ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Jack Dunne
Student ID: x21133760

School of Computing
National College of Ireland

Supervisor: Anh Duong Trinh

*
National College of Ireland National
Collegeof

Ireland

MSc Project Submission Sheet
School of Computing

Student JACK DUNN. ..
Name:

Programme:...... MSc in Data Analytics........................ Year: 2023...........
Module: MSC ReSEArCh PrOJECT.ot
Lecturer: ANN DUONG THINN. L e
Submission

Due Date: TAJ08I2023..... e e

Project Optimising Scheduling for Computed Tomography Imaging in a Healthcare Setting Using
Title: Discrete Event Simulation

Word
Count: ceeeeereennn. 8558, Page Count: 19,

I hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature: %//(

Ctt 72726

Date: L dAI08 2023 .

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project o
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own |
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jack Dunne
Student ID: x21133760

1 Introduction

This configuration manual contains the necessary details in order to run/execute the project
‘Optimising Scheduling for Computed Tomography Imaging in a Healthcare Setting Using Discrete
Event Simulation’.

It includes system requirements such as software and hardware specifications, library versions and it

explains the necessary code.

2 System Configuration

2.1 Hardware

Device specifications

Personal Computer
Device name LAPTOP-BOBA33GH

Processor Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40
GHz

Figure 1. Device specifications

Windows specifications

Edition Windows 10 Home
Version 22H2
Installed on 13/05/2021
OS build 19045.3324
Experience Windows Feature Experience Pack
1000.19041.1000.0
Copy
Change the product key or upgrade your edition of Windows

Figure 2. Device specifications

& system Information
File Edit View Help

System Summary Item Value
SHardwara Rasourcas
Conflicts/Sharing Version 10.0.19045 Build 19045
DMA Other OS Description Not Available
Forced Hardware 05 Manufacturer Microsoft Corporation
170 System Name LAPTOP-BOBA33GH
IRQs System Manufacturer TOSHIBA
Memory System Model SATELLITE P50-C
~Components System Type x64-based PC
SMultimedia System SKU PSPT2E
CD-ROM Processor Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz, 2400 Mhz, 2 Core(s), 4 Logical Processor(s)
Sound Device BIOS Version/Date INSYDE Corp. 1.10, 18/08/2015
Display SMBIOS Version 28
I :::::e“’ Embedded Controller Version 1.00
Modem BIOS Made UEFI
N atmork BaseBoard Manufacturer FFS0
L ports BaseBoard Product 06F3
storage BaseBoard Version Type2 - Board Version
Drives Platform Role Mobile
Disks Secure Boot State Off
scsi PCR7 Configuration Elevation Required to View
ot Windows Directory CAWINDOWS
Printing System Directory CAWINDOWS\system32
Boot Device \Device\HarddiskVolume1

Prahlam Nevirse

Figure 3. Device specifications

2.2 Software

To execute or run the code implemented to complete the project, the following applications used are :

B Anaconda Prompt (anacondas3)

ernel
e client

lab

Figure 4. Software versions

The following Python libraries are required to be installed:

simpy -4.0.1
pandas - 1.3.4
numpy -1.21.4
matplotlib - 3.5.0
seaborn - 0.12

3 Coding of the files

There is only 1 python file required. It is called ‘radiology dept.ipynb’ and is in the form of a Jupyter
notebook file.

4 Execution of the code

1. Clearing the kernel and running the code
2. Must change the paths to the files to whatever location you are creating them/saving them on

your computer.

5 Data sets used
3 .csv files created and used during the programming
- CT_simulation_run.csv

- trial_CT_scan_sim.csv
- CT_single_run.csv

6 Code snippets

The following are some important code pieces to be aware of:

Figure 5. Global class for variables

Figure 5 shows the global class for variables which is used throughout the code.

3

radiology dept model
class Radiology_dept_model:

def __init__(self, env, reception, radiographer, ct):
self.env = env
self.reception = reception
self.radiographer = radiographer
self.ct = ct

setting up the variables to capture the data
self.mean_q_time_registration = @
self.mean_q_time_radiographer = @
self.mean_g_time_CT_scanner = @

setting the patient counter to track
self.patient_counter = @

setting up the results df
self.results_df = pd.DataFrame()
self.results_df["P_ID"] = []
self.results_df["mean_q_time_registration”] = []
self.results_df["mean_q_time_radiographer] = []
self.results_df["mean_q_time_ct_scan"] = []
self.results_df.set_index("P_ID", inplace=True)

def process(self, patient):

Reception process

time_checked_in_at_reception = env.now

with self.reception.request(priority=patient.PRIORITY) as reg:
yield req
time_finished_reception = self.env.now
patient.q_time_reg = (time_finished_reception - time_checked_in_at_reception)
yield self.env.timeout(random.expovariate(1/g.MEAN_RECEPTION_TIME))

Radiographer process
time_checked_in_at_radiographer = self.env.now

with self.radiographer.request(priority=patient.PRIORITY) as req:
yield req
time_finished_radiographer = self.env.now
patient.q_time_radiographer = (time_finished_radiographer - time_checked_in_at_radiographer)
yield self.env.timeout(random.expovariate(1/g.MEAN_RADIOGRAPHER_TIME))

Figure 6. radiology department class

Figure 6 defines the radiology class which the entities will run through.

adding the simpy environment to all the pieces

def setup_simulation(env, run_number):
r ion = simpy.Priori ce(env, ity=g.RECEPTION_CAPACITY)
radiographer = simpy.PriorityResource(env, capacity=g.RADIOGRAPHER_CAPACITY)
ct = simpy.PriorityResource(env, capacity=g.CT_CAPACITY)

radiology_model = Radiology_dept_model(env, reception, radiographer, ct)
emergency_model = emergency_CT_model(env, radiographer, ct)

Start generating scheduled patients
env.process(generate_scheduled_patients(env, radiology_model))
Start generating emergency patients

env.process(generate_emergency_patients(env, emergency_model))

env.run(until=g. SIMULATION_TIME)

radiology_model.calculate_mean_q_times()
radiology_model.write_run_results(run_number)

def generate_scheduled patients(env, radiology_model):

count = @

while True:
count 4= 1
patient = CT_patient(f"Scheduled-{count}")
env.process(radiology_model.process(patient))
scheduled_patient = env.now
yield env.timeout(g.INTER_ARRIVAL_TIME)

def generate_emergency_patients(env, emergency_model):
count = @
while True:
count 4= 1
patient = emergency_patient(f"Emergency-{count}")
emerg_patient = env.now

env.process(emergency_model.process(patient))
yield env.timeout(random.expovariate(1/g.EMERGENCY_INTER_ARRIVAL_TIME))

Figure 7. simulation setup function

Figure 7 shows the simulation setup function which starts the simpuy processes running.

running the program

if __name__ == "__main__":

creating a file to store the results
with open(“"trial _CT_scan_sim.csv", "w") as f:
writer = csv.writer(f, delimiter=",")
column_headers = [“Run”,
"mean_q_time_registration”,
"mean_q_time_radiographer",
“mean_q_time_ct_scan"]
writer.writerow(column_headers)

with open("CT_simulation_run.csv", "w") as f:
writer = csv.writer(f, delimiter=",")
column_headers = ["Run",
"multiple_mean_q_time_registration",
"multiple_mean_g_time_radiographer”,
“multiple_mean_q_time_CT"]
writer.writerow(column_headers)

for run in range(g.NUMBER_OF_SIMS):

with open("CT_single_run.csv", "w") as f:
writer = csv.writer(f, delimiter=",")
column_headers = ["P_ID",

"q_time_registration”,

"q_time_radiographer",

"q_time_CT"]
writer.writerow(column_headers)

run_number = run+l

env = simpy.Environment()
setup_simulation(env, run_number)

multiple_run_results = Multiple_Run_Results_Calculator()
multiple_run_results.record_sim_results(run)

print("Simulation done!")

Simulation done!

Figure 8. running the function

Figure 8 demonstrates the part where the code runs altogether, bringing in the functions and the classes.

