data group_posting_dist.head() [37]: posting_id 2 6979 3 1779 4 862 5 468</pre>	
2 6979 3 1779 4 862 5 468	
3 1779 4 862 5 468	
4 862 5 468	
5 468	
<i>C</i> 000	
6 282	
[39]: posting_count_1_3 = group_po posting_count_4_10 = group_p posting_count_11_more = group	osting_dist.loc[4:5].sum()

```
[43]: posting_dist = [posting_count_1_3, posting_count_4_10, posting_count_11_more]
      posting_dist = pd.DataFrame(posting_dist)
      # insert first column to posting_dist as "posting_count" and set the value to
      →"Less than 3 posting", "4 to 10 posting", "11 and more posting"
      posting_dist.insert(0, "posting_count", ["Less than 3 postings", "4 to 5
       →postings", "6 and more postings"], True)
[44]: posting_dist
[44]:
                posting_count posting_id
     0 Less than 3 postings
                                     8758
             4 to 5 postings
                                     1330
      1
      2
         6 and more postings
                                     926
[46]: # plot the pie chart
      plt.figure(figsize=(10,10))
      explode = [0.05]*len(posting_dist) # add a slight separation between pie slices
      colors = ['#007acc', '#52c41a', '#faad14', '#f5222d'] # custom color palette
      plt.pie(posting_dist['posting_id'], labels=None, autopct='%.
       →1f%%',textprops={'fontsize': 30}, shadow=True, startangle=90,
      →explode=explode, colors=colors)
      plt.legend(labels=posting_dist['posting_count'], title='Number of Postings',
       stitle_fontsize=20, loc="best", bbox_to_anchor=(1, 0.5), fontsize=20)
      plt.title('Number of Postings in the Same Group', fontsize=26)
      plt.axis('equal')
      plt.show()
```

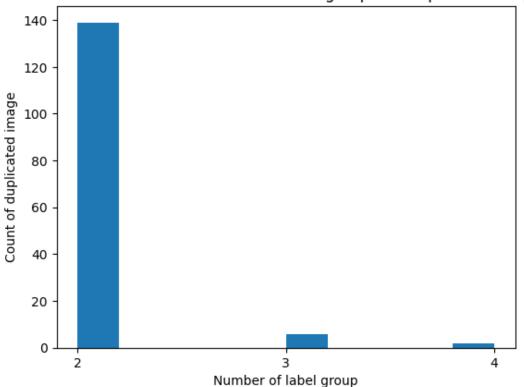


```
[47]: def show_same_img():
          # choose randomly two instances per each class
          labels_to_show = np.random.choice(train.label_group.unique(),
                                            replace=True, size=27)
          img_to_show = []
          for label in labels_to_show:
              rows = train[train.label_group==label].copy()
              pair = np.random.choice([i for i in range(len(rows))],
                                          replace=True, size=2)
              img_pair = rows.iloc[pair][['image', 'title']].values
              img_to_show += list(img_pair)
          fig, axes = plt.subplots(figsize = (18, 12), nrows=2,ncols=2)
          for imp, ax in zip(img_to_show, axes.ravel()):
              img = cv2.imread(PATH_TO_IMG + imp[0])
              title = '\n'.join(wrap(imp[1], 20))
              ax.set_title(title)
              ax.imshow(img)
              ax.axis('off')
          fig.tight_layout()
```

[48]: import os import numpy as np import pandas as pd import cv2 import matplotlib.pyplot as plt from textwrap import wrap # from wordcloud import WordCloud

```
[49]: num_imgs = len(os.listdir(PATH_TO_IMG))
print("Number of images in train set: ", num_imgs)
```

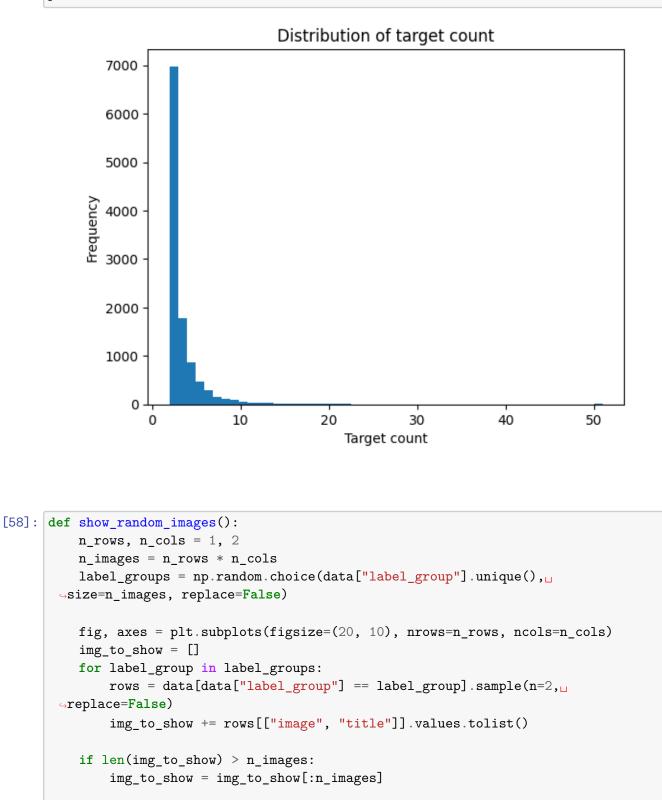
Number of images in train set: 32442


```
[53]: num_unique_label=len(data["label_group"].unique())
print("Number of unique label groups: ", num_unique_label)
```

```
Number of unique label groups: 11014
```

```
[54]: unique_hash=len(data['image_phash'].unique())
print("Number of unique image phash: ", unique_hash)
```

Number of unique image phash: 28735


plt.show()

Distribution of different counts of label groups for duplicated images

```
[56]: target_counts = data['label_group'].value_counts()
# Plot the distribution of target counts
fig, ax = plt.subplots()
ax.hist(target_counts, bins=50)
ax.set_xlabel('Target count')
ax.set_ylabel('Frequency')
ax.set_title('Distribution of target count')
```

plt.show()

for i, (img_path, title) in enumerate(img_to_show):

```
img = cv2.imread(os.path.join(PATH_TO_IMG, img_path))
    title = "\n".join(wrap(title, 44))
    ax = axes.flat[i]
    ax.set_title(title, fontsize=30)
    ax.imshow(img)
    ax.axis("off")
fig.tight_layout()
```

```
show_random_images()
```


RAPIDS cuDF

CO Open in Colab

Environment Setup

Check Version

Python Version

In []: # Check Python Version !python --version

Python 3.10.12

Ubuntu Version

```
In []: # Check Ubuntu Version
```

```
!lsb_release -a
```

```
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 22.04.2 LTS
Release:
               22.04
Codename:
               jammy
```

Check CUDA Version

In []: # Check CUDA/cuDNN Version !nvcc -V && which nvcc

> nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed Sep 21 10:33:58 PDT 2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 /usr/local/cuda/bin/nvcc

Check GPU Version

In []: # Check GPU !nvidia-smi

				Version: 525.105.17		
GPU	Name		Persistence-M	Bus-Id Disp.A	Volatile	Uncorr. ECC
	•		l	Memory-Usage		MIG M.
			0.000 Million			========= 0
				0MiB / 15360MiB		Default N/A
			•			
	esses: GI	СТ	PTD Tyr	e Process name		GPU Memory
di U	ID	ID	FID Typ			Usage

Setup:

This set up script:

1. Checks to make sure that the GPU is RAPIDS compatible

2. Installs the current stable version of RAPIDSAI's core libraries using pip, which are:

- A. cuDF
- B. cuML
- C. cuGraph
- D. xgboost

This will complete in about 3-4 minutes

Please use the RAPIDS Conda Colab Template notebook if you need to install any of RAPIDS Extended libraries, such as:

- cuSpatial
- cuSignal
- cuxFilter
- cuCIM

OR

nightly versions of any library

In []: # This get the RAPIDS-Colab install files and test check your GPU. Run this and the # Please read the output of this cell. If your Colab Instance is not RAPIDS compar !git clone https://github.com/rapidsai/rapidsai-csp-utils.git !python rapidsai-csp-utils/colab/pip-install.py

shopee_21178933

Cloning into 'rapidsai-csp-utils'... remote: Enumerating objects: 390, done. remote: Counting objects: 100% (121/121), done. remote: Compressing objects: 100% (70/70), done. remote: Total 390 (delta 89), reused 51 (delta 51), pack-reused 269 Receiving objects: 100% (390/390), 107.11 KiB | 2.06 MiB/s, done. Resolving deltas: 100% (191/191), done. Collecting pynvml Downloading pynvml-11.5.0-py3-none-any.whl (53 kB) 53.1/53.1 kB 991.5 kB/s eta 0:00:00 Installing collected packages: pynvml Successfully installed pynvml-11.5.0 Woo! Your instance has the right kind of GPU, a Tesla T4! We will now install RAPIDS cuDF, cuML, and cuGraph via pip! Please stand by, should be quick... ********* Looking in indexes: https://pypi.org/simple, https://pypi.nvidia.com Collecting cudf-cu11 Downloading https://pypi.nvidia.com/cudf-cu11/cudf_cu11-23.6.1-cp310-cp310-manyl inux_2_17_x86_64.manylinux2014_x86_64.whl (489.3 MB) - 489.3/489.3 MB 2.8 MB/s eta 0:00:00 Collecting cuml-cu11 Downloading https://pypi.nvidia.com/cuml-cu11/cuml cu11-23.6.0-cp310-cp310-manyl inux_2_17_x86_64.manylinux2014_x86_64.whl (1079.0 MB) - 1.1/1.1 GB 1.0 MB/s eta 0:00:00 Collecting cugraph-cu11 Downloading https://pypi.nvidia.com/cugraph-cu11/cugraph_cu11-23.6.2-cp310-cp310 -manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1160.0 MB) — 1.2/1.2 GB 968.6 kB/s eta 0:00:00 Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (3.8.5)Requirement already satisfied: cachetools in /usr/local/lib/python3.10/dist-packag es (from cudf-cu11) (5.3.1) Collecting cubinlinker-cu11 (from cudf-cu11) Downloading https://pypi.nvidia.com/cubinlinker-cu11/cubinlinker_cu11-0.3.0.post 1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB) - 8.8/8.8 MB 105.0 MB/s eta 0:00:00 Collecting cuda-python<12.0,>=11.7.1 (from cudf-cu11) Downloading cuda_python-11.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x 86 64.whl (16.5 MB) ----- 16.5/16.5 MB 41.8 MB/s eta 0:00:00 Collecting cupy-cuda11x>=12.0.0 (from cudf-cu11) Downloading cupy cuda11x-12.2.0-cp310-cp310-manylinux2014_x86_64.whl (89.6 MB) - 89.6/89.6 MB 9.4 MB/s eta 0:00:00 Requirement already satisfied: fsspec>=0.6.0 in /usr/local/lib/python3.10/dist-pac kages (from cudf-cu11) (2023.6.0) Collecting numba>=0.57 (from cudf-cu11) Downloading numba-0.57.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64. whl (3.6 MB) - 3.6/3.6 MB 76.8 MB/s eta 0:00:00 Requirement already satisfied: numpy>=1.21 in /usr/local/lib/python3.10/dist-packa ges (from cudf-cu11) (1.23.5) Collecting nvtx>=0.2.1 (from cudf-cu11) Downloading nvtx-0.2.6-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x86 64.wh 1 (553 kB) - 553.1/553.1 kB 51.3 MB/s eta 0:00:00 Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-package s (from cudf-cu11) (23.1) Requirement already satisfied: pandas<1.6.0dev0,>=1.3 in /usr/local/lib/python3.1 0/dist-packages (from cudf-cu11) (1.5.3) Collecting protobuf<4.22,>=4.21.6 (from cudf-cu11)

Downloading protobuf-4.21.12-cp37-abi3-manylinux2014_x86_64.whl (409 kB)

```
localhost:8888/nbconvert/html/shopee_21178933.ipynb?download=false 16
```

- 409.8/409.8 kB 41.5 MB/s eta 0:00:00 Collecting ptxcompiler-cu11 (from cudf-cu11) Downloading https://pypi.nvidia.com/ptxcompiler-cu11/ptxcompiler_cu11-0.7.0.post 1-cp310-cp310-manylinux 2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB) - 8.8/8.8 MB 92.0 MB/s eta 0:00:00 Collecting pyarrow==11.* (from cudf-cu11) Downloading pyarrow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_6 4.whl (34.9 MB) - 34.9/34.9 MB 19.4 MB/s eta 0:00:00 Collecting rmm-cu11==23.6.* (from cudf-cu11) Downloading https://pypi.nvidia.com/rmm-cu11/rmm_cu11-23.6.0-cp310-cp310-manylin ux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB) - 1.7/1.7 MB 93.1 MB/s eta 0:00:00 Requirement already satisfied: typing-extensions>=4.0.0 in /usr/local/lib/python3. 10/dist-packages (from cudf-cu11) (4.7.1) Collecting dask-cuda==23.6.* (from cuml-cu11) Downloading dask_cuda-23.6.0-py3-none-any.whl (125 kB) - 125.2/125.2 kB 16.4 MB/s eta 0:00:00 Collecting dask-cudf-cu11==23.6.* (from cuml-cu11) Downloading https://pypi.nvidia.com/dask-cudf-cu11/dask_cudf_cu11-23.6.0-py3-non e-any.whl (79 kB) - 79.6/79.6 kB 10.2 MB/s eta 0:00:00 Collecting dask==2023.3.2 (from cuml-cu11) Downloading dask-2023.3.2-py3-none-any.whl (1.2 MB) - 1.2/1.2 MB 85.5 MB/s eta 0:00:00 Collecting distributed==2023.3.2.1 (from cuml-cu11) Downloading distributed-2023.3.2.1-py3-none-any.whl (957 kB) - 957.1/957.1 kB 75.5 MB/s eta 0:00:00 Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-pack ages (from cuml-cu11) (1.3.1) Collecting raft-dask-cu11==23.6.* (from cuml-cu11) Downloading https://pypi.nvidia.com/raft-dask-cu11/raft_dask_cu11-23.6.2-cp310-c p310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (214.7 MB) - 214.7/214.7 MB 5.7 MB/s eta 0:00:00 Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (f rom cuml-cu11) (1.10.1) Collecting treelite==3.2.0 (from cuml-cu11) Downloading treelite-3.2.0-py3-none-manylinux2014_x86_64.whl (1.0 MB) - 1.0/1.0 MB 74.6 MB/s eta 0:00:00 Collecting treelite-runtime==3.2.0 (from cuml-cu11) Downloading treelite_runtime-3.2.0-py3-none-manylinux2014_x86_64.whl (198 kB) 198.2/198.2 kB 22.6 MB/s eta 0:00:00 Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packag es (from dask==2023.3.2->cuml-cu11) (8.1.6) Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.10/dis t-packages (from dask==2023.3.2->cuml-cu11) (2.2.1) Requirement already satisfied: partd>=1.2.0 in /usr/local/lib/python3.10/dist-pack ages (from dask==2023.3.2->cuml-cu11) (1.4.0) Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-pac kages (from dask==2023.3.2->cuml-cu11) (6.0.1) Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.10/dist-pack ages (from dask==2023.3.2->cuml-cu11) (0.12.0) Collecting importlib-metadata>=4.13.0 (from dask==2023.3.2->cuml-cu11) Downloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB) Collecting pynvml<11.5,>=11.0.0 (from dask-cuda==23.6.*->cuml-cu11) Downloading pynvml-11.4.1-py3-none-any.whl (46 kB) - 47.0/47.0 kB 6.3 MB/s eta 0:00:00 Requirement already satisfied: zict>=2.0.0 in /usr/local/lib/python3.10/dist-packa ges (from dask-cuda==23.6.*->cuml-cu11) (3.0.0) Requirement already satisfied: jinja2>=2.10.3 in /usr/local/lib/python3.10/dist-pa ckages (from distributed==2023.3.2.1->cuml-cu11) (3.1.2) Requirement already satisfied: locket>=1.0.0 in /usr/local/lib/python3.10/dist-pac kages (from distributed==2023.3.2.1->cuml-cu11) (1.0.0)

Requirement already satisfied: msgpack>=1.0.0 in /usr/local/lib/python3.10/dist-pa

shopee_21178933

ckages (from distributed==2023.3.2.1->cuml-cu11) (1.0.5) Requirement already satisfied: psutil>=5.7.0 in /usr/local/lib/python3.10/dist-pac kages (from distributed==2023.3.2.1->cuml-cu11) (5.9.5) Requirement already satisfied: sortedcontainers>=2.0.5 in /usr/local/lib/python3.1 0/dist-packages (from distributed==2023.3.2.1->cuml-cu11) (2.4.0) Requirement already satisfied: tblib>=1.6.0 in /usr/local/lib/python3.10/dist-pack ages (from distributed==2023.3.2.1->cuml-cu11) (2.0.0) Requirement already satisfied: tornado>=6.0.3 in /usr/local/lib/python3.10/dist-pa ckages (from distributed==2023.3.2.1->cuml-cu11) (6.3.1) Requirement already satisfied: urllib3>=1.24.3 in /usr/local/lib/python3.10/dist-p ackages (from distributed==2023.3.2.1->cuml-cu11) (1.26.16) Collecting pylibraft-cu11==23.6.* (from raft-dask-cu11==23.6.*->cuml-cu11) Downloading https://pypi.nvidia.com/pylibraft-cu11/pylibraft_cu11-23.6.2-cp310-c p310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (471.7 MB) - 471.7/471.7 MB 2.7 MB/s eta 0:00:00 Collecting ucx-py-cu11==0.32.* (from raft-dask-cu11==23.6.*->cuml-cu11) Downloading https://pypi.nvidia.com/ucx-py-cu11/ucx_py_cu11-0.32.0-cp310-cp310-m anylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.9 MB) - 7.9/7.9 MB 107.3 MB/s eta 0:00:00 Collecting pylibcugraph-cu11==23.6.* (from cugraph-cu11) Downloading https://pypi.nvidia.com/pylibcugraph-cu11/pylibcugraph_cu11-23.6.2-c p310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1159.0 MB) - 1.2/1.2 GB 1.3 MB/s eta 0:00:00 Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-pac kages (from aiohttp) (23.1.0) Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/pyth on3.10/dist-packages (from aiohttp) (3.2.0) Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/di st-packages (from aiohttp) (6.0.4) Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/pytho n3.10/dist-packages (from aiohttp) (4.0.2) Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-pa ckages (from aiohttp) (1.9.2) Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist -packages (from aiohttp) (1.4.0) Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/distpackages (from aiohttp) (1.3.1) Requirement already satisfied: cython in /usr/local/lib/python3.10/dist-packages (from cuda-python<12.0,>=11.7.1->cudf-cu11) (0.29.36) Requirement already satisfied: fastrlock>=0.5 in /usr/local/lib/python3.10/dist-pa ckages (from cupy-cuda11x>=12.0.0->cudf-cu11) (0.8.1) Collecting llvmlite<0.41,>=0.40.0dev0 (from numba>=0.57->cudf-cu11) Downloading llvmlite-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_ 64.whl (42.1 MB) - 42.1/42.1 MB 16.8 MB/s eta 0:00:00 Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.1 0/dist-packages (from pandas<1.6.0dev0,>=1.3->cudf-cu11) (2.8.2) Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-pack ages (from pandas<1.6.0dev0,>=1.3->cudf-cu11) (2022.7.1) Requirement already satisfied: idna>=2.0 in /usr/local/lib/python3.10/dist-package s (from yarl<2.0,>=1.0->aiohttp) (3.4) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-package s (from importlib-metadata>=4.13.0->dask==2023.3.2->cuml-cu11) (3.16.2) Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-p ackages (from jinja2>=2.10.3->distributed==2023.3.2.1->cuml-cu11) (2.1.3) Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas<1.6.0dev0,>=1.3->cudf-cu11) (1.16.0) Installing collected packages: ptxcompiler-cu11, nvtx, cubinlinker-cu11, pynvml, p yarrow, protobuf, llvmlite, importlib-metadata, cupy-cuda11x, cuda-python, ucx-pycu11, treelite-runtime, treelite, numba, dask, rmm-cu11, distributed, pylibraft-cu 11, dask-cuda, cudf-cu11, raft-dask-cu11, pylibcugraph-cu11, dask-cudf-cu11, cumlcu11, cugraph-cu11 Attempting uninstall: pynvml

Found existing installation: pynvml 11.5.0

Uninstalling pynvml-11.5.0: Successfully uninstalled pynvml-11.5.0 Attempting uninstall: pyarrow Found existing installation: pyarrow 9.0.0 Uninstalling pyarrow-9.0.0: Successfully uninstalled pyarrow-9.0.0 Attempting uninstall: protobuf Found existing installation: protobuf 3.20.3 Uninstalling protobuf-3.20.3: Successfully uninstalled protobuf-3.20.3 Attempting uninstall: llvmlite Found existing installation: llvmlite 0.39.1 Uninstalling llvmlite-0.39.1: Successfully uninstalled llvmlite-0.39.1 Attempting uninstall: importlib-metadata Found existing installation: importlib-metadata 4.6.4 Uninstalling importlib-metadata-4.6.4: Successfully uninstalled importlib-metadata-4.6.4 Attempting uninstall: cupy-cuda11x Found existing installation: cupy-cuda11x 11.0.0 Uninstalling cupy-cuda11x-11.0.0: Successfully uninstalled cupy-cuda11x-11.0.0 Attempting uninstall: numba Found existing installation: numba 0.56.4 Uninstalling numba-0.56.4: Successfully uninstalled numba-0.56.4 Attempting uninstall: dask Found existing installation: dask 2022.12.1 Uninstalling dask-2022.12.1: Successfully uninstalled dask-2022.12.1 Attempting uninstall: distributed Found existing installation: distributed 2022.12.1 Uninstalling distributed-2022.12.1: Successfully uninstalled distributed-2022.12.1

ERROR: pip's dependency resolver does not currently take into account all the pack ages that are installed. This behaviour is the source of the following dependency conflicts.

pandas-gbq 0.17.9 requires pyarrow<10.0dev,>=3.0.0, but you have pyarrow 11.0.0 wh ich is incompatible.

Successfully installed cubinlinker-cu11-0.3.0.post1 cuda-python-11.8.2 cudf-cu11-2 3.6.1 cugraph-cu11-23.6.2 cuml-cu11-23.6.0 cupy-cuda11x-12.2.0 dask-2023.3.2 dask-cuda-23.6.0 dask-cudf-cu11-23.6.0 distributed-2023.3.2.1 importlib-metadata-6.8.0 llvmlite-0.40.1 numba-0.57.1 nvtx-0.2.6 protobuf-4.21.12 ptxcompiler-cu11-0.7.0.po st1 pyarrow-11.0.0 pylibcugraph-cu11-23.6.2 pylibraft-cu11-23.6.2 pynvml-11.4.1 ra ft-dask-cu11-23.6.2 rmm-cu11-23.6.0 treelite-3.2.0 treelite-runtime-3.2.0 ucx-py-c u11-0.32.0

Requirement already satisfied: cupy-cuda11x in /usr/local/lib/python3.10/dist-pack ages (12.2.0)

Requirement already satisfied: numpy<1.27,>=1.20 in /usr/local/lib/python3.10/dist
-packages (from cupy-cuda11x) (1.23.5)

Requirement already satisfied: fastrlock>=0.5 in /usr/local/lib/python3.10/dist-pa ckages (from cupy-cuda11x) (0.8.1)

The pip install of RAPIDS is complete.

Please do not run any further installation from the conda based installa tion methods, as they may cause issues!

Please ensure that you're pulling from the git repo to remain updated wi th the latest working install scripts.

r

Troubleshooting:

- If there is an installation failure, please check back on RAPIDSAI

shopee 21178933 owned templates/notebooks to see how to update your personal files. - If an installation failure persists when using the latest script, p lease make an issue on https://github.com/rapidsai-community/rapidsai-csp-utils In []: pip install transformers Collecting transformers Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB) - 7.4/7.4 MB 19.8 MB/s eta 0:00:00 Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2) Collecting huggingface-hub<1.0,>=0.14.1 (from transformers) Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB) - 268.8/268.8 kB 27.8 MB/s eta 0:00:00 Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packa ges (from transformers) (1.23.5) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-p ackages (from transformers) (23.1) Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packa ges (from transformers) (6.0.1) Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist -packages (from transformers) (2022.10.31) Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0) Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers) Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x8 6 64.whl (7.8 MB) - 7.8/7.8 MB 45.8 MB/s eta 0:00:00 Collecting safetensors>=0.3.1 (from transformers) Downloading safetensors-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x8 6 64.whl (1.3 MB) Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packag es (from transformers) (4.65.0) Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0) Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python 3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1) Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3. 10/dist-packages (from requests->transformers) (3.2.0) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-pack ages (from requests->transformers) (3.4) Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dis t-packages (from requests->transformers) (1.26.16) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dis t-packages (from requests->transformers) (2023.7.22) Installing collected packages: tokenizers, safetensors, huggingface-hub, transform ers

```
Successfully installed huggingface-hub-0.16.4 safetensors-0.3.2 tokenizers-0.13.3 transformers-4.31.0
```

Critical Imports

```
In [ ]: # Critical imports
    import cudf
    import cuml
```

import os import numpy as np import pandas as pd # adding new imports import numpy as np

localhost:8888/nbconvert/html/shopee_21178933.ipynb?download=false

```
import cupy, cudf
import gc
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
import random
import torch
import torchvision
from torchvision import models, transforms
from transformers import BertTokenizer, BertModel
from cuml.feature_extraction.text import TfidfVectorizer
from cuml.neighbors import NearestNeighbors
import torch.nn as nn
import torch.nn.functional as F
import os
import glob
from PIL import Image
import seaborn as sns
import cv2, matplotlib.pyplot as plt
import matplotlib.image as mpimg
from textwrap import wrap
```

Data import

```
device = 'cuda'if torch.cuda.is_available() else 'cpu'
In [ ]:
        device
         'cuda'
Out[ ]:
In [ ]:
        from google.colab import drive
        drive.mount('/content/drive')
        Mounted at /content/drive
In [ ]: import zipfile
        zip_path = '/content/drive/MyDrive/shopee-product-matching.zip'
        extract_path = '/content/drive/MyDrive/path/shopee-product-matching'
        PATH_TO_IMG ='/content/drive/MyDrive/path/shopee-product-matching/train_images/'
        PATH_TO_TEST = '/content/drive/MyDrive/path/shopee-product-matching/test_images/'
        #with zipfile.ZipFile(zip_path, 'r') as zip_ref:
         #
             zip_ref.extractall(extract_path)
In [ ]: print(extract_path)
        /content/drive/MyDrive/path/shopee-product-matching
In [ ]:|
        def list sp files(path list):
            for path in path list:
                 for filename in os.listdir(path):
                     print(path, filename)
        res = []
In [ ]:
        for path in os.listdir(extract_path):
            # check if current path is a file
             if os.path.isdir(os.path.join(extract_path, path)):
                 res.append(path)
        print(res)
        ['test images', 'train images', 'sentence-transformer']
```

```
In []: import os
# Specify the path to the subfolder
subfolder_path = '/content/drive/MyDrive/path/shopee-product-matching/train_images
# List the contents of the subfolder
contents = os.listdir(subfolder_path)
# Print the contents
for item in contents:
    print(item)
```

	shopee_	21178933
Streaming output truncated to the las	t 5000	lines.
27e1e22db5b72a2ff80af5c33a86ad5f.jpg		
27f8cd710447ccdc4be680330bd6425e.jpg		
27d66999236ae5ffadd0125d68eb90e3.jpg		
27dcd98558dc619910d93fc5d7211c25.jpg		
27f2b0e6119889111c59a10696d291cb.jpg		
27e50e14b6d8e9c039f6a4b4f1ffa7dc.jpg		
27db63d24546367e2f86077fd05b268a.jpg		
27facd9afa37f3fcc91b3b93fccd4b29.jpg		
28056181fa2ce14fd1c4b0c47c535097.jpg		
27c7d6082dcbdc494295853c7cdf99fc.jpg		
27d8e2b88c717a93633022eb43e50116.jpg		
2820f1192344b6c6cf52d57dd620a44f.jpg		
2818f62e52cfdfc1dbe10fd8bdc14908.jpg		
281c76b578e4a473d6021f711f0794d1.jpg		
281235e589dc4a0b6ceabcd64a53af4e.jpg		
282480dba1296d7b3f3d9dabe59921be.jpg		
282559d15e204c70b65b4021b855173f.jpg		
2820ae904a947b8176fbff4633bb6f1a.jpg		
280a59b854a8dd1542e5ac4b12ec5c2f.jpg		
28239d2df8eedee688826e2d55a5d210.jpg		
281a23efc786b3de196ffca5fdbaf876.jpg		
280fce37634fb6ee3b9996cd8baa3b4a.jpg		
28065c1a1d4f66c2644d72600747b7de.jpg		
2820d2301c83b7770d2653f2f53d70a5.jpg		
280b33d16ba86d113727e21b8bd32756.jpg		
28093c77e12623f4ba449c3397b0b8ec.jpg		
280b1f800dbee30473b55c3dd4bb9d52.jpg		
28167561778e2f44eccc6acf2ceca330.jpg 2814c9c9549f62bfd6ed00f08e9d7d2f.jpg		
280b5998bc49cc35d0d5e0d48633fbc9.jpg		
2812faba1e0d58c6a662638a97219c3d.jpg		
28162c73c9cb5a413921df4e29d4ded8.jpg		
281f120c64376d45c1aed97c9fbc3171.jpg		
280a534e684d93655a2ce71bdae5bea6.jpg		
28399084914ca4aa9d4a98823b293e69.jpg		
28461bf2358effc84977d8ef5428c6c8.jpg		
283140c972494f6e83904e082ef61421.jpg		
2826339257579760a00d6e0a0065a89e.jpg		
28540714be9f019041dd7f5d02c344d1.jpg		
2854307b190a3d9da2b824651cc1c5b8.jpg		
28347927145e3db04609685a5b208523.jpg		
2832ed41b8e32112eb069a0a67959239.jpg		
2836cccbdc6fdc733358619a1cf6ca3c.jpg		
28400d9c7817b84eed634e37b39cec6a.jpg		
2833579f35684118327e9cf04879246e.jpg		
284f9582dedef50f1a32b692411705b8.jpg		
2836d94df6253a117dc497686ad9012e.jpg		
283a30e139b4ee2d062a1856ee2bc2fe.jpg		
28459ad0efc782f937fad07cd8b9751a.jpg		
2829d11d9939b6a89ce093844213cfb4.jpg		
2850a7d0c2238047ad84190b90ec34bd.jpg		
284fd69594d9e1cae652b336848b6d62.jpg		
282f75dccfb50e1bc86818f430ab1a76.jpg		
28534d6fd47524968eaf605851059f03.jpg		
282dbc8d999de380cc7722c4c06846c0.jpg		
2841b2abfc013d9772ee4d76a5b5145f.jpg		
28407e3b0f509e02537354850c9141f2.jpg		
2842155bec3df934718b1a47b3d08369.jpg		
2858a721e5e3763e904596320c85d49b.jpg		
2879f482574a0d837663ba11b86cfc92.jpg		
2864365735411042a4f9b403ef9c469f.jpg		
286ede927b58286f5eabe98f6f3df922.jpg		
2864d5dc8463ffa650565241bfecfd1f.jpg		

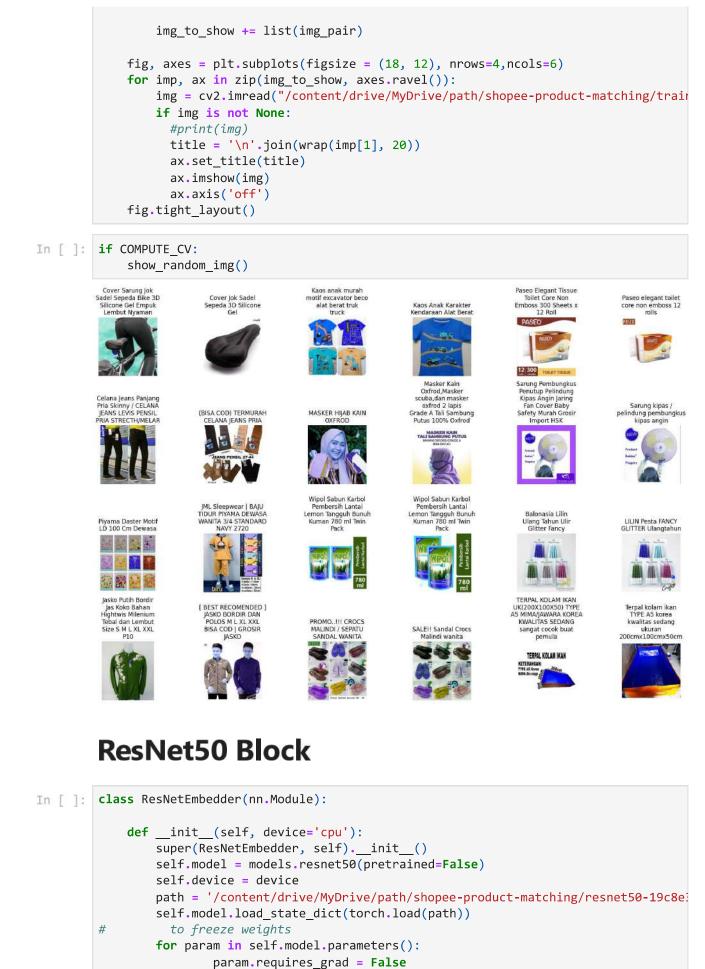
03a0244b0abc5fd23dba296c4cfcd070.jpg
039b7194bfc5be44d0e7b4c092ff5961.jpg
038cf1d2ffaa2bdfec0802f21bfb9819.jpg
0393e58027891808f86a4ea9db8c4168.jpg
0396f5762aedc849678a585b43352850.jpg
03952dc36e0e61eb6f25442414bc806d.jpg
038024158016c18e27637a6cc8b7fdfc.jpg
038b836a073982e014a1f52ecfcf3151.jpg
0370e0820821ef97edbc138f5663dfbc.jpg
03a9841aa70fbcdd588b19e6622b3f36.jpg
0393d455e6b0f90e9754969e088c760d.jpg
037b91143e8b57a8ea94bf5a27432eec.jpg
03a282f0dabd1c6ab169695af7d54831.jpg
036ed3ec877143184ae9b7ea4b091600.jpg
03c167867de0a6834ef8769baaf36e1a.jpg
03c1a0502eaf756ebcf6a35a61d604e0.jpg
03de765fd1059b0cb7472631e4a0579c.jpg
03b6c99cdc8e0bb3324a11290a43ae83.jpg
03b86209a6c8c0c0a5719d308605fdca.jpg
03c9aa4d005cf31d145434f4095ac5f9.jpg
03b4341b88dd97bbe7f7b44fabfab30b.jpg
03c994ef1e7d3f5449e3975d1f5ed231.jpg
03ba8b8f7a3781acc61788dc557af1d3.jpg
03c4f8e9669d31b6e129806dae1a7402.jpg
03cee0099893beece6986a183bdc3342.jpg
03bf33a0bba3db4c15e0d561464460dc.jpg
03b60b788c6f02295d43cd0d36606185.jpg
03d42a05a9bf2bd027ddea39e0120d8d.jpg
03dacaebb7f13423c30911c4f01bde7d.jpg
03ae04bd14113279190085fee52c37d0.jpg
03d976855b24305a41fa0f2bd0240001.jpg
03c9c3973cd4b4f3142af9cb486cfdd0.jpg
03d7dd4a957a473ac67438d17fe264cb.jpg
03b82e7438b9c5547fdc9ab220852c8e.jpg
03d3c97610540792cb5e53889160cd29.jpg
03ba78002ef0260e2d88a627152fbec4.jpg
03bb7b2cad26bee8998341d4ce2e4824.jpg
03ea776cf40f6fe06aafae43b1bcaccb.jpg
03fa79210b60eff815326ef31325adea.jpg
03fd0a5413c03a05e43aa8b78d759c66.jpg
03e5678583225519d424edb59bc92f67.jpg
03eb9a2871862b37dfa375d3f830655a.jpg
03f0c235b2e56a460e23587c4d4c3ad0.jpg
03f44ae0d5f1938ceb30ac6a2f609c1d.jpg
040481c9a5c57a613fab2710882ddc8f.jpg
03ffd2c162cdd40ed3816e3a8a0e8b72.jpg
03eddc8a882614f8aa7a0f212f98c72e.jpg
03e027656171420583db686600b59cf8.jpg
03f94cf522101e71933eb4047c5091fe.jpg
03ef8d1cd5804c0a1ebc7632f058d7f2.jpg
04056b0b275ab9774c4a2d4a77c4c982.jpg
0404c41acf973bb9c4d19ef1dd569658.jpg
040717829d61e53c6274b476bc367b28.jpg
03f3b26cbe5419d68cb4eb8b06938741.jpg
03f0c92e2f79f3054547aab785bfb185.jpg
03e1c0f4227b523cfdfb9205f240ca39.jpg
03ed1de3688c83c139aef39088aad083.jpg
0403ae0b674415bfc675483e7e5a1e0b.jpg
03ebb65008cdbe2b553e97e1992cf502.jpg
03fe7e408acc2ef838ac3899897c2387.jpg
040cdc5eb85306d99f25ba70cb7b0f9a.jpg
042a301f7a13f1476692926360663fb5.jpg
042bd9e1c544b0bf5657b4d47bd2eede.jpg
0418de923fec638a4f8f2033959963e5.jpg

•

shopee_21178933

0426c8d10556e748192b4df3a223c0fe.jpg
0426f873aad38961ecbd4d1da27f6b28.jpg
04164dcca25716b0a3d0dc2d44e4b900.jpg
04325d767af190517379650dacd02493.jpg
04198ddfc9091f7e8f467a75db3eab29.jpg
041eb2a38f0c7062237cedbc8e4565cd.jpg
0433a8e9bee270cdf66f8dfa8c4ba977.jpg
0411784efaf3e9fa1d97a1fd07fbe79c.jpg
041c4ed0dfca106e6f3c76ce705db152.jpg

```
In []: COMPUTE_CV = True
if len(pd.read_csv(extract_path + '/test.csv')) > 3: COMPUTE_CV = False
```


```
In [ ]: if COMPUTE_CV:
    dataset = pd.read_csv(extract_path + '/train.csv')
    tmp = dataset.groupby('label_group').posting_id.agg('unique').to_dict()
    dataset['target'] = dataset.label_group.map(tmp)
else:
    dataset = pd.read_csv(extract_path + '/test.csv')
```

```
In [ ]: dataset.head()
```

Out[]:		posting_id	image	image_phash	title	label_g
	0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	23959(
	3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	409321
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893

•

shopee_21178933


```
localhost:8888/nbconvert/html/shopee_21178933.ipynb?download=false
```

self.model.to(device)

image_transform = torchvision.transforms.Compose(

def transform(self, img):

```
torchvision.transforms.Resize(256),
    transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225)
        ),
        ]
        )
        return image_transform(img)
    def forward(self, img):
        img_tr = self.transform(img).unsqueeze(0)
        img_tr = img_tr.to(self.device)
        features = self.model(img_tr).squeeze()
        return features
```

In []: model_img = ResNetEmbedder(device)

```
/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarn
ing: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the
future, please use 'weights' instead.
   warnings.warn(
   /usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarn
ing: Arguments other than a weight enum or `None` for 'weights' are deprecated sin
ce 0.13 and may be removed in the future. The current behavior is equivalent to pa
ssing `weights=None`.
   warnings.warn(msg)
```

In []: model_img

Out[]: ResNetEmbedder((model): ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias =False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running sta ts=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil mode =False) (layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True) (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running _stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True))) (1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running _stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (relu): ReLU(inplace=True)) (2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running _stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running _stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (relu): ReLU(inplace=True))) (layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True)

```
shopee_21178933
```

```
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
      )
     (3): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
     )
    )
    (layer3): Sequential(
     (0): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(2, 2), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
ng_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
```

```
shopee_21178933
```

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True)) (1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni ng_stats=True) (relu): ReLU(inplace=True)) (2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True) (relu): ReLU(inplace=True)) (3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni ng stats=True) (relu): ReLU(inplace=True)) (4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True) (relu): ReLU(inplace=True)) (5): Bottleneck((conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin

```
g_stats=True)
                (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
            (layer4): Sequential(
              (0): Bottleneck(
                (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
        g_stats=True)
                (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin
        g_stats=True)
                (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
                (downsample): Sequential(
                  (0): Conv2d(1024, 2048, kernel size=(1, 1), stride=(2, 2), bias=False)
                  (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng stats=True)
                )
              )
              (1): Bottleneck(
                (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
        g_stats=True)
                (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
        g stats=True)
                (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
              (2): Bottleneck(
                (conv1): Conv2d(2048, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
        g_stats=True)
                (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
        g_stats=True)
                (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
            )
            (avgpool): AdaptiveAvgPool2d(output size=(1, 1))
            (fc): Linear(in_features=2048, out_features=1000, bias=True)
          )
        )
In [ ]: |
        def vectorize_img(img_path):
            img = Image.open(img path).convert('RGB')
            model_img.eval()
            with torch.no_grad():
```

```
output = model_img(img).cpu().numpy()
            return output
In [ ]: #pip install pretrainedmodels
In [ ]: #import pretrainedmodels
        #print(pretrainedmodels.model names)
        #print(pretrainedmodels.pretrained_settings['resnet50'])
         #resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
In [ ]: %%time
        if COMPUTE_CV:
            dataset['resnet v'] = dataset['image'].progress apply(lambda x: vectorize img()
        else:
            dataset['resnet_v'] = dataset['image'].progress_apply(lambda x: vectorize_img()
        100%
                    34250/34250 [1:57:02<00:00, 4.88it/s]
        CPU times: user 13min 28s, sys: 23.2 s, total: 13min 51s
        Wall time: 1h 57min 2s
In [ ]:
        del model img
In [ ]: vectors = np.stack(dataset.resnet_v)
        vectors = torch.Tensor(vectors).to(device)
        vectors = F.normalize(vectors)
In [ ]:
        preds = []
        CHUNK = 1024
        print('Finding similar titles...')
        CTS = len(dataset)//CHUNK
        if len(dataset)%CHUNK!=0: CTS += 1
        for j in range( CTS ):
            a = j^*CHUNK
            b = (j+1)*CHUNK
            b = min(b,len(dataset))
            print('chunk',a,'to',b)
            # COSINE SIMILARITY DISTANCE
            cts = torch.matmul( vectors, vectors[a:b].T).T
            cts = cts.cpu().numpy()
            for k in range(b-a):
                IDX = np.where(cts[k,]>0.9)[0]
                o = dataset.iloc[IDX].posting id.values
                preds.append(o)
        del vectors, cts, IDX, o
        _ = gc.collect()
```

Finding similar titles... chunk 0 to 1024 chunk 1024 to 2048 chunk 2048 to 3072 chunk 3072 to 4096 chunk 4096 to 5120 chunk 5120 to 6144 chunk 6144 to 7168 chunk 7168 to 8192 chunk 8192 to 9216 chunk 9216 to 10240 chunk 10240 to 11264 chunk 11264 to 12288 chunk 12288 to 13312 chunk 13312 to 14336 chunk 14336 to 15360 chunk 15360 to 16384 chunk 16384 to 17408 chunk 17408 to 18432 chunk 18432 to 19456 chunk 19456 to 20480 chunk 20480 to 21504 chunk 21504 to 22528 chunk 22528 to 23552 chunk 23552 to 24576 chunk 24576 to 25600 chunk 25600 to 26624 chunk 26624 to 27648 chunk 27648 to 28672 chunk 28672 to 29696

chunk 29696 to 30720 chunk 30720 to 31744 chunk 31744 to 32768 chunk 32768 to 33792 chunk 33792 to 34250

In []: dataset['preds_resnet'] = preds dataset.head()

shopee_21178933

shopee_21178933

Out[]:		posting_id	image	image_phash	title	label_g
	0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	23959(
	3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	409321
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893

```
In []: def getMetric(col):
    def f1score(row):
        n = len( np.intersect1d(row.target,row[col]) )
        return 2*n / (len(row.target)+len(row[col]))
        return f1score
In []: if COMPUTE_CV:
        dataset['f1_resnet'] = dataset.apply(getMetric('preds_resnet'), axis=1)
        print('CV score for baseline =', dataset.f1_resnet.mean())
CV score for baseline = 0.6251503234406631
```

In []: training_dataset= extract_path + '/train.csv'

E-Bert for e-commerce

```
In [ ]: class BERTEmbedder(nn.Module):
    def __init__(self, device='cpu'):
        super(BERTEmbedder, self).__init__()
        self.bert_path = "/content/drive/MyDrive/path/shopee-product-matching/senter
        self.model = BertModel.from_pretrained(self.bert_path)
        # to freeze weights
        for param in self.model.parameters():
            param.requires_grad = False
        self.model.to(device)
    def transform(self, txt):
        tokenizer = BertTokenizer.from_pretrained(self.bert_path)
```

```
encoded_input = tokenizer.encode_plus( txt,
                                            truncation=True,
                                            max_length=128,
                                            add_special_tokens=True,
                                            padding=True,
                                            return_tensors='pt').values()
    return encoded_input
def mean_pooling(self, model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum mask = torch.clamp(input mask expanded.sum(1), min=1e-9)
    return sum embeddings / sum mask
def forward(self, txt):
    inputs_ids, token_type_ids, attention_mask = self.transform(txt)
    inputs_ids, token_type_ids, attention_mask = inputs_ids.to(device), \
                                            token_type_ids.to(device), attentic
   with torch.no_grad():
        encoded layers = self.model(inputs ids,
                                    attention mask=attention mask,
                                    token_type_ids=token_type_ids)
    features = self.mean_pooling(encoded_layers, attention_mask)
    return features
```

In []: model_txt = BERTEmbedder(device)

In []: model_txt

```
Out[ ]: BERTEmbedder(
           (model): BertModel(
             (embeddings): BertEmbeddings(
               (word_embeddings): Embedding(30522, 768, padding_idx=0)
               (position embeddings): Embedding(512, 768)
               (token type embeddings): Embedding(2, 768)
               (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
               (dropout): Dropout(p=0.1, inplace=False)
             )
             (encoder): BertEncoder(
               (layer): ModuleList(
                 (0-11): 12 x BertLayer(
                   (attention): BertAttention(
                     (self): BertSelfAttention(
                       (query): Linear(in features=768, out_features=768, bias=True)
                       (key): Linear(in features=768, out features=768, bias=True)
                       (value): Linear(in_features=768, out_features=768, bias=True)
                       (dropout): Dropout(p=0.1, inplace=False)
                     )
                     (output): BertSelfOutput(
                       (dense): Linear(in_features=768, out_features=768, bias=True)
                       (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
                       (dropout): Dropout(p=0.1, inplace=False)
                     )
                   )
                   (intermediate): BertIntermediate(
                     (dense): Linear(in_features=768, out_features=3072, bias=True)
                     (intermediate_act_fn): GELUActivation()
                   )
                   (output): BertOutput(
                     (dense): Linear(in features=3072, out features=768, bias=True)
                     (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                     (dropout): Dropout(p=0.1, inplace=False)
                   )
                )
              )
             )
             (pooler): BertPooler(
               (dense): Linear(in features=768, out features=768, bias=True)
               (activation): Tanh()
             )
          )
         )
In [ ]:
         def vectorize_txt(txt):
             model txt.eval()
             with torch.no_grad():
                 output = model_txt(txt).cpu().numpy()
             return output
In [ ]:
         %%time
         dataset['sbert v'] = dataset['title'].progress apply(lambda x: vectorize txt(x))
                      34250/34250 [38:25<00:00, 14.86it/s]
         100%
         CPU times: user 32min 33s, sys: 47.1 s, total: 33min 20s
        Wall time: 38min 25s
In []: #bert_path = "/content/drive/MyDrive/path/shopee-product-matching/sentence-transfor
         #tokenizer = BertTokenizer.from_pretrained(bert_path)
         #token Lens = []
         #for txt in training_dataset.proc_title:
                   #tokens = tokenizer.encode(txt, max_length=512)
```

```
#token_lens.append(len(tokens))
        #sns.distplot(token_lens)
        del model_txt
In [ ]:
In []: vectors = np.stack(dataset.sbert_v).squeeze(1)
        vectors = torch.Tensor(vectors).to(device)
        vectors = F.normalize(vectors)
        preds = []
In [ ]:
        CHUNK = 1024
        print('Finding similar titles...')
        CTS = len(dataset)//CHUNK
        if len(dataset)%CHUNK!=0: CTS += 1
        for j in range( CTS ):
            a = j*CHUNK
            b = (j+1)*CHUNK
            b = min(b,len(dataset))
            print('chunk',a,'to',b)
            # COSINE SIMILARITY DISTANCE
            cts = torch.matmul( vectors, vectors[a:b].T).T
            cts = cts.cpu().numpy()
            for k in range(b-a):
                IDX = np.where(cts[k,]>0.95)[0]
                o = dataset.iloc[IDX].posting_id.values
                preds.append(o)
        del vectors, cts, IDX, o
        _ = gc.collect()
```

Finding similar titles... chunk 0 to 1024 chunk 1024 to 2048 chunk 2048 to 3072 chunk 3072 to 4096 chunk 4096 to 5120 chunk 5120 to 6144 chunk 6144 to 7168 chunk 7168 to 8192 chunk 8192 to 9216 chunk 9216 to 10240 chunk 10240 to 11264 chunk 11264 to 12288 chunk 12288 to 13312 chunk 13312 to 14336 chunk 14336 to 15360 chunk 15360 to 16384 chunk 16384 to 17408 chunk 17408 to 18432 chunk 18432 to 19456 chunk 19456 to 20480 chunk 20480 to 21504 chunk 21504 to 22528 chunk 22528 to 23552 chunk 23552 to 24576 chunk 24576 to 25600 chunk 25600 to 26624 chunk 26624 to 27648 chunk 27648 to 28672 chunk 28672 to 29696

chunk 29696 to 30720 chunk 30720 to 31744 chunk 31744 to 32768 chunk 32768 to 33792 chunk 33792 to 34250

In []: dataset['preds_sbert'] = preds dataset.head()

shopee_21178933

11/23, 1:52 AM	:52 AM shopee_21178933				
Out[]:	posting_id	image	image_phash	title	label_g
	0 train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1 train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2 train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	23959(
	3 train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	409321
	4 train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893
4					►
In []:	del preds				
In []:	Cross Va if COMPUTE_CV: dataset['f1_s	<pre>ig the accuracy of idation(CV) Score sbert'] = dataset.apply(getMetric</pre>	('preds_sbert'),		
		<pre>pre for baseline =', dataset.f1_s</pre>	bert.mean())		
		nation - ResNet 50) + Bert		
In []:	<pre>def concat(): def cat(row) comm = np return co return cat</pre>	o.concatenate([row.resnet_v,row.s	bert_v.squeeze()])	
In []:	<pre>dataset['concat_v</pre>	<pre>/'] = dataset.progress_apply(conc.</pre>	at(), axis=1)		
	100%	34250/34250 [00:01<00:00, 29039.0	52it/s]		

In []: vectors = np.stack(dataset.concat_v)

```
KNN = 50
In [ ]:
        model = NearestNeighbors(n_neighbors=KNN)
        model.fit(vectors)
        NearestNeighbors()
Out[ ]:
In [ ]:
        preds = []
        CHUNK = 1024*4
        print('Finding similar images...')
        CTS = len(vectors)//CHUNK
        if len(vectors)%CHUNK!=0: CTS += 1
        for j in range( CTS ):
             a = j^*CHUNK
             b = (j+1)*CHUNK
             b = min(b,len(vectors))
             print('chunk',a,'to',b)
             distances, indices = model.kneighbors(vectors[a:b,])
             for k in range(b-a):
                 IDX = np.where(distances[k,]<35.0)[0]</pre>
                 IDS = indices[k,IDX]
                 o = dataset.iloc[IDS].posting_id.values
                 preds.append(o)
        del model, distances, indices, vectors, IDX, o, IDS
        _ = gc.collect()
        Finding similar images...
        chunk 0 to 4096
        chunk 4096 to 8192
        chunk 8192 to 12288
        chunk 12288 to 16384
        chunk 16384 to 20480
        chunk 20480 to 24576
        chunk 24576 to 28672
        chunk 28672 to 32768
        chunk 32768 to 34250
In [ ]: dataset['preds_concat'] = preds
        dataset.head()
```

1/23, 1:52 AM			shopee_2117893	3		
Out[]:		posting_id	image	image_phash	title	label_g
	0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	239590
	3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	40932
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893
•						•
In []:	de	el preds				
In []:	n V	nodels (/alidatio	<pre>ig the accuracy of ResNet50 + e- BE n(CV) Score</pre>	RT) usin	g Cros	
	CV	score for base	line = 0.6486006610184477			
	ir	ncreased t	bserve that the comb he CV score by 10 % f ent from Standalone F	rom BERT		6
	P	hash bl	ock			
In []:	da		<pre>pupby('image_phash').posting_id.a nash'] = dataset.image_phash.map('</pre>		dict()	

 $local host: 8888 / nbconvert / html/shopee_21178933.ipynb? download= false$

dataset.head()

Image: Note of Secret Secret 1 train_3386243561 00039780dfc94d01db8676fe789ecd05.jpg af3f9460c28386f0f Double Tape 3M VHB 12 mm x 4,5 m 29379 2 train_2288590299 000a190fdd715a2a36faed16e2c65df7.jpg b94cb00ed3e50f78 Maling TTS Canned Pork Luncheon Meat 397 gr 23959 3 train_2406599165 00117e4fc239b1b641ff08340b429633.jpg 8514fc58eafea283 Daster Batik Lengan pendek - Camp 40938 Notif Acak / Camp Nescafe Nescafe Nescafe Nescafe	3, 1:52 AM			shopee_2117893	3		
<pre> • train_129225211 0000a68812bc7e98c42888ddb1c07da0jpg 94974f937d4c2433 Victoria 249 Secret 1 train_3386243561 00039780dfc94d01db8676fe789ecd05jpg af39460c2838dff mm x4.5 m 3 MTHB 12 mm x4.5 m 4 train_2288590299 000a190fdd715a2a36feed16e2c65df7jpg b94cb00ed3e5078 B</pre>	Out[]:		posting_id	image	image_phash	title	label_
<pre>1 train_3386243561 00039780dfc94d01db8676fe789ecd05.jpg af3f9460c28380ff mm x4.5 m 2937 ORIGINAL/ DO. 2 train_2288590299 000a190fdd715a2a36faed16e2c65df7.jpg b94cb00ed3e50778 Port 2395 Luncheon Meat 397 gr 3 train_2406599165 00117e4fc239b1b641ff08340b429633.jpg 8514fc58eafea283 Motif Acak / Camp. 4 train_3369186413 00136d1cf4eeded0203f32f05f660588.jpg a6f319f924ad708c Vx3x89clair 3648 Late 220ml In []: del tmp TF-IDF block for comparision against effectiveness with BERT In []: detaset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='emglish', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: <cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] CHUKK = 1024 Print('Finding similar titles') Cif = len(dataset)/CHUKK if len(dataset)%CHUKK </cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>		0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Victoria	2491
<pre>2 train_2288590299 000a190fdd715a2a36faed16e2c65df7jpg b94cb00ed3e50f78 Pork 2395 Luncheon Meat 397 gr 3 train_2406599165 00117e4fc239b1b641ff08340b429633jpg 8514fc58eafea838 pendek- 4093 pendek- 4093 Motif Acak / Camp 4 train_3369186413 00136d1cf4edede0203f32f05f660588jpg a6f319f924ad708c Vxc3x89clair 3648 In []; del tmp TF-IDF block for comparision against effectiveness with BERT In []; dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []; model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_enbeddings = model.fit_transform(dataset_gf.title) In []; model Out[]; ccuml.feature_extractiontfidf_vectorizer.TfidfVectorizer at 0x7b266e60f430> In []; del model In []; del model In []; fiel(dataset)%CHUMK if len(dataset)%CHUMK =: CTS += 1 for j in model.CTS); a = j*CHUMK b = (j+1)*CHUMK</pre>		1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	3M VHB 12 mm x 4,5 m ORIGINAL /	29379
<pre>3 train_2406599165 00117e4fc239b1b641ff08340b429633.jpg 8514fc58eafea283 Motif Acak / Motif Acak / Gamp 4 train_3369186413 00136d1cf4edede0203f32f05f660588.jpg a6f319f924ad708c Vx3X89clair 3648 4 train_3369186413 00136d1cf4edede0203f32f05f660588.jpg a6f319f924ad708c Vx3X89clair 3648 5648 TF-1DF block for comparision against effectiveness with BERT In []: del tmp In []: dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: ccuml.feature_extractiontfidf_vectorizer.TfidfVectorizer at 0x7b266e60f430> In []: del model In []: preds = [] CHUMK = 1024 print('finding similar titles') CTS = len(dataset)//CHUMK if len(dataset)//CHUMK if len(dataset)//CHUMK if len(dataset)//CHUMK b = (j+1)*CHUMK</pre>		2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Canned Pork Luncheon	23959
<pre>4 train_3369186413 00136d1cf4edede0203f32f05f660588jpg a6f319f924ad708c \xc3\x89clair 3648' Latte 220ml In []: del tmp TF-IDF block for comparision against effectiveness with BERT In []: dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: <cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] (HUNK = 1024 print('finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)//CHUNK</cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>		3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Lengan pendek - Motif Acak /	40932
<pre>In []: del tmp TF-IDF block for comparision against effectiveness with BERT In []: dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model In []: model Out[]: ccuml.feature_extractiontfidf_vectorizer.TfidfVectorizer at 0x7b266e60f430> In []: del model In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)//CHUNK if len(dataset)//CHUNK</pre>		4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	\xc3\x89clair	36489
<pre>TF-IDF block for comparision against effectiveness with BERT In []: dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: <cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] (HUNK = 1024 print('finding similar titles') (TS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>	•						J
<pre>effectiveness with BERT In []: dataset_gf = cudf.DataFrame(dataset[['posting_id', 'title']]) In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: ccuml.feature_extractiontfidf_vectorizer.TfidfVectorizer at 0x7b266e60f430> In []: del model In []: preds = [] CHUNK = 1024 print('finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)//CHUNK if len(dataset)//CHUNK b = (j+1)*CHUNK</pre>	In []:	de	1 tmp				
<pre>In []: model = TfidfVectorizer(stop_words='english', binary=True, max_features=25_000) text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: <ccuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</ccuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>		e	ffective	ness with BERT		nst	
<pre>text_embeddings = model.fit_transform(dataset_gf.title) In []: model Out[]: <cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>	In []:	da	itaset_gt = cudi	F.DataFrame(dataset[['posting_id'	, 'title']])		
<pre>Out[]: <cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer 0x7b266e60f430="" at=""> In []: del model In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</cuml.feature_extractiontfidf_vectorizer.tfidfvectorizer></pre>	In []:					atures=25_0	00)
<pre>In []: del model In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</pre>	In []:	mc	odel				
<pre>In []: preds = [] CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</pre>	Out[]:	< 0	uml.feature_ext	ractiontfidf_vectorizer.TfidfVe	ectorizer at 0x7	b266e60f430;	>
CHUNK = 1024 print('Finding similar titles') CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS): a = j*CHUNK b = (j+1)*CHUNK	In []:	de	el model				
<pre>CTS = len(dataset)//CHUNK if len(dataset)%CHUNK!=0: CTS += 1 for j in range(CTS):</pre>	In []:						
b = (j+1)*CHUNK		CT if	S = len(dataset len(dataset)%	t)//CHUNK CHUNK!=0: CTS += 1			

localhost:8888/nbconvert/html/shopee_21178933.ipynb?download=false

```
print('chunk',a,'to',b)
             # COSINE SIMILARITY DISTANCE
            cts = text_embeddings.dot(text_embeddings[a:b].T).T.toarray()
            for k in range(b-a):
                 IDX = cupy.where(cts[k,]>0.7)[0]
                 o = dataset.iloc[cupy.asnumpy(IDX)].posting_id.values
                 preds.append(o)
        del text_embeddings, IDX, o, cts
        _ = gc.collect()
        Finding similar titles...
        chunk 0 to 1024
        chunk 1024 to 2048
        chunk 2048 to 3072
        chunk 3072 to 4096
        chunk 4096 to 5120
        chunk 5120 to 6144
        chunk 6144 to 7168
        chunk 7168 to 8192
        chunk 8192 to 9216
        chunk 9216 to 10240
        chunk 10240 to 11264
        chunk 11264 to 12288
        chunk 12288 to 13312
        chunk 13312 to 14336
        chunk 14336 to 15360
        chunk 15360 to 16384
        chunk 16384 to 17408
        chunk 17408 to 18432
        chunk 18432 to 19456
        chunk 19456 to 20480
        chunk 20480 to 21504
        chunk 21504 to 22528
        chunk 22528 to 23552
        chunk 23552 to 24576
        chunk 24576 to 25600
        chunk 25600 to 26624
        chunk 26624 to 27648
        chunk 27648 to 28672
        chunk 28672 to 29696
        chunk 29696 to 30720
        chunk 30720 to 31744
        chunk 31744 to 32768
        chunk 32768 to 33792
        chunk 33792 to 34250
In [ ]: dataset['preds tfidf'] = preds
In [ ]:
        del preds
In [ ]: if COMPUTE CV:
            dataset['f1_tfidf'] = dataset.apply(getMetric('preds_tfidf'), axis=1)
             print('CV score for baseline =', dataset.f1_tfidf.mean())
        CV score for baseline = 0.6139718474362906
```

The individual performance of the TF-IDF on the given dataset is only (CV Score =

5, 1.52 AIVI	0.6420)	shopee_21176933	•						
	0.6139). which is considerably improved about 7% greater than e-BERT (CV Score = 0.5458)								
		ion block - Compar ing test with TF - ID n							
In []:		sub(row): tenate([row.preds_concat,row.preds_p oin(np.unique(x))	hash, row.preds_tfidf])						
		train(row): tenate([row.preds_concat,row.preds_p np.unique(x))	hash, row.preds_tfidf])						
In []:	else:	<pre>ches'] = dataset.apply(combine_for_t ches'] = dataset.apply(combine_for_s</pre>							
In []:	dataset.to_pickl	e('train_data.pkl')							
In []:	<pre>dataset[['postin</pre>	<pre>g_id', 'matches']].to_csv('submissio</pre>	n.csv',index=False)						
In []:	<pre>subm = pd.read_c subm.head()</pre>	<pre>sv('submission.csv')</pre>							
Out[]:	posting_id	matches							
	0 train_129225211	['train_129225211', 'train_2278313361']							
	1 train_3386243561	['train_1816968361', 'train_2120597446', 'trai							
	2 train_2288590299	['train_2288590299']							
	3 train_2406599165	['train_1508100548', 'train_1744956981', 'trai							
	4 train_3369186413	['train_3369186413', 'train_921438619']							
In []:		<pre>final'] = dataset.apply(getMetric('m ore for baseline =', dataset.f1_fina</pre>							
	CV score for base	eline = 0.7178046822803029							
	••1		 Testernate Research sectors and the first first sectors 						

Thereby the combined usage of **ResNet50 + eBERT + TF-IDF** has increased the performance of the product match classification to over 10 % precisely 0.717804

Resnet50 V2

In []:

import locale
locale.setlocale(locale.LC_ALL, 'en_US.utf-8')

 $local host: 8888 / nbconvert / html/shopee_21178933.ipynb? download= false$

```
'en_US.utf-8'
Out[ ]:
        #pip install scikit-plot
In [ ]:
In [ ]:
        import random
        import os
        import glob
        import time
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import tensorflow as tf
        import tensorflow hub as hub
        from tensorflow.keras import layers, Sequential
        from tensorflow.keras.utils import plot_model
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification report, precision recall fscore support
        from sklearn.metrics import accuracy_score, f1_score, matthews_corrcoef
        from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
        #from scikitplot.metrics import plot_roc
In [ ]: class CFG:
            EPOCHS = 10
            BATCH SIZE = 32
            SEED = 42
            TF SEED = 768
            HEIGHT = 224
            WIDTH = 224
            CHANNELS = 3
            IMAGE_SIZE = (224, 224, 3)
```

Dataset

```
In [ ]: # Define paths
DATASET_PATH = "/content/drive/MyDrive/path/shopee-product-matching/"
TRAIN_PATH = '/content/drive/MyDrive/path/shopee-product-matching/train_images'
VAL_PATH = '/content/drive/MyDrive/path/shopee-product-matching/train_images'
TEST_PATH = '/content/drive/MyDrive/path/shopee-product-matching/test_images'
```

DATASET SUMMARY

There are 3 directories and 6 images in /content/drive/MyDrive/path/shopee-product -matching/ There are 0 directories and 3 images in /content/drive/MyDrive/path/shopee-product -matching/test_images There are 0 directories and 32492 images in /content/drive/MyDrive/path/shopee-pro duct-matching/train_images There are 0 directories and 5 images in /content/drive/MyDrive/path/shopee-product -matching/sentence-transformer

```
In [ ]: %%time
        train images = glob.glob(f"{TRAIN PATH}**/*.jpg")
        val_images = glob.glob(f"{VAL_PATH}**/*.jpg")
        test_images = glob.glob(f"{TEST_PATH}**/*.jpg")
        CPU times: user 128 ms, sys: 17.8 ms, total: 146 ms
        Wall time: 1.23 s
In [ ]: train_size = len(train_images)
        val size = len(val images)
        test size = len(test images)
        total = train_size + val_size + test_size
        # View the counts
        print(f'train samples count:\t\t{train size}')
        print(f'dev/validation samples count:\t{val_size}')
        print(f'test samples count:\t\t{test_size}')
        print('=========')
        print(f'TOTAL:\t\t\t\t{total}')
        train samples count:
                                      32492
        dev/validation samples count:
                                      32492
        test samples count:
                                      3
        _____
        TOTAL:
                                      64987
In [ ]: def generate_labels(image_paths):
            labels = []
            for _ in image_paths:
               if ('PNEUMONIA' in _.replace('chest-xray-pneumonia', '')):
                   labels.append('PNEUMONIA')
                else:
                   labels.append('NORMAL')
            return labels
        def build_df(image_paths, labels):
            df = pd.DataFrame({
                'image path': image paths,
                'label': generate labels(labels)
            })
            df['label encoded'] = df.apply(lambda row: 0 if row.label == 'NORMAL' else 1,
            return df.sample(frac=1, random_state=CFG.SEED).reset_index()
In [ ]: |
        # Build the DataFrames
        train_df = build_df(train_images, generate_labels(train_images))
```

```
val_df = build_df(val_images, generate_labels(val_images))
```

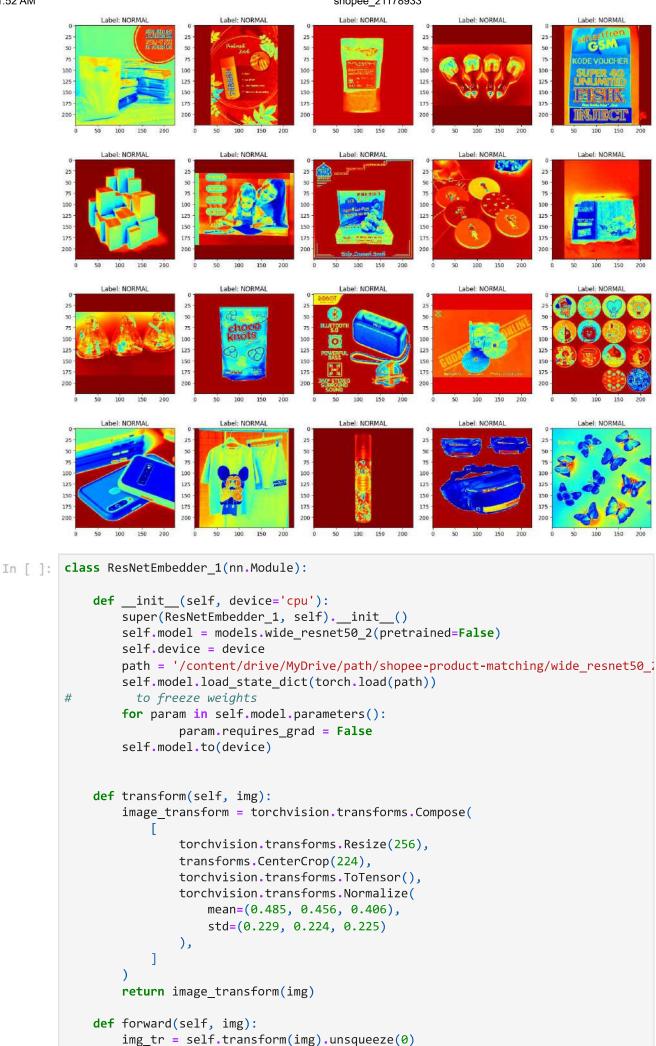
```
test_df = build_df(test_images, generate_labels(test_images))
```

In []:	<pre># Have a Look at val_df</pre>
	val df

Out[]:		index	image_path	label	label_encoded
	0	9999	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	1	2231	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	2	24803	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	3	30136	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	4	4410	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	32487	29802	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	32488	5390	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	32489	860	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	32490	15795	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0
	32491	23654	/content/drive/MyDrive/path/shopee-product-mat	NORMAL	0

32492 rows × 4 columns


```
In []: def _load(image_path):
            # Read and decode an image file to a uint8 tensor
            image = tf.io.read_file(image_path)
            image = tf.io.decode_jpeg(image, channels=3)
            # Resize image
            image = tf.image.resize(image, [CFG.HEIGHT, CFG.WIDTH],
                                     method=tf.image.ResizeMethod.LANCZOS3)
            # Convert image dtype to float32 and NORMALIZE!!!
            image = tf.cast(image, tf.float32)/255.
            # Return image
            return image
        def view_sample(image, label, color_map='gray', fig_size=(8, 10)):
            plt.figure(figsize=fig size)
            plt.imshow(image, cmap=color_map)
            plt.title(f'Label: {label}', fontsize=16)
             return
```


Displaying Sample Images

```
In []: # Select random sample from train_df
idx = random.sample(train_df.index.to_list(), 1)[0]
# Load the random sample and LabeL
sample_image, sample_label = _load(train_df.image_path[idx]), train_df.label[idx]
# View the random sample
view_sample(sample_image, sample_label)
```

WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RG B data ([0..1] for floats or [0..255] for integers).

Label: NORMAL

<pre>img_tr = img_tr.to(self.device)</pre>
<pre>features = self.model(img_tr).squeeze()</pre>
return features

In []: model_img_r50v2 = ResNetEmbedder_1(device)

/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarn
ing: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the
future, please use 'weights' instead.
 warnings.warn(
 /usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarn
ing: Arguments other than a weight enum or `None` for 'weights' are deprecated sin
ce 0.13 and may be removed in the future. The current behavior is equivalent to pa
ssing `weights=None`.
 warnings.warn(msg)

In []: model_img_r50v2

Out[]: ResNetEmbedder_1((model): ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias =False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running sta ts=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil mode =False) (layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True))) (1): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (relu): ReLU(inplace=True)) (2): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (relu): ReLU(inplace=True))) (layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True)

```
shopee_21178933
```

```
(conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv3): Conv2d(256, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(512, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g_stats=True)
        (relu): ReLU(inplace=True)
     )
    )
    (layer3): Sequential(
     (0): Bottleneck(
        (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin
g_stats=True)
        (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(2, 2), padding=(1,
1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin
g stats=True)
        (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
ng_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
```

```
shopee_21178933
```

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True)) (1): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin g stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni ng_stats=True) (relu): ReLU(inplace=True)) (2): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin g stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True) (relu): ReLU(inplace=True)) (3): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin g stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni ng stats=True) (relu): ReLU(inplace=True)) (4): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track runnin g_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni ng_stats=True) (relu): ReLU(inplace=True)) (5): Bottleneck((conv1): Conv2d(1024, 512, kernel size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin g_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_runnin

```
g_stats=True)
                (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
            (layer4): Sequential(
              (0): Bottleneck(
                (conv1): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni
        ng stats=True)
                (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
                (downsample): Sequential(
                  (0): Conv2d(1024, 2048, kernel size=(1, 1), stride=(2, 2), bias=False)
                  (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                )
              )
              (1): Bottleneck(
                (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng stats=True)
                (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
              (2): Bottleneck(
                (conv1): Conv2d(2048, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
                (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track runni
        ng_stats=True)
                (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1,
        1), bias=False)
                (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (conv3): Conv2d(1024, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
                (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_runni
        ng_stats=True)
                (relu): ReLU(inplace=True)
              )
            )
            (avgpool): AdaptiveAvgPool2d(output size=(1, 1))
            (fc): Linear(in_features=2048, out_features=1000, bias=True)
          )
        )
        def vectorize_img_r50v2(img_path):
In [ ]: |
            img = Image.open(img_path).convert('RGB')
            model_img_r50v2.eval()
            with torch.no_grad():
```

output = model_img_r50v2(img).cpu().numpy()

return output

```
In [ ]: %%time
        if COMPUTE_CV:
            dataset['resnet_v2'] = dataset['image'].progress_apply(lambda x: vectorize_img]
        else:
            dataset['resnet_v2'] = dataset['image'].progress_apply(lambda x: vectorize_img
        100% 34250/34250 [14:59<00:00, 38.06it/s]
        CPU times: user 12min 18s, sys: 10.4 s, total: 12min 28s
        Wall time: 14min 59s
        del model img r50v2
In [ ]:
In [ ]: vectors1 = np.stack(dataset.resnet_v2)
        vectors1 = torch.Tensor(vectors1).to(device)
        vectors1 = F.normalize(vectors1)
        preds_rv2 = []
In [ ]:
        CHUNK = 1024
        print('Finding similar titles...')
        CTS = len(dataset)//CHUNK
        if len(dataset)%CHUNK!=0: CTS += 1
        for j in range( CTS ):
            a = j^*CHUNK
            b = (j+1)*CHUNK
            b = min(b,len(dataset))
            print('chunk',a,'to',b)
            # COSINE SIMILARITY DISTANCE
            cts = torch.matmul( vectors1, vectors1[a:b].T).T
            cts = cts.cpu().numpy()
            for k in range(b-a):
                IDX = np.where(cts[k,]>0.9)[0]
                o = dataset.iloc[IDX].posting_id.values
                preds_rv2.append(o)
        del vectors1, cts, IDX, o
        _ = gc.collect()
```

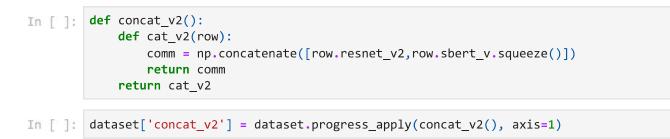
Finding similar titles... chunk 0 to 1024 chunk 1024 to 2048 chunk 2048 to 3072 chunk 3072 to 4096 chunk 4096 to 5120 chunk 5120 to 6144 chunk 6144 to 7168 chunk 7168 to 8192 chunk 8192 to 9216 chunk 9216 to 10240 chunk 10240 to 11264 chunk 11264 to 12288 chunk 12288 to 13312 chunk 13312 to 14336 chunk 14336 to 15360

chunk 15360 to 16384 chunk 16384 to 17408 chunk 17408 to 18432 chunk 18432 to 19456 chunk 19456 to 20480 chunk 20480 to 21504 chunk 21504 to 22528 chunk 22528 to 23552 chunk 23552 to 24576 chunk 24576 to 25600 chunk 25600 to 26624 chunk 26624 to 27648 chunk 27648 to 28672 chunk 28672 to 29696 chunk 29696 to 30720 chunk 30720 to 31744 chunk 31744 to 32768 chunk 32768 to 33792 chunk 33792 to 34250

In []: dataset['preds_resnet_rv2'] = preds_rv2 dataset.head()

•

shopee_21178933


Out[]:		posting_id	image	image_phash	title	label_g
	0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	23959(
	3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	409321
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893

5 rows × 22 columns

```
In [ ]: del preds_rv2
In [ ]: def getMetric(col):
    def f1score(row):
        n = len( np.intersect1d(row.target,row[col]) )
        return 2*n / (len(row.target)+len(row[col]))
    return f1score
In [ ]: if COMPUTE_CV:
    dataset['f1_concatRsv2'] = dataset.apply(getMetric('preds_resnet_rv2'), axis=1
    print('CV score for baseline =', dataset.f1_concatRsv2.mean())
    CV score for baseline = 0.608940409337176
```

The accuracy obatined using the f1score for Resnet 50v2 is 0.6089

Concatenating E-BERT with ResNet 50 v2


```
100%
                      34250/34250 [00:01<00:00, 26770.39it/s]
         vectors_v2 = np.stack(dataset.concat_v2)
In [ ]:
         KNN = 50
In [ ]:
         modelv2 = NearestNeighbors(n_neighbors=KNN)
         modelv2.fit(vectors_v2)
        NearestNeighbors()
Out[ ]:
In [ ]:
        predsv2 = []
         CHUNK = 1024*4
         print('Finding similar images...')
         CTS = len(vectors_v2)//CHUNK
         if len(vectors v2)%CHUNK!=0: CTS += 1
         for j in range( CTS ):
             a = j^*CHUNK
             b = (j+1)*CHUNK
             b = min(b,len(vectors_v2))
             print('chunk',a,'to',b)
             distances, indices = modelv2.kneighbors(vectors_v2[a:b,])
             for k in range(b-a):
                 IDX = np.where(distances[k,]<35.0)[0]</pre>
                 IDS = indices[k,IDX]
                 o = dataset.iloc[IDS].posting_id.values
                 predsv2.append(o)
         del modelv2, distances, indices, vectors_v2, IDX, o, IDS
         _ = gc.collect()
         Finding similar images...
         chunk 0 to 4096
         chunk 4096 to 8192
         chunk 8192 to 12288
        chunk 12288 to 16384
         chunk 16384 to 20480
         chunk 20480 to 24576
         chunk 24576 to 28672
         chunk 28672 to 32768
         chunk 32768 to 34250
        dataset['preds_concat_v2'] = predsv2
In [ ]:
         dataset.head()
```

Out[]:		posting_id	image	image_phash	title	label_g
	0	train_129225211	0000a68812bc7e98c42888dfb1c07da0.jpg	94974f937d4c2433	Paper Bag Victoria Secret	24911
	1	train_3386243561	00039780dfc94d01db8676fe789ecd05.jpg	af3f9460c2838f0f	Double Tape 3M VHB 12 mm x 4,5 m ORIGINAL / DO	293798
	2	train_2288590299	000a190fdd715a2a36faed16e2c65df7.jpg	b94cb00ed3e50f78	Maling TTS Canned Pork Luncheon Meat 397 gr	23959(
	3	train_2406599165	00117e4fc239b1b641ff08340b429633.jpg	8514fc58eafea283	Daster Batik Lengan pendek - Motif Acak / Camp	409321
	4	train_3369186413	00136d1cf4edede0203f32f05f660588.jpg	a6f319f924ad708c	Nescafe \xc3\x89clair Latte 220ml	364893
	5 r	ows × 25 column	5			

```
Taili dal prodov2
```

In []: del predsv2

Evaluating the accuracy of concatenated models (ResNet50 v2 + e- BERT) using Cross Validation(CV) Score

In []: if COMPUTE_CV:

dataset['f1_concatv2'] = dataset.apply(getMetric('preds_concat_v2'), axis=1)
print('CV score for baseline =', dataset.f1_concatv2.mean())

CV score for baseline = 0.6040379772731148

Re-iterating the submission block in an attempt to improve the performance by coombining with Resnet50 v2 + e-BERT + TF-IDF

In []: def combine_for_sub_v2(row):
 x = np.concatenate([row.preds_concat_v2,row.preds_phash, row.preds_tfidf])
 return ' '.join(np.unique(x))

8/11/23, 1:52 AM	shopee_21178933				
	<pre>def combine_for_train_v2(row): x = np.concatenate([row.preds_concat_v2,row.preds_phash, row.preds_tfidf]) return list(np.unique(x))</pre>				
In []:	<pre>if COMPUTE_CV: dataset['matchesv2'] = dataset.apply(combine_for_train_v2, axis=1) else: dataset['matchesv2'] = dataset.apply(combine_for_sub_v2, axis=1)</pre>				
In []:	<pre>dataset.to_pickle('train_data.pkl')</pre>				
In []:	<pre>dataset[['posting_id', 'matches']].to_csv('submission.csv',index=False)</pre>				
In []:	<pre>subm = pd.read_csv('submission.csv') subm.head()</pre>				
Out[]:	posting_id matches				
	0 train_129225211 ['train_129225211', 'train_2278313361']				
	1 train_3386243561 ['train_1816968361', 'train_2120597446', 'trai				
	2 train_2288590299 ['train_2288590299']				
	3 train_2406599165 ['train_1508100548', 'train_1744956981', 'trai				

4 train_3369186413 ['train_3369186413', 'train_921438619']

In []: if COMPUTE_CV: dataset['f1_final_v2'] = dataset.apply(getMetric('matches'), axis=1) print('CV score for baseline =', dataset.f1_final_v2.mean())

CV score for baseline = 0.7178046822803029