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Application of Supervised Learning Classifiers on Gut
Microbial data to Predict Parkinson Disease

Madhuri Dhatrak
21208808

Abstract

The motor and non-motor symptoms of Parkinson’s disease (PD) affect mil-
lions of individuals worldwide, making it a significant public health concern on a
global scale. If the illness is discovered and treated when still in the prodromal
stage, the severity of the ailment may be lessened. This investigation makes use of
machine learning predictive technologies to investigate the compositions of the gut
microbiomes and its alterations in Parkinson Diseases Patients. Early intervention
during the prodromal stage is made possible by detection of these alterations in
the gut compositions which may allow for customized treatment approaches and a
fresh perspective on the treatment of this condition. This study compares the mi-
crobiome diversity between cohorts with healthy and PD-affected individuals and
assesses several supervised learning models for predictive classification in order to
investigate the relationship between gut microbiota and Parkinson’s disease (PD).
For people who are affected by this disorder, the goal is to provide hope and better
outcomes. These supervised predictive analyses have the potential to revolutionize
PD treatment and improve patients’ quality of life.

1 Introduction

Millions of individuals worldwide suffer from Parkinson’s disease (PD), which has both
severe motor and non-motor symptoms and is a critical and urgent global health issue.
It belongs to the most widespread group of neurodegenerative diseases. Parkinson’s
disease (PD), which is the second most common form of neurodegenerative disease, has
a profound effect on patients and their families, carers, and the healthcare system as
a whole. It is important to emphasize that this illness prevalence has increased over
the past 25 years and has resulted in 5.8 million DALYs (disability adjusted life years),
an increase of 81% since 2000 1 . Enhancing PD management and control is crucial,
especially given the population’s propensity to age.

1.1 Background & Motivation

PD, a complicated condition impacted by a number of environmental, behavioural, and
genetic factors, currently has no known cure; the only treatment available is symptomatic
relief. Patients with PD may exhibit motor symptoms like as tremors and stiffness in ad-
dition to non-motor symptoms such as depression, cognitive decline, and sleep problems.

1https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
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It is possible that in PD patients have both motor and non-motor symptoms. Research-
ers have recently paid a lot of attention to the prodromal phase, which occurs prior to
the onset of PD. In PD patients non-motor symptoms typically appear years before the
conventional motor symptoms during the prodromal period. Constipation, hyposmia, po-
tential REM-sleep behaviour disorder (RBD), sadness, anxiety, and cognitive impairment
are among these symptoms. Early intervention during this stage may present opportunit-
ies for neuroprotective treatments. However, prodromal PD symptoms are not exclusive
to PD and can be brought on by other neurological disorders. As a result, it is unclear
that prodromal PD may be determined using only one prodromal marker or bio marker.
Alternatively, the co-occurrence of several indicators (bio markers) in a single person may
be a more accurate sign of prodromal PD. A study by Longitudinal Aging research Am-
sterdam Roos et al. (2022) in late middle-aged participants, evaluated the prevalence of
constipation, hyposmia, potential RBD, depression, anxiety, and cognitive impairment.
Another such study suggests that prodromal stages of the disease, specifically when RBD
is emerging, are characterized by gut dysbiosis comparable to that seen in PD. This study
gives valuable insight on the complex relationships between gut health and neurological
diseases, which has significance for understanding the possible causes of PD and its dia-
gnostic procedures Huang et al. (2023). Recent advances in machine learning and AI
have increased the ability to identify disorders in groups at risk at an early stage. Early
identification and a precise prediction of the disease were made possible by the predictive
potential of these approaches and to better understand the relationship between genetic
predisposition, environmental factors, and the initial onset of the PD symptoms. So, a
proactive treatment approach is now possible in PD instead of a reactive approach be-
cause of these complex predictive models that can generate accurate predictions. This
paves the way for PD patients to obtain individualized care and have better health out-
comes. This study makes use of the one-of-a-kind prodromal phase potential, which is a
bidirectional relation between gut microbiome and PD , to offer improved outcomes and
hope to those who are affected with PD Hey et al. (2023).

1.2 Research Question

Based on the above research analysis this paper attempts to address the following research
question. RQ: ”To what extent does the application of supervised machine learning
algorithms using gut microbiota data, classify and contribute to the accuracy of predicting
Parkinson’s disease?” Utilizing machine learning classification models on examined gut
microbiome compositions in biological sequence data to determine PD.

1.3 Research Objective and Contribution

To address above question, the following specific sets of research objectives were derived:
1. To investigate the potential relationship between gut microbiota and Parkinson’s

disease and compare the microbiome diversities of healthy and diseased cohorts.
2. To explore the feasibility of utilizing machine learning classification models in

predicting Parkinson’s disease based on gut microbiota compositions.
3. To evaluate the predictive accuracy and reliability of supervised learning classifier

models in diagnosing Parkinson’s disease using gut microbiota as input features.
4. To compare and analyse the performance of different supervised learning classifiers

in utilizing gut microbiota data for Parkinson’s disease prediction.
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The purpose of this project is to apply and analyse supervised learning predictive model
that uses gut microbiome data and its role in detecting PD at the prodromal stage, which
may allow medical professionals to intervene at an earlier stage and provide patients with
more individualized treatment plans. If treatment intervention was focused on the pre-
motor phases of the PD, the level of quality life of PD patients would be significantly
enhanced and extended. This could be able to slow down or prevent the spread of disease
to the brain.

Following is the structure of this technical paper; the various research publications in
this area will be covered in depth in the chapter 2. In the chapter 3 on Research meth-
odology discuses about the approach or various steps that is used on this study. In the
chapter 4 on Design Specification & Implementation discusses about the framework that
is used in predicting PD and in the chapter 5, Evaluation discusses about the outcomes
and analysis and final chapter gives the conclusion and discussion.

2 Literature Review

A significant amount of research has been done on the subject of examining the changes
in gut bacteria in PD patients. The relevant study in this area can be presented in two
different ways: first, by using bioinformatics or statistical analysis to examine the gut
microbiota of PD patients, and second, by applying these findings to predictive model
like Artificial Intelligence (AL), deep learning (DL) and machine learning (ML) that can
assist with early diagnosis, classification, and access PD biomarkers.

2.1 Bioinformatic and statistical methods to examine gut mi-
crobes in PD patients

The field of bioinformatics integrates software tools, statistical methods, mathematical
concepts, and biotechniques to store, examine, and to integrate enormous and complex
data sets.A range of bioinformatic methods like metagenomics, sequencing based ap-
proach have been investigated to analyse and assess the gut microbiome’s composition.

To begin with the study scientist have explored the complex composition of the gut
microbiome of PD patients using models of animals. It revealed the profound influence
of the gut microbiome on PD. These gut microbes had the power to regulate microglia
activation and aggregation of alpha-synuclein (Syn) which are the two key players in the
characteristic motor impairments in PD patients. In germ-free mice, bacteria-generated
short-chain fatty acids (SCFAs) could reestablish the disease’s characteristics, and in
humanized mice with Parkinson’s-associated microbiota, motor symptoms worsened. A
microbial imbalance known as dysbiosis may be brought on by a variety of things, includ-
ing changes in physiological processes and pesticide exposure. This finding implied the
therapeutic potential of microbiome-based treatment and suggested a compelling con-
nection between gut health and brain disorders. This gives an important findings and
sheds light on the complex connection between PD and the gut microbiota Sampson et al.
(2016).

Now that the studies revealed the bidirectional connection between the gut microbes
and PD the research journey continues on exploring the specific taxonomy levels of bac-
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terial groups and diversity of gut microbiomes which are actually associated with PD.
Lachnospiraceae, a type of gut bacteria, is linked to the synthesis of short chain fatty acids
(SCFA), which could be the possibility of SCFA deficiency in PD patients. Apart from
SCFA changes, emphasis on alterations in bacterial families like Akkermansia, Lactoba-
cillus, and Bifidobacterium has been linked to PD. The identification of altered SCFA
in these individuals laid a strong platform for further investigation into their function
in gut inflammation, microglial cell activation, and gastrointestinal symptoms associated
with PD. But also various studies proved the influence of sex, age, and dietary habits,
geographical differences, environmental, behavioural on the microbiome diversities which
added layers of complexity to these understanding Hill-Burns et al. (2017).In addition
to altered gut microbiomes bioinformatic methods like shotgun metagenomics in multi-
cohort studies also shown that in PD patients there are significant disturbances in how
these microbe’s function. These disturbances are related to the metabolism of key nutri-
ents, essential microbial mobility, community signalling and responses to oxidative stress
Boktor et al. (2023).

These investigations on the intricate interactions between PD and gut microbiota
(GM) dysbiosis opened up novel opportunities for several innovative diagnostic and treat-
ment possibilities. These findings showed PD patients needed a healthy gut microbiome
which opened the door to possible therapies like probiotics and fecal microbial transplant-
ation (FMT). These therapeutic trials showed a two-way link between the activation of
dopamine agonist therapies (DATs) and the GM. However, there are inconsistencies in
PD-GM studies that necessitate the use of standardized methods and comparisons among
various disease stages. The question DAT activation and GM is still in its early stages,
with much more to uncover Hey et al. (2023).

The studies mentioned above demonstrate that gut microbiota is a useful tool for PD
diagnosis and treatment and that further study is needed in this area. However, ana-
lysing huge datasets of information on the human microbiome and identifying patterns
to forecast disorders are difficult by using conventional bioinformatic or statistical tech-
niques. Metagenomics uses cutting-edge technology like machine learning and artificial
intelligence to overcome these challenges. These prediction models assisted researchers
to detect, analyse, and anticipate certain diseases based on the medical history and un-
derlying biological traits of patients. The subsequent section discusses useful information
about several recent research that used predictive algorithms to forecast diseases using
the gut microbiome data sets.

2.2 Accessing PD biomarkers using machine learning (ML) and
deep learning (DL)

The use of AL, DL and ML has recently emerged as one of the most important methods
for predicting Parkinson’s disease because their capacity to analyse large, complex data
sets, finding trends and biomarkers. These prediction models can aid in early diagnosis
and categorization, allowing for the development of individualized treatment options.

It proved beneficial to employ ML-based image applications in neuroimaging studies
because they made it feasible to automatically identify PD at an early stage so that pa-
tients can get treatment to limit disease progression. ML-based SPECT image processing
outperforms traditional analysis in identifying PD related degeneration of dopamine. It is
equivalent to a skilled visual evaluation and aids radiologists in making more precise dia-
gnoses of PD. Although there are some challenges in images datasets such as inaccurate
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image extraction of features these methods have produced encouraging results and helped
medical practitioners to diagnose Parkinsonism and enhanced the early detection of PD
which reduced the error rate in detecting Zhang (2022). Supervised machine learning al-
gorithms like Support Vector Machine (SVM) and k-nearest neighbours (KNN) classified
and revealed major variations observed in electroencephalogram (EEG) signals between
healthy people and PD patients in almost all areas of the brain and they have the potential
to reduce the amount of PD misdiagnoses by identifying the condition and classifying at a
premotor stage, facilitating the provision of early therapies like neuroprotective measures
Coelho et al. (2023).

Along with extensive research utilizing ML/DL/AI models for processing brain ima-
ging and analysis with large datasets for PD diagnosis, these techniques have shown
similarly amazing results when applied to metagenomic data to achieve taxonomy clas-
sification. These prediction models provide a number of benefits when used with meta-
genomic data such as integrating different omics data, pattern recognition by utilizing
certain genes or similar taxonomic features to find genetic relationships whereas analys-
ing large and complex biological sequencing data from various environmental samples
is challenging with traditional bioinformatics tools. Recent studies developed a deep
learning-based classification method for 16S short read sequences that is based on k-mer
representation that allowed each taxonomic category i.e., from phylum to genus to pro-
duce its own classification model. The findings of the tests confirmed how well suggested
pipeline classified bacterial genomes accurately. These techniques have been integrated
into popular metagenomic data analysis tools. According to the findings, this method
was successfully classifying the data from both 16S shotgun (SG) and amplicon (AMP)
devices Fiannaca et al. (2018).

The results from the study Bang et al. (2019) showed accurate prediction and classific-
ation of diseases based on human gut microbial data by machine learning algorithms which
resulted in major improvements in disease diagnosis, prognosis, and individualized treat-
ment, as well as developments in medical research and practice. Three factors—taxonomy
level, classifier preference, and feature selection methods—are used to classify various
diseases, including juvenile idiopathic arthritis (JIA), chronic fatigue syndrome (CFS),
multiple sclerosis (MS), and colorectal cancer (CRC). ML models have successfully identi-
fied microbes connected to these disorders, indicating the possibility of these microbes to
serve as biomarkers for detection and categorization. Several characteristics, such as the
existence of PSBM3 (a genus in the Family Erysipelotrichaceae), were significant in nu-
merous feature subsets, demonstrating their applicability in the identification of various
diseases.American Gut Project applied supervised ML models like Random Forest (RF),
Support Vector Machines (SVM), and Logistic regression on human gut data samples to
identify the coronary artery disease (CAD) based on interactions between the gut mi-
crobiomes. Prediction algorithms were compared with and without interactions between
food and gut microbiome and surprisingly, models performed better with diet and gut
microbe included as primary parameters. Study Vilne et al. (2022) found that integrating
DL/ML algorithms and taking the diet-gut microbiota into account could increase the
precision of disease risk prediction, especially for complicated disorders like CAD. Ac-
cording to the case study, further study with larger amounts of data and more different
population groups are needed to substantiate the findings.

Studies Liang et al. (2022) have identified that gut microbiome characteristics linked
to cancer patients’ responses to immunotherapy. To discover taxa and microbial interac-
tions connected to response, investigated numerous 16S rRNA gene sequencing datasets,
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integrating a new cohort with the available data, and using a variety of analytical tools,
including univariate analysis and a novel technique called selbal. To anticipate reaction
based on taxonomic traits, they created statistical models utilizing machine learning al-
gorithms such as LogitBoost and KNN. These models had good accuracy and were tested
on various platforms for sequencing. The study Tabl et al. (2019) provides information on
potential microbiome-based indicators for the effectiveness of immunotherapy. Machine
learning algorithms are utilized to identify gene biomarkers for breast cancer survival and
to enhance treatment choices and clinical outcomes. The gene activity of patients who
had various therapies and either lived or died was evaluated using a model that employs
a hierarchy of trees for classification. The model offers a high degree of accuracy in pre-
dicting the result of survival based on gene expression. The identified biomarkers may
help physicians decide what treatments to be provided for the cancer patients to improve
the disease condition.

A reliable and precise classifier for diagnosing individuals with constipation has been
developed in a research project using machine learning to analyse gut microbiome se-
quence data samples of constipation patients from the American Gut Project. The model
was created using cross-validation and a new cohort was used to validate the model to
increasing its reliability. Feature-selection techniques were employed to increase predic-
tion accuracy and streamline calculation. It was shown that gradient boosting regression
trees (GBRT), chi-square, and logistic regression were all effective for data discretization
and feature selection. Serratia, Dorea, Aeromonas, and Hungatella were discovered to be
potential major contributors to the constipation-prediction model, which are among the
high-ranking microbial indicator. This illustrates the importance of microbiome analysis
and machine learning for identifying constipation-related symptoms and offers suggestions
for future work on non-invasive tests and microbial treatments Chen et al. (2021).

Using machine learning algorithms Random Forest technique, which was used to ex-
amine by integrating many data layers, the relationship between the gut microbiota and
Grave’s disease (GD), a thyroid condition, was investigated. The model incorporated
four taxonomic species-level relative abundance profiles, which showed high sensitivity
in distinguishing GD from other metabolic diseases and may be helpful for clinical dia-
gnosis Zhu et al. (2021). Three machine learning classifiers were developed to assess the
prevalence of the brain disorder schizophrenia: Random Forest (RF), Support Vector Ma-
chine (SVM), and XGBoost (XGB). Two feature tables are used to these classifiers: one
contains Amplicon Sequence Variants (ASVs), while the other has the table compressed
at the genus level. These tables were adjusted per sample and converted into relative
abundance tables to address the compositional nature of the microbiome data. The
machine learning classification process is utilized to obtain the schizophrenia diagnosis
utilizing the features from these tables as inputs. The trained model showed accurate
predictions of the schizophrenia diagnosis based on the input characteristics of a specific
sample Wang et al. (2023). Out of 10 machine learning classifiers used to categorize mild
cognitive impairment and Alzheimer’s disease, logistic regression yielded the best results.
However, the study does have certain limitations, including the use of 16S rRNA data
and the relatively small sample size, which could affect how precisely species and families
are categorized. The study suggests that with increased access to metagenomics samples,
classification algorithms may be improved and a deeper analysis of the function of the
gut microbiome in various disorders may be made possible Hasic Telalovic et al. (2022).
Six datasets were utilized to use three ML algorithms (RF, SVM, and NN) to identify
between healthy controls (HC) and PD patients based on a variety of parameters. The
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Random Forest (RF) approach discovered 22 bacterial families and delivered the greatest
results. According to the results of this study, gut dysbiosis in PD is caused by a complex
interaction between several bacterial families. During the examination, it was found that
several of the observed bacterial families had not before been documented in the liter-
ature. These findings highlight the capability of ML systems to offer novel insights into
the role played by certain bacterial families in PD status prediction. The study Pietrucci
et al. (2020) discovered methodological differences in the collection, storage, and analysis
of data across various laboratories, which may have affected the results’ variability in PD
case-control studies of the gut microbiota. The authors stressed the need for consistent
processes in order to produce reliable assessments.

However, with every research that was conducted, gained more knowledge and un-
derstanding of the complex link between gut dysbiosis and PD prediction.Supervised
Machine learning classifier algorithms have demonstrated to be great tools for analysing
gut microbiome data in predicting Parkinson disorders at an early stage, and assisting
researchers in creating innovative treatments.

3 Research Methodology

Knowledge discovery in databases (KDD) will be suitable for this project, as its main
objective is to determine the changed gut microbiome composition and underlying causes
of an imbalance in individuals with Parkinson’s disease (PD).With the help of this meth-
odology, it is possible to regularly identify significant, reliable, and clear patterns in
data samples that are large and complex.Data selection,pre-processing or cleaning,Data
Transformation,Taxonomy Analysis,Data Model, Evaluations of the model,these steps
are carried out in this study to draw conclusions.Figure 1 gives the research methodology
process workflow for this study.

3.1 Data Collection

From European Nucleotide Archive (ENA) Database, a data set with 17 randomly chosen
fecal samples of parkinson and healthy subjects is chosen under the project number
PRJEB275642 . Of these 17 samples, 9 correspond to Parkinson’s patients (PD) and 8 to
Healthy controls (HC). This bio project Aho et al. (2019) collected clinical information
and stool samples twice throughout the course of, on average, 2.25 years from PD and HC
subjects. On the Illumina MiSeq platform, amplicon sequencing of the 16S rRNA gene’s
V3-V4 variable regions was used to analyse microbial populations in these samples.

3.2 Data Quality Check

These downloaded 17 samples are in Pair end layout with forward and reverse read files
in FastQ file format with biological sequence reads with respective quality scores. FastqC
tool 3 was used to evaluate the quality of the these sequencing read files.

2https://www.ebi.ac.uk/ena/browser/view/PRJEB27564
3https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3.3 Data Transformation

The open-source bioinformatics application QIIME2 Bolyen et al. (2019) is mostly used
for data transformation in this work. The pair end read sample files are combined us-
ing this program, and sequences were denoised Bokulich et al. (2013) using the Deblur
method, which includes abundance filtering and internal chimera checking mechanisms.
The sequences are organized into Amplicon Sequence Variants (ASVs) at the final stage
of this data transformation. This results in the feature table, representative sequences,
and statistics. These artifacts hold the key to the intended follow-up investigation on
this study.

3.4 Data Analysis (Taxonomy Analysis)

At this phase taxonomy analysis is studied which gives the microbe abundance in each
of the samples and its characteristics. A pre-trained Naive Bayes classifier, which is
accessible on QIIME 2, is used for this analysis. Two significant databases , SILVA and
Green Genes2, served as the training components for this Naive Bayes classifier. In this
study, the SILVA (silva13899nbclassifier) and the most recent Green Genes2 (gg202210-
backbonefulllength) classifiers are used for taxa analysis of the samples Resources (2023).

3.5 Model

In order to predict the patient’s risk of having Parkinson’s disease, the samples in this
study were analysed using machine learning algorithms. A sample classifier plugin for
QIIME 2 was created utilizing the Sci-Kit Learn package for supervised learning classifiers
and feature selection, SciPy for statistics, and Sea born for data visualization classifier
(2023). In this case, the model receives the feature table and labelled sample meta data
files and divides the samples into train and test groups at random. It then divides the
samples into two classes, Parkinson Disease (PD) and Healthy Control (HC), according
to the meta data. The arguments to the Model include the number of K-fold cross valida-
tions, the size of the data samples, automatic feature selection and parameter tuning, and
the various supervised learning classifier estimators are used .In this study two classifier
algorithms Random Forest (RF) and Linear SupportVectorClassifier (LSVC) are used for
prediction Model.

3.5.1 RF

This algorithm uses averaging to boost predicted accuracy and decrease over fitting after
fitting numerous decision tree classifiers to various data set sub samples.These are some
of the algorithm’s parameters that on high level discussed, the size of the sub samples
is decided by the argument max samples, and if bootstrap is set to default, each of
tree is built using the whole data set. The number of decision trees is controlled by n
estimators, which by default is 100. The max features parameter sets the optimal number
of features to split; it takes every feature into account by default Pedregosa et al. (2011)
RandomForest (2023).
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3.5.2 LSVC

This is Support Vector Classifier but with the parameter kernel is set to ’linear’, gives
more freedom in the selection of penalties and loss functions and making it more likely
to scale to more numbers of samples. This accepts both spare and dense data, and the
multi class support is handled via one vs rest strategy Pedregosa et al. (2011) LinearSVC
(2023).

3.6 Model Evaluation Metrics

Accuracy, Precision, Sensitivity, Specificity and F1 score are the metrics used to evaluate
each supervised classification model. Heat Maps, ROC curves, and confusion matrix are
used to compare and display the models. The performance of the machine learning mod-
els is majorly evaluated by the number of samples that are predicted into Parkinson’s
disease positive class or negative class. Confusion Matrix gives these numbers and sum-
marize as TruePositive(TP),TrueNegative(TN),FalseNegative (FN), Falsepositive(FP).

True Positive (TP) model accurately identifies Parkinson’s disease in the sample.True
Negative (TN) model accurately identifies the sample as Healthy Control.False posit-
ive (FP) model identifies the sample as Parkison’s Disease. False Negative (FN) model
identifies the sample as Healthy Control.Evaluation Metrics are defined as below.

• Accuracy: Samples which are accurately identified /Total samples

Formula: TP + TN/(TP+FP+TN+FN)

• Sensitivity (Probability of disease detection): How probable is it that the model
will be correct if the patient has a Parkinson disease.

Formula: TP/TP+FN

• Precision: What is the probability that a patient would develop a Parkinson’s
disease, if a model prediction is positive.

Formula: TP/TP+FP

• F1 score: Represented as harmonic mean of Model Precision and Sensitivity.

Formula : 2* Sensitivity * Precision/ (Sensitivity + Precision)

• Specificity: Probability of the model prediction as healthy control if the sample is
healthy.

Formula: TN/TN+ FP
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Figure 1: Research Methodology for 16S rRNA Sequence Sample Prediction

4 Design Specification & Implementation

In this research ,16S rRNA gene raw sequencing reads of fecal samples downloaded from
the ENA database and the microbiome analysis of these raw pair end sequence files
was performed using QIIME 2 (version: 2023.5.1) Core Concepts (2023). High level
data analysis and visualization can be accomplished using this versatile and potent tool.
This adaptable tool includes a standard methodology for analysing the raw sequence
data.Figure 2 Core Concepts (2023) provides a detailed illustration of the fundamental
overview of how QIIME 2 analyses the raw sequence and provides the amplicon sequence
analysis and visualisations. The first stage of the workflow, however, may differ depending
on the type and layout of the input sequences. Although there are many further steps for
extra analysis in the QIIME 2 pipeline, the boxes highlighted in red in Figure 2 illustrates
all the processes that were carried out for this study ,as the objective of this study is to
analyse taxonomy classification and predict the samples.
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Figure 2: QIIME2 Design & Conceptional Overview

In QIIME 2 platform while we use any method or plugins it follows a simple structure
of instructions which is illustrated by a flow chart in Figure 3 Core Concepts (2023). The
output files (artifacts) produced at each stage are used as inputs during the subsequent
phase of analysis. Artifacts are fed into the QIIME 2 pipeline, or the methods and a
visualizer is used to display the artifacts.

Figure 3: QIIME2 Process Flow Chart

For this study the selected raw sequence files are already de-multiplexed ,which means
sequenced reads are divided into distinct files for each sample in a sequenced run. Be-
low are the techniques listed to analyse these files and extract the features , ASV’s or
Taxonomy information.

4.1 Importing

The selected 17 samples are de-multiplexed paired end sequencing with biological se-
quences and quality scores FASTQ files. Therefore, importing the files in QIIME2 en-
vironment begins at De-multiplexed sequences step shown in Figure 2. The manifest file
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format, which is a flexible import technique, is used to import samples as paired-end se-
quences with quality scores with input format set to ’PairedEndFastqManifestPhred33V2’
ImportFiles (2023).The samples are mapped with their absolute path on the local disk
in this tab-separated manifest file.

4.2 Denoising

At this stage, the sequences are subjected to quality control. The imported de-multiplexed
paired end Fastq files are used as input artifacts at this point. At this phase either the
DADA2 or Deblur techniques can be used to conduct denoising in QIIME 2. Deblur can
only manage single-end reads Callahan et al. (2016), in contrast to DADA2, which can
perform paired-end reads natively. The sequences are denoised in unique ways by both
techniques.

In this study, the sequences are denoised using the Deblur technique, a greedy de -
convolution algorithm that uses the Illumina Miseq/Hiseq error profiles for amplicon
sequencing. This is an alternative if memory or computing resources are limited or if
need to work with smaller bp chunks (such as 150 bp or fewer), but it also appears to be
effective for longer readings Nearing et al. (2018). As the input samples are paired end
sequences, with the use of merge pair method in VSEARCH plugin Rognes et al. (2016),
forward and reverse reads are joined to give single end reads. Deblur denoise-16S method
is used, based on a decline in quality ratings, this p-trim length of 300 is chosen as it
regulates the sequences length Amir et al. (2017). When the data has been sufficiently
denoised, the findings can be verified by glancing at the summary of the feature table.
Feature tables and representative sequences are the output artifacts at this stage, which
are crucial for additional investigation. The frequency of each ”feature” (such as ASVs,
OTUs, etc.) found in samples is represented by a feature table, which is effectively a
matrix of samples vs. observations. Following the creation of this feature table, taxo-
nomic analysis of the samples is carried out.Steps for denoising the samples in QIIME2
with deblur 16s method for this study are shown in Figure 4.

Figure 4: QIIME2 Deblur-DenoisePairendSequences
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4.3 Taxonomy Classification

The goal of this step is to find which microbial species present in the samples, this is
achieved using the q2-feature-classifier plugin available in QIIME2 . This classifier’s
primary input artifact is a feature table. Taxonomy classifiers identify the closest taxo-
nomic association at this stage with some degree of confidence or consensus based on
alignment, k-mer frequencies, and other variables. By evaluating the query sequences
(i.e., features, whether ASVs or OTUs) with a database of reference of sequences with
established taxonomic compositions, such as the Silva Robeson et al. (2021) or Green
Genes data bases Bokulich, Kaehler, Rideout, Dillon, Bolyen, Knight, Huttley and Ca-
poraso (2018). Here, python classify scikit learn is used to access a pre-trained Naive
Bayes machine learning classifier Ziemski et al. (2021), which is suggested for usage with
the 16srRNA gene analysis.Figure 5 illustrated the taxonomy pipeline.

Figure 5: QIIME2 Pre-trained Taxonomy Classification Pipeline
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Figure 6: Taxonomy Classification per Sample with Silva Reference

4.4 Sample Prediction

The QIIME 2 sample classifier makes use of supervised learning algorithms. By studying
the composition of labelled training samples given in sample metadata file , supervised
learning classifiers make predictions about the categorical metadata classes of unlabelled
samples. Depending on the composition of the stool microbiome, sample classifier is
used to diagnose or predict Parkinson’s disease susceptibility Bokulich, Dillon, Bolyen,
Kaehler, Huttley and Caporaso (2018). This pipeline has set of actions to achieve the
sample prediction which is listed below and Figure 7 describes the process flow.

Figure 7: QIIME2 Sample Classifier Process Pipeline

• Training and Test sets are created by dividing samples at random. One the model
training on train set is completed the test sample set is used for accessing the
accuracy of the model at the end of the process. The –p-test-size argument is used
to adjust the percentage of input samples to include in the test set.

• Based on the feature information corresponding to each sample (included in a
metadata field), the model is trained to predict a certain target value. –p-estimator
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argument allows to choose the algorithm and predict samples based on various
scikit learn library Pedregosa et al. (2011). RandomForestClassifier, LinearSVC,
SVC,GradientBoostingClassifier, AdaBoostClassifier,KNeighborsClassifier are some
of the estimators currently available to choose.

• To fine-tune the model, automatic selection of features and parameter optimization
processes are carried out. By default, five-fold cross-validation is used; the –p-cv
argument can be used to change this value.

• Based on the feature data related to each test sample, the trained model is used to
forecast the target values and likelihoods of classes for each sample.

• By contrasting the predicted value for each test sample with the actual value for
that sample, the model’s accuracy is determined.

5 Evaluation

5.1 Sample Classifier- Default Parameters

In this experiment, the QIIME2 default q2-sample classifier inputs are used ,samples are
divided into two groups: 80% for training the model and 20% for testing and Jobs to
run in parallel is set to 1.For sample prediction, the sample meta data column ”Diseas-
eStatus” is used as an argument. By default, the q2-sample classifier employs the Ran-
dom Forest Classifier with 100 trees, 5-fold cross-validation (CV), and parameter tuning
is carried out automatically by using cross validated randomized parameter grid search
with Scikit Learn Randomized Search. Cross-validated recursive feature elimination from
Scikit learn Recursive Feature Elimination (RFE) was used to select the features with
the best predicted accuracy.

The accuracy for the classification model (classifying samples to PD and HC) is shown
in confusion matrix , ROC and AUC is shown in Figure 8 and Figure 9 respectively.

Figure 8: Confusion Matrix Heat Map-Default Inputs
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Figure 9: ROC- AUC Default Inputs

Accuracy of 25% , Precision 33%, Sensitivity 50% and F1 Score 0.397 achieved with
experiment with default inputs.

5.2 Sample Classifier- RF Classifier

In this experiment, samples are divided into two groups: 70% for training the model
and 30% for testing. For sample prediction, the sample meta column ”DiseaseStatus” is
used as an argument. q2-sample classifier employs the Random Forest Classifier with 50
decision trees, 5-fold cross-validation (CV), and hyper parameter tuning is carried out
automatically using a cross-validated randomized parameter grid search with Scikit Learn
Randomized Search. Cross-validated recursive feature elimination from Scikit learn Re-
cursive Feature Elimination (RFE) was used to select the features with the best predicted
accuracy.

The accuracy for the classification model (classifying samples to PD and HC) is shown
in confusion matrix , ROC and AUC is shown in Figure 10 and Figure 11 respectively.

Figure 10: Confusion Matrix Heat Map- Random Forest
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Figure 11: ROC- AUC Random Forest

Accuracy of 66% , Precision 66%, Sensitivity 66% and F1 Score 0.88 is achieved with
this settings.Figure 12 shows the heat map with distinct features found within input
samples with this experiment.Table 1 refers to the predictions and probabilities of the
sample with this RF model.

Figure 12: Heat Map Showing Sample Features

Table 1: q2 Sample Classifier RF estimator Probabilities & Predictions

Sample Id HC PD prediction

C82 0.56 0.44 HC
P53 0.58 0.42 HC
P120 0.46 0.54 PD
C48 0.44 0.56 PD
C80 0.54 0.46 HC
P103 0.44 0.56 PD

5.3 Sample Classifier- LSVC Classifier

In this experiment, samples are divided into two groups: 70% for training the model
and 30% for testing and random state of 123 is used. For sample prediction, the sample
meta column ”DiseaseStatus” is used as an argument. The q2-sample classifier employs
the Linear Support vector Classifier, 5-fold cross-validation (CV), and hyper parameter
tuning is carried out automatically using a cross-validated randomized parameter grid
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search with Scikit Learn Randomized Search.Cross-validated recursive feature elimination
from Scikit learn Recursive Feature Elimination (RFE) was used to select the features
with the best predicted accuracy.The accuracy for this model is shown in confusion matrix
, ROC and AUC is shown in Figure 13 and Figure 14 respectively.

Figure 13: Confusion Matrix Heat Map- LSVC

Figure 14: ROC- AUC Linear Support Vector Classifier

Finally,the results are evaluated in the Table2 with Accuracy, Recall, Precision,Specificity
and F1 Score. From the findings RF Classifier with decision tress 50 were the performed
best among other input settings, with an F1 score of 0.88 for a predicted class and an
accuracy of 66.6%. LSVC model has high recall but low specificity means model is not
performing good at predicting true negative samples.

Table 2: q2 Sample Classifier Model Results

Estimator Accuracy Precision Recall Specificity F1 Score

RF-Default Inputs 0.25 0.33 0.5 0 0.397
RF 0.66 0.66 0.66 0.66 0.88

LSVC 0.66 0.66 1 0.33 0.82
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6 Conclusions and Discussion

The Machine Learning data analysis of gut microbiome in PD patients and HC is presen-
ted in this study. The 16S rRNA sequence is gathered from the ENA database that were
accessible and derived from studies that found a connection between microbiota and
disease Parkinson’s disease progression and specific bacterial taxa that differed between
patients and controls. Using the most recent bioinformatic techniques, this study uni-
formly processed the downloaded data and re-analysed the data sets.The effectiveness of
two machine learning (ML) algorithms (RF, Linear SVC) using QIIME 2 sample classifier
in recognizing samples from HC or PD patients was assessed using a variety of measures
(AUC, accuracy, precision, recall, and F-score). The relatively low accuracy could be
attributed to the numerous reasons one is definitely very low samples used for training
the model, to improve the model’s accuracy and produce more reliable findings about
the relationship between the gut microbiota and PD, a larger number of samples must
be used to train the RF algorithm. The other reason could be bioinformatic techniques
utilized for data processing and analysis.

This study was conducted with some limitations,one of them is very small sample size
of only 17 samples. The major contributing reason to this restriction was computational
resources, which had a direct impact on the data collection and its subsequent analysis.
As a result, both the volume and diversity of the data set used to train the machine
learning model was restricted.

In the future study the aim is to increase sample sizes in order to overcome this re-
striction. By increasing the sample size, machine learning models could be trained in
a more reliable and consistent manner, improving their capacity to predict accurately.
Additionally, the performance and prediction ability of the model would be improved by
using sophisticated algorithms, feature selection approaches, and maybe even multi-omics
data. The objective is to study about gut microbiome by using larger, diverse data sets
together with advance machine learning techniques to better understand the complex
relationships between the gut microbiota and various neurological disorders.
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Hasic Telalovic, J., Cicak Bašić, D. and Osmanovic, A. (2022). Investigation of the role
of the microbiome in the development of alzheimer’s disease using machine learning
techniques, International Symposium on Innovative and Interdisciplinary Applications
of Advanced Technologies, Springer, pp. 639–649.

Hey, G., Nair, N., Klann, E., Gurrala, A., Safarpour, D., Mai, V., Ramirez-Zamora, A.
and Vedam-Mai, V. (2023). Therapies for parkinson’s disease and the gut microbiome:
evidence for bidirectional connection, Frontiers in Aging Neuroscience 15: 1151850.

Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R.,
Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P. et al. (2017).
Parkinson’s disease and parkinson’s disease medications have distinct signatures of the
gut microbiome, Movement disorders 32(5): 739–749.

Huang, B., Chau, S. W., Liu, Y., Chan, J. W., Wang, J., Ma, S. L., Zhang, J., Chan,
P. K., Yeoh, Y. K., Chen, Z. et al. (2023). Gut microbiome dysbiosis across early
parkinson’s disease, rem sleep behavior disorder and their first-degree relatives, Nature
Communications 14(1): 2501.

ImportFiles, Q. (2023). Importing data.
URL: https://docs.qiime2.org/2023.5/tutorials/importing/

Liang, H., Jo, J.-H., Zhang, Z., MacGibeny, M. A., Han, J., Proctor, D. M., Taylor, M. E.,
Che, Y., Juneau, P., Apolo, A. B. et al. (2022). Predicting cancer immunotherapy
response from gut microbiomes using machine learning models, Oncotarget 13: 876.

LinearSVC, L. (2023). Sklearn.svm.linearsvc.
URL: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC

Nearing, J. T., Douglas, G. M., Comeau, A. M. and Langille, M. G. (2018). Denois-
ing the denoisers: an independent evaluation of microbiome sequence error-correction
approaches, PeerJ 6: e5364.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011). Scikit-learn: Machine
learning in python, the Journal of machine Learning research 12: 2825–2830.

Pietrucci, D., Teofani, A., Unida, V., Cerroni, R., Biocca, S., Stefani, A. and Desideri,
A. (2020). Can gut microbiota be a good predictor for parkinson’s disease? a machine
learning approach, Brain Sciences 10(4): 242.

RandomForest, R. (2023). Sklearn.ensemble.randomforestclassifier.
URL: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

Resources, D. (2023). Qiime 2 data resources.
URL: https://docs.qiime2.org/2023.5/data-resources/

21



Robeson, M. S., O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster,
J. T. and Bokulich, N. A. (2021). Rescript: Reproducible sequence taxonomy reference
database management, PLoS computational biology 17(11): e1009581.

Rognes, T., Flouri, T., Nichols, B., Quince, C. and Mahé, F. (2016). Vsearch: a versatile
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