

Configuration Manual

MSc Research Project MSc Data Analytics

Abhilash Chava Student ID: X21178712

School of Computing National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Abhilash Chava	
Student ID:	X21178712	
Programme:	MSc Data Analytics	
Year:	2023	
Module:	MSc Research Project	
Supervisor:	Vladimir Milosavljevic	
Submission Due Date:	14/08/2023	
Project Title:	Configuration Manual	
Word Count:	652	
Page Count:	37	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Abhilash Chava
Date:	26th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	\checkmark	
Attach a Moodle submission receipt of the online project submission, to		
each project (including multiple copies).		
You must ensure that you retain a HARD COPY of the project, both for		
your own reference and in case a project is lost or mislaid. It is not sufficient to keep		
a copy on computer.		

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only		
Signature:		
Date:		
Penalty Applied (if applicable):		

Configuration Manual

Abhilash Chava X21178712

1 Introduction

Deep learning algorithms play a critical part in the approach used to diagnose diabetic retinopathy in retinal pictures. On retinal fundus pictures, several configurations, such as supervised and self-supervised models, as well as the unique Vision Transformer, were carefully evaluated. This study's system requirements centered on the capacity to handle and analyze high-resolution pictures, providing accurate and rapid model training. These requirements highlight the need of strong processing power, adequate storage, and specialized software libraries for properly deploying and evaluating the suggested models.

2 System Requirements

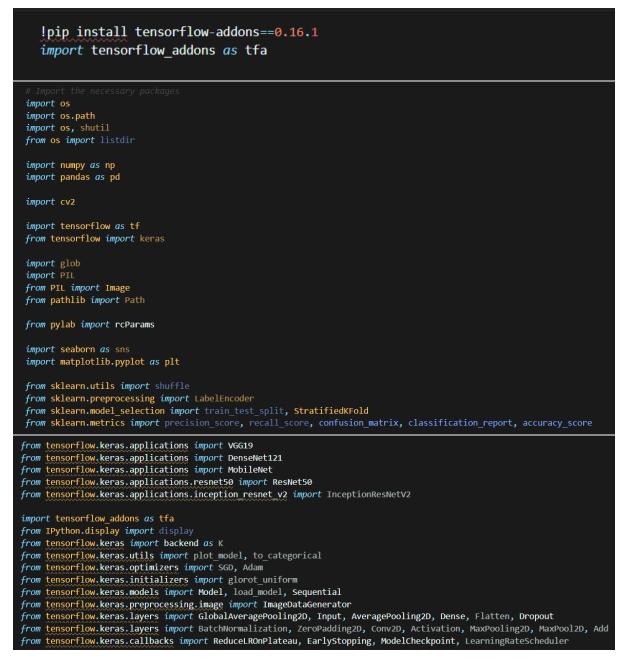
Component	Specification
RAM	16GB
GPU	4GB NVIDIA
Processor	Core i5, Windows
Platform	Jupyter Notebook and Google Colab

 Table 1: System Requirements

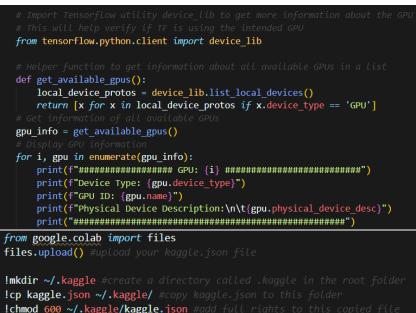
3 Modeling and Evaluation

This study used sophisticated deep learning algorithms to diagnose diabetic retinopathy from retinal pictures, testing with a variety of configurations ranging from typical supervised models to revolutionary self-supervised ones. The Vision Transformer (ViT) was a major addition, indicating a trend away from traditional convolutional networks and towards designs capable of collecting complicated retinal picture patterns. The modeling process was expedited by the usage of platforms such as Jupyter Notebook and Google Colab. The comprehensive examination of models on retinal fundus pictures was critical to the study's reliability. While no specific metrics were mentioned in the extracted content, the mention of DenseNet's performance based on Kappa values suggests a thorough assessment approach, emphasizing not only accuracy but also predictability and consistency, ensuring the models' practical viability in medical contexts.

RETINOPATHY



The above packages are used in the designing of the code.



!chmod 600 ~/.kaggle/kaggle.json #add full rights to this copied file
!rm kaggle.json #remove the original one

!kaggle datasets download -d tanlikesmath/diabetic-retinopathy-resized !unzip diabetic-retinopathy-resized.zip #unzip the zip file !rm diabetic-retinopathy-resized.zip

df = pd.read_csv("trainLabels_cropped.csv")
df

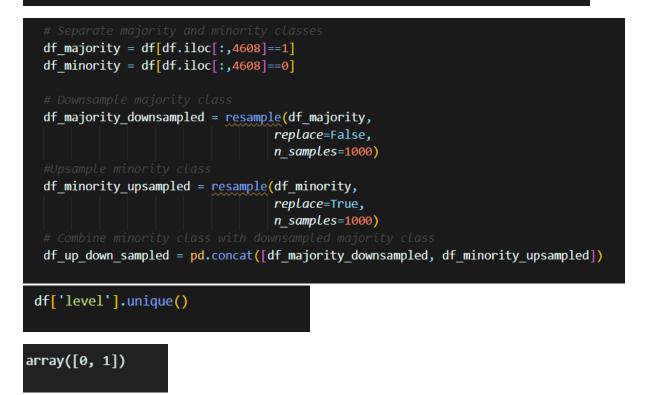
	Unnamed: 0	Unnamed: 0.1	image	level	
0	0	0	10_left	0	
1	1	1	10_right	0	
2	2	2	13_left	0	
3	3	3	13_right	0	
4	4	4	15_left	1	
35103	35104	35121	44347_right	0	
35104	35105	35122	44348_left	0	
35105	35106	35123	44348_right	0	
35106	35107	35124	44349_left	0	
35107	35108	35125	44349_right	1	
35108 rows × 4 columns					

The above screenshot is for the data acquisition in which the image information in the form of the file name and the level of the class to which it belongs.

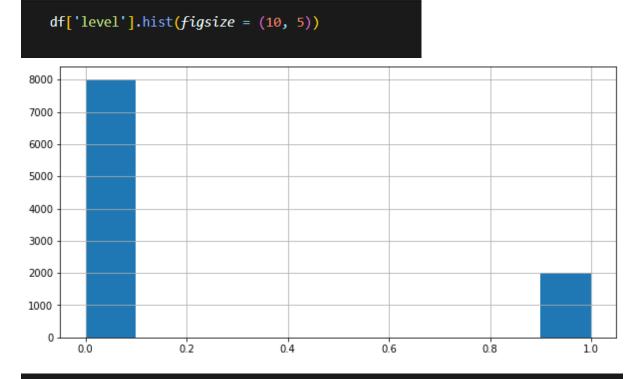
base_image_dir = "/content/resized_train_cropped"
df['path'] = df['image'].map(lambda x: os.path.join(base_image_dir,'resized_train_cropped','{}.jpeg'.format(x)))
df = df.comp(columns=['image'])
df = df.sample(frac=1).reset_index(drop=True) #shuffle dataframe
df['level'] = (df['level'] > 1).astype(int) # Disease or no disease
df.head(10)

	Unnamed: 0	Unnamed: 0.1	level	path
0	27887	27903	0	/content/resized_train_cropped/resized_train_c
1	892	893	0	/content/resized_train_cropped/resized_train_c
2	30340	30356	0	/content/resized_train_cropped/resized_train_c
3	29506	29522	0	/content/resized_train_cropped/resized_train_c
4	28119	28135	0	/content/resized_train_cropped/resized_train_c
5	6878	6882	0	/content/resized_train_cropped/resized_train_c
6	10874	10881	0	/content/resized_train_cropped/resized_train_c
7	15511	15521	0	/content/resized_train_cropped/resized_train_c
8	32370	32386	0	/content/resized_train_cropped/resized_train_c
9	10507	10514	0	/content/resized_train_cropped/resized_train_c

df = df[:10000] len(df)

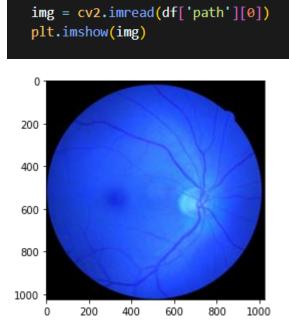


For clarity in this analysis, cropped images were used.



df['path'][0]

'/content/resized_train_cropped/resized_train_cropped/35336_right.jpeg'



The image preprocessing which is mentioned in the thesis.

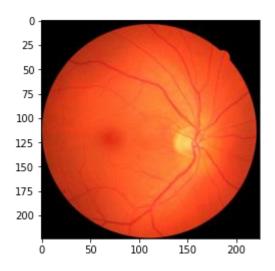
```
dim = (224, 224)
X_image_train = []
Y_image = []
print(len(df))
for i in range(0, len(df)):
    img = Image.open(df['path'][i]).convert('RGB')
    im_resized = img.resize(dim)
    X_image_train.append(im_resized)
    Y_image.append(df['level'][i])
print(len(X_image_train)))
```

10000 10000

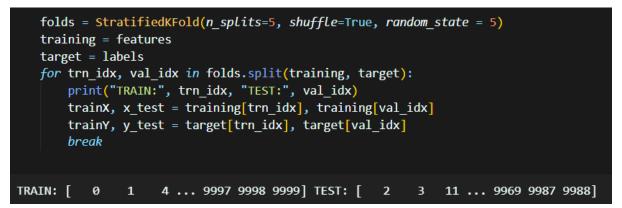
```
X_image_array=[]
for x in range(len(X_image_train)):
    X_image=np.array(X_image_train[x],dtype='uint8')
    X_image_array.append(X_image)
features = np.array(X_image_array)
print(features.shape)
labels= []
for x in Y_image:
    a = []
    a.append(x)
    labels.append(a)
labels = np.array(labels,dtype='uint8')
print(labels.shape)
```

(10000, 224, 224, 3) (10000, 1)

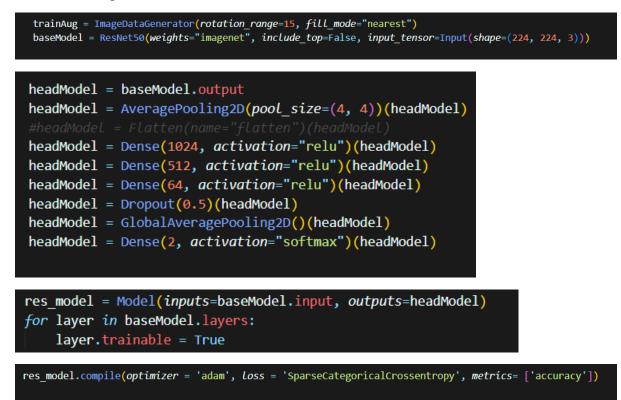
plt.imshow(X_image_train[0])



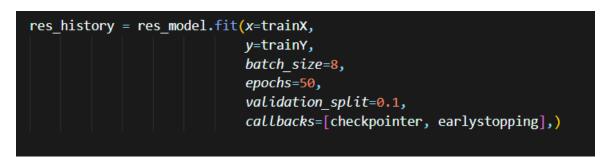
Model Sampling data using Stratified KFold to keep the ration of classes intact.

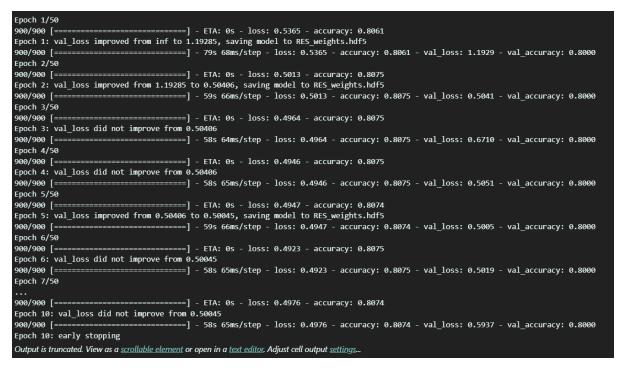


Model Building.



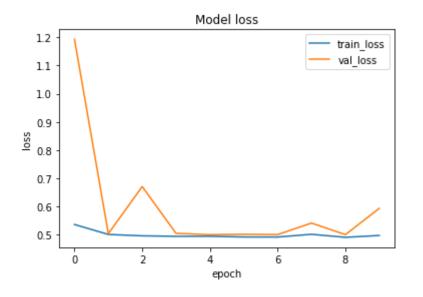
earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5)
checkpointer = ModelCheckpoint(filepath="RES_weights.hdf5", verbose=1, save_best_only=True)





Performance Curves

```
plt.plot(res_history.history['loss'])
plt.plot(res_history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('loss')
plt.vlabel('epoch')
plt.legend(['train_loss','val_loss'], loc = 'upper right')
plt.show()
```



res_model.load_weights("RES_weights.hdf5")

evaluate = res_model.evaluate(x_test, y_test)
print('Accuracy Test : {}'.format(evaluate[1]))

```
prediction = []
original = y_test
image = []
count = 0

for item in x_test:
    img= item
    img = img.reshape(-1,224,224,3)
    predict = res_model.predict(img)
    predict = np.argmax(predict)
    prediction.append(predict)

# Getting the test accuracy
score = accuracy_score(original, prediction)
print("Test Accuracy : {}".format(score))
```

```
class_names = ['No DR','DR']
import random
plt.figure(figsize = (20,20))
for i in range(9):
    random_int_index = random.choice(range(len(x_test)))
    plt.subplot(3,3,i+1)
    plt.imshow(x_test[random_int_index])
    if prediction[random_int_index] == original[random_int_index]:
        color = "g"
    else:
        color = "r"
    plt.title("True Label: " + class_names[original[random_int_index][0]] + " || " + "Predicted Label: " +
        class_names[prediction[random_int_index]])
    plt.axis(False);
```

```
t accuracy, sensitivity, and specificity
```

```
cm = confusion_matrix(np.asarray(original), np.asarray(prediction))
total = sum(sum(cm))
acc = (cm[0, 0] + cm[1, 1]) / total
sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])
# show the confusion matrix, accuracy, sensitivity, and specificity
print(cm)
print("acc: {:.4f}".format(acc))
print("sensitivity: {:.4f}".format(sensitivity))
print("specificity: {:.4f}".format(specificity))
```

Print out the classification report

print(classification_report(np.asarray(original), np.asarray(prediction)))

trainAug = ImageDataGenerator(rotation_range=15, fill_mode="nearest")
baseModel = VGG19(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)))
baseModel.summary()

Model: "vgg19"		
Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
 Total params: 20,024,384 Trainable params: 20,024,384 Non-trainable params: 0		

earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5)
checkpointer = ModelCheckpoint(filepath="VGG_weights.hdf5", verbose=1, save_best_only=True)

Epoch 1/50 449/450 [= ===>.] - ETA: 0s - loss: 0.6042 - accuracy: 0.7901 Epoch 1: val_loss improved from inf to 0.45553, saving model to VGG_weights.hdf5 ====] - 18s 37ms/step - loss: 0.6044 - accuracy: 0.7900 - val_loss: 0.4555 - val_accuracy: 0.8175 450/450 [== Epoch 2/50 ==>.] - ETA: 0s - loss: 0.5172 - accuracy: 0.8032 449/450 [= Epoch 2: val_loss did not improve from 0.45553 450/450 [== ==] - 16s 36ms/step - loss: 0.5172 - accuracy: 0.8031 - val_loss: 0.4759 - val_accuracy: 0.8175 Epoch 3/50 ----->.] - ETA: 0s - loss: 0.4923 - accuracy: 0.8026 449/450 [==== Epoch 3: val_loss improved from 0.45553 to 0.44385, saving model to VGG_weights.hdf5 450/450 [===============================] - 16s 36ms/step - loss: 0.4916 - accuracy: 0.8031 - val_loss: 0.4438 - val_accuracy: 0.8175 Epoch 4/50 449/450 [=== Epoch 4: val_loss improved from 0.44385 to 0.43135, saving model to VGG_weights.hdf5 ======] - 16s 36ms/step - loss: 0.4718 - accuracy: 0.8039 - val loss: 0.4314 - val accuracy: 0.8175 450/450 [=== Epoch 5/50 449/450 [== ----->.] - ETA: 0s - loss: 0.4766 - accuracy: 0.8032 Epoch 5: val_loss did not improve from 0.43135 ===] - 16s 36ms/step - loss: 0.4764 - accuracy: 0.8033 - val_loss: 0.4800 - val_accuracy: 0.8175 450/450 [=== Epoch 6/50 449/450 [=== ----->.] - ETA: 0s - loss: 0.4704 - accuracy: 0.8040 Epoch 6: val_loss did not improve from 0.43135 450/450 [=== 449/450 [== ===>.] - ETA: 0s - loss: 0.4405 - accuracy: 0.8082 Epoch 9: val_loss did not improve from 0.43135 ====] - 16s 35ms/step - loss: 0.4402 - accuracy: 0.8086 - val_loss: 0.4748 - val_accuracy: 0.8200 450/450 [= Epoch 9: early stopping Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

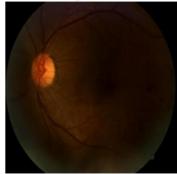
plt.plot(vgg_history.history['loss'])
plt.plot(vgg_history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss','val_loss'], loc = 'upper right')
plt.show()

Final Prediction

True Label: No DR || Predicted Label: No DR

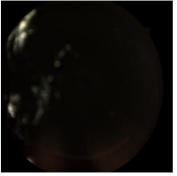
True Label: No DR || Predicted Label: No DR

True Label: DR || Predicted Label: No DR

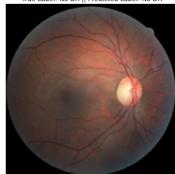


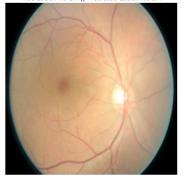
True Label: No DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR



True Label: No DR || Predicted Label: No DR





accuracy, sensitivity, and specificity cm = confusion_matrix(np.asarray(original), np.asarray(prediction)) total = sum(sum(cm)) acc = (cm[0, 0] + cm[1, 1]) / total sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1]) specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1]) # show the confusion matrix, accuracy, sensitivity, and specificity print(cm) print("acc: {:.4f}".format(acc)) print("sensitivity: {:.4f}".format(sensitivity)) print("specificity: {:.4f}".format(specificity))

[[806	0]		
[194	0]]		
acc: 0.8	3060		
sensiti	/ity:	1.0000	
specific	city:	0.0000	

Print out the classification report print(classification_report(np.asarray(original), np.asarray(prediction)))

	precision	recall	f1-score	support
0	0.81	1.00	0.89	806
1	0.00	0.00	0.00	194
20000200			0.81	1000
accuracy			0.01	1000
macro avg	0.40	0.50	0.45	1000
weighted avg	0.65	0.81	0.72	1000

trainAug = ImageDataGenerator(rotation_range=15, fill_mode="nearest")
baseModel = DenseNet121(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)))
baseModel.summary()

Model:	"densenet121"

Layer (type)	Output Shape	Param # ====================================	Connected to
input_5 (InputLayer)	[(None, 224, 224, 3)]	0	[]
zero_padding2d_2 (ZeroPadding2 D)	(None, 230, 230, 3)	0	['input_5[0][0]']
conv1/conv (Conv2D)	(None, 112, 112, 64)	9408	['zero_padding2d_2[0][0]']
conv1/bn (BatchNormalization)	(None, 112, 112, 64)	256	['conv1/conv[0][0]']
conv1/relu (Activation)	(None, 112, 112, 64)	0	['conv1/bn[0][0]']
zero_padding2d_3 (ZeroPadding2 D)	(None, 114, 114, 64)	0	['conv1/relu[0][0]']
pool1 (MaxPooling2D)	(None, 56, 56, 64)	0	['zero_padding2d_3[0][0]']
conv2_block1_0_bn (BatchNormal Total params: 7,037,504 Trainable params: 6,953,856 Non-trainable params: 83,648	(None, 56, 56, 64)	256	['pool1[0][0]']

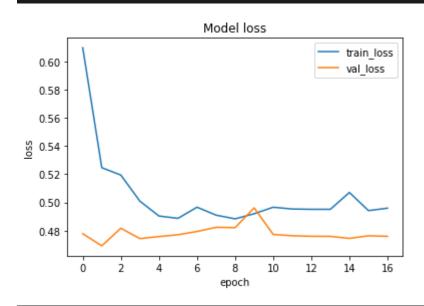
```
headModel = baseModel.output
headModel = AveragePooling2D(pool_size=(4, 4))(headModel)
#headModel = Flatten(name="flatten")(headModel)
headModel = Dense(1024, activation="relu")(headModel)
headModel = Dense(512, activation="relu")(headModel)
headModel = Dense(64, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = GlobalAveragePooling2D()(headModel)
headModel = Dense(2, activation="softmax")(headModel)
densenet_model = Model(inputs=baseModel.input, outputs=headModel)
for layer in baseModel.layers:
    layer.trainable = False
```

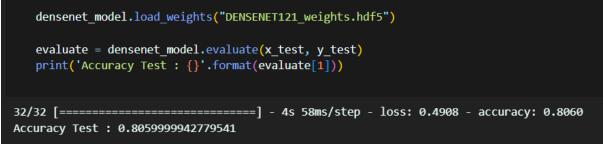
earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15)
checkpointer = ModelCheckpoint(filepath="DENSENET121_weights.hdf5", verbose=1, save_best_only=True)

[INFO] training head
Epoch 1/50
449/450 [====================================
Epoch 1: val_loss improved from inf to 0.47776, saving model to DENSENET121_weights.hdf5
450/450 [====================================
Epoch 2/50
448/450 [====================================
Epoch 2: val_loss improved from 0.47776 to 0.46917, saving model to DENSENET121_weights.hdf5
450/450 [====================================
Epoch 3/50
449/450 [====================================
Epoch 3: val_loss did not improve from 0.46917
450/450 [====================================
Epoch 4/50
448/450 [====================================
Epoch 4: val_loss did not improve from 0.46917
450/450 [====================================
Epoch 5/50
449/450 [==================>.] - ETA: 0s - loss: 0.4905 - accuracy: 0.8037
Epoch 5: val loss did not improve from 0.46917
450/450 [====================================
Epoch 6/50
450/450 [====================================
Epoch 6: val loss did not improve from 0.46917
450/450 [====================================
450/450 [====================================
Epoch 17: val loss did not improve from 0.46917
450/450 [====================================
Epoch 17: early stopping
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings

DenseNet

```
plt.plot(densenet_history.history['loss'])
plt.plot(densenet_history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss','val_loss'], loc = 'upper right')
plt.show()
```





```
# import cv2
prediction = []
original = y_test
image = []
count = 0

for item in x_test:
    img= item
    img = img.reshape(-1,224,224,3)
    predict = densenet_model.predict(img)
    predict = np.argmax(predict)
    prediction.append(predict)

# Getting the test accuracy
score = accuracy_score(original, prediction)
print("Test Accuracy : {}".format(score))
```

Test Accuracy : 0.806

```
class_names = ['No DR','DR']
import random
plt.figure(figsize = (20,20))
for i in range(9):
    random_int_index = random.choice(range(len(x_test)))
    plt.subplot(3,3,i+1)
    plt.imshow(x_test[random_int_index])
    if prediction[random_int_index] == original[random_int_index]:
        color = "g"
    else:
        color = "r"
    plt.title("True Label: " + class_names[original[random_int_index][0]] + " || " + "Predicted Label: " +
        class_names[prediction[random_int_index]])
    plt.axis(False);
```

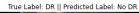
DenseNet Prediction

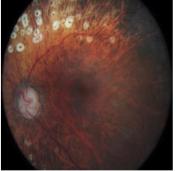
True Label: No DR || Predicted Label: No DR

True Label: DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR

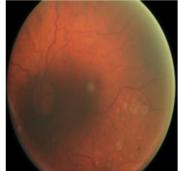
True Label: No DR || Predicted Label: No DR





True Label: No DR || Predicted Label: No DR

True Label: DR || Predicted Label: No DR




```
# accuracy, sensitivity, and specificity
cm = confusion_matrix(np.asarray(original), np.asarray(prediction))
total = sum(sum(cm))
acc = (cm[0, 0] + cm[1, 1]) / total
sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])
# show the confusion matrix, accuracy, sensitivity, and specificity
print(cm)
print("acc: {:.4f}".format(acc))
print("sensitivity: {:.4f}".format(sensitivity))
print("specificity: {:.4f}".format(specificity))
```

[[806	0]	
[194	0]]	
acc: 0.8	8060	
sensitiv	vity:	1.0000
specific	ity:	0.0000

Print out the classification repor

print(classification_report(np.asarray(original), np.asarray(prediction)))

	precision	recall	f1-score	support
0	0.81	1.00	0.89	806
1	0.00	0.00	0.00	194
				4000
accuracy			0.81	1000
macro avg	0.40	0.50	0.45	1000
weighted avg	0.65	0.81	0.72	1000

Mobilenet

trainAug = ImageDataGenerator(rotation_range=15, fill_mode="nearest")
baseModel = MobileNet(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)))

baseModel.summary()

Model: "mobilenet 1.00 224"

Layer (type)	Output Shape	Param #
input_6 (InputLayer)	[(None, 224, 224, 3)]	0
conv1 (Conv2D)	(None, 112, 112, 32)	864
conv1_bn (BatchNormalizatio n)	(None, 112, 112, 32)	128
conv1_relu (ReLU)	(None, 112, 112, 32)	0
conv_dw_1 (DepthwiseConv2D)	(None, 112, 112, 32)	288
conv_dw_1_bn (BatchNormaliz ation)	(None, 112, 112, 32)	128
conv_dw_1_relu (ReLU)	(None, 112, 112, 32)	0
conv_pw_1 (Conv2D)	(None, 112, 112, 64)	2048
 Total params: 3,228,864 Trainable params: 3,206,976 Non-trainable params: 21.888		

```
headModel = baseModel.output
headModel = AveragePooling2D(pool_size=(4, 4))(headModel)
#headModel = Flatten(name="flatten")(headModel)
headModel = Dense(1024, activation="relu")(headModel)
headModel = Dense(512, activation="relu")(headModel)
headModel = Dense(64, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = GlobalAveragePooling2D()(headModel)
headModel = Dense(2, activation="softmax")(headModel)
mobilenet_model = Model(inputs=baseModel.input, outputs=headModel)
for layer in baseModel.layers:
```

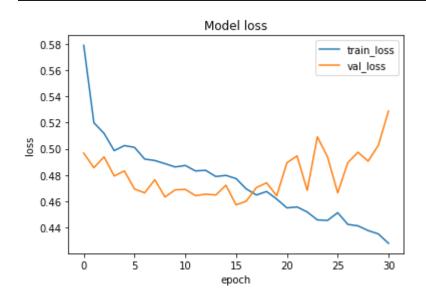
layer.trainable = False

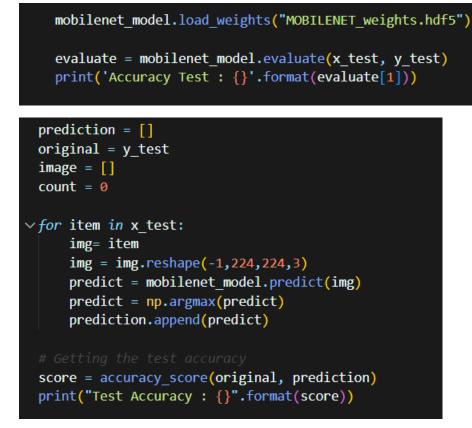
mobilenet_model.compile(optimizer = 'adam', Loss = 'SparseCategoricalCrossentropy', metrics= ['accuracy'])

earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5)
checkpointer = ModelCheckpoint(filepath="MOBILENET_weights.hdf5", verbose=1, save_best_only=True)

Epoch 1/50
445/450 [====================================
Epoch 1: val_loss improved from inf to 0.49666, saving model to MOBILENET_weights.hdf5
450/450 [=======================] - 7s 11ms/step - loss: 0.5789 - accuracy: 0.7919 - val_loss: 0.4967 - val_accuracy: 0.8175
Epoch 2/50
448/450 [====================================
Epoch 2: val_loss improved from 0.49666 to 0.48555, saving model to MOBILENET_weights.hdf5
450/450 [====================================
Epoch 3/50
445/450 [====================================
Epoch 3: val_loss did not improve from 0.48555
450/450 [====================================
Epoch 4/50
447/450 [====================================
Epoch 4: val_loss improved from 0.48555 to 0.47923, saving model to MOBILENET_weights.hdf5
450/450 [====================================
Epoch 5/50
445/450 [====================================
Epoch 5: val_loss did not improve from 0.47923
450/450 [========================] - 4s 10ms/step - loss: 0.5024 - accuracy: 0.8039 - val_loss: 0.4831 - val_accuracy: 0.8175
Epoch 6/50
446/450 [====================================
Epoch 6: val_loss improved from 0.47923 to 0.46930, saving model to MOBILENET_weights.hdf5
450/450 [====================================
445/450 [====================================
Epoch 31: val_loss did not improve from 0.45722
450/450 [=========================] - 4s 10ms/step - loss: 0.4279 - accuracy: 0.8050 - val_loss: 0.5287 - val_accuracy: 0.7825
Epoch 31: early stopping
Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u> . Adjust cell output <u>settings</u>

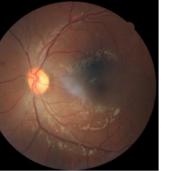
plt.plot(mobilenet_history.history['loss'])
plt.plot(mobilenet_history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('loss')
plt.xlabel('loss')
plt.legend(['train_loss','val_loss'], loc = 'upper right')
plt.show()



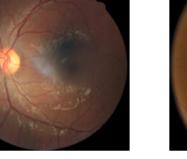


Test Accuracy : 0.806

True Label: No DR || Predicted Label: No DR



True Label: No DR || Predicted Label: No DR



True Label: No DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR

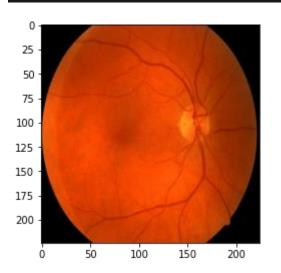
True Label: No DR || Predicted Label: No DR

[[800 0] [194 0]] acc: 0.8060 sensitivity: 1.0000 specificity: 0.0000

Print out the classification report
print(classification_report(np.asarray(original), np.asarray(prediction)))

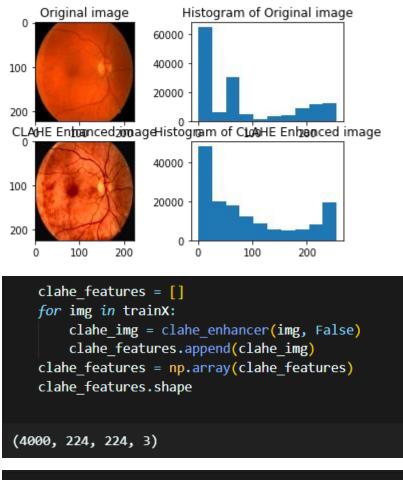
	precision	recall	f1-score	support
Ø	0.81	1.00	0.89	806
1	0.00	0.00	0.00	194
accuracy			0.81	1000
macro avg	0.40	0.50	0.45	1000
weighted avg	0.65	0.81	0.72	1000

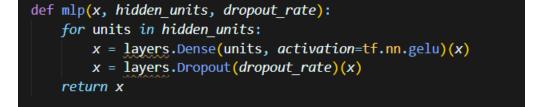
plt.imshow(features[0], cmap='bone')



```
clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8,8))
def clahe enhancer(img, demo=False):
    img_lab = cv2.cvtColor(img, cv2.COLOR_RGB2Lab)
    img_lab[:,:,0] = clahe.apply(img_lab[:,:,0])
    clahe_img = cv2.cvtColor(img_lab, cv2.COLOR_Lab2RGB)
    if demo:
        img_flattened = img.flatten()
        clahe img flattened = clahe img.flatten()
        fig = plt.figure()
        rcParams['figure.figsize'] = 10,10
        plt.subplot(2, 2, 1)
        plt.imshow(img, cmap='bone')
        plt.title("Original image")
        plt.subplot(2, 2, 2)
        plt.hist(img_flattened)
        plt.title("Histogram of Original image")
        plt.subplot(2, 2, 3)
        plt.imshow(clahe img, cmap='bone')
        plt.title("CLAHE Enhanced image")
        plt.subplot(2, 2, 4)
        plt.hist(clahe_img_flattened)
        plt.title("Histogram of CLAHE Enhanced image")
    return clahe img
```

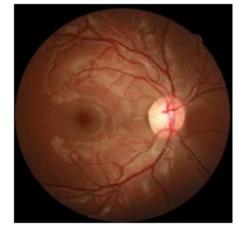
clahe_img = clahe_enhancer(trainX[0], True)
print(clahe_img.shape)

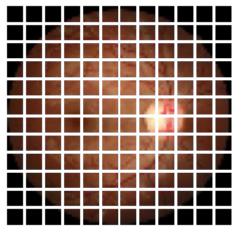


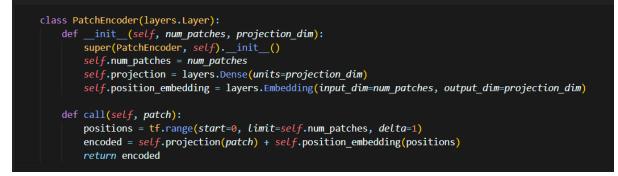


```
from tensorflow.keras import layers
class Patches(layers.Layer):
    def __init__(self, patch_size):
        super(Patches, self).__init__()
        self.patch_size = patch_size
    def call(self, images):
        batch_size = tf.shape(images)[0]
        patches = tf.image.extract_patches(images=images,
                                            sizes=[1, self.patch_size, self.patch_size, 1],
                                            strides=[1, self.patch_size, self.patch_size, 1],
                                            rates=[1, 1, 1, 1],
                                           padding="VALID",)
        patch_dims = patches.shape[-1]
        patches = tf.reshape(patches, [batch_size, -1, patch_dims])
        return patches
plt.figure(figsize=(4, 4))
image = trainX[np.random.choice(range(trainX.shape[0]))]
plt.imshow(image.astype("uint8"))
plt.axis("off")
resized_image = tf.image.resize(tf.convert_to_tensor([image]), size=(image_size, image_size))
patches = Patches(patch_size)(resized_image)
print(f"Image size: {image_size} X {image_size}")
print(f"Patch size: {patch_size} X {patch_size}")
print(f"Patches per image: {patches.shape[1]}")
print(f"Elements per patch: {patches.shape[-1]}")
n = int(np.sqrt(patches.shape[1]))
plt.figure(figsize=(4, 4))
for i, patch in enumerate(patches[0]):
    ax = plt.subplot(n, n, i + 1)
```

```
patch_img = tf.reshape(patch, (patch_size, patch_size, 3))
plt.imshow(patch_img.numpy().astype("uint8"))
plt.axis("off")
```







Vit

vit_classifier = create_vit_classifier()

INIT_LR = 1e-3 EPOCHS = 25 BS = 8

optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay)
optimizer = tf.keras.optimizers.Adam(lr=learning_rate, decay=weight_decay)
opt = Adam(lr=INIT LR, decay=INIT LR / EPOCHS)

vit_classifier.compile(optimizer=optimizer,

Loss=tf.keras.losses.SparseCategoricalCrossentropy(from_Logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])

<pre>es = EarlyStopping(monitor='val_loss',</pre>
<pre>reduce_lr = ReduceLROnPlateau(monitor = 'val_loss',</pre>
<pre>vit_history = vit_classifier.fit(x=trainX,</pre>
Epoch 1/50 179/180 [====================================
Epoch 50: val_loss did not improve from 0.51943 180/180 [====================================

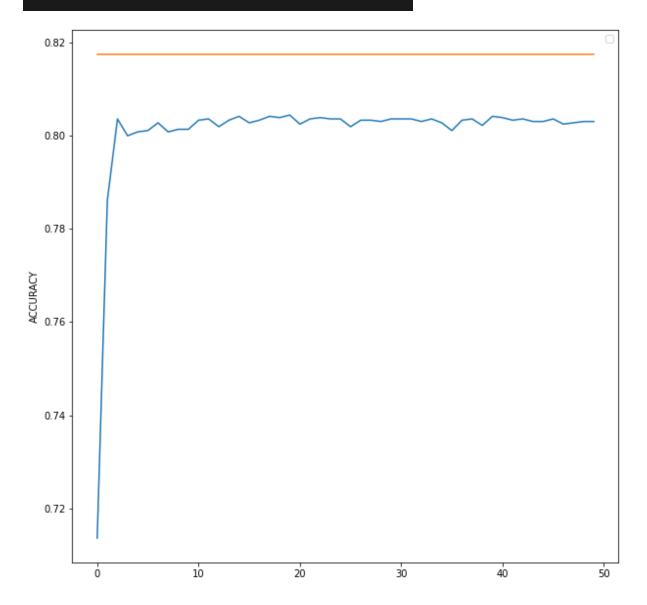
vit_classifier.load_weights("VIT_weights.hdf5")
_, accuracy = vit_classifier.evaluate(x_test, y_test)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")

32/32 [============] - 2s 26ms/step - loss: 0.5264 - accuracy: 0.8060 Test accuracy: 80.6%

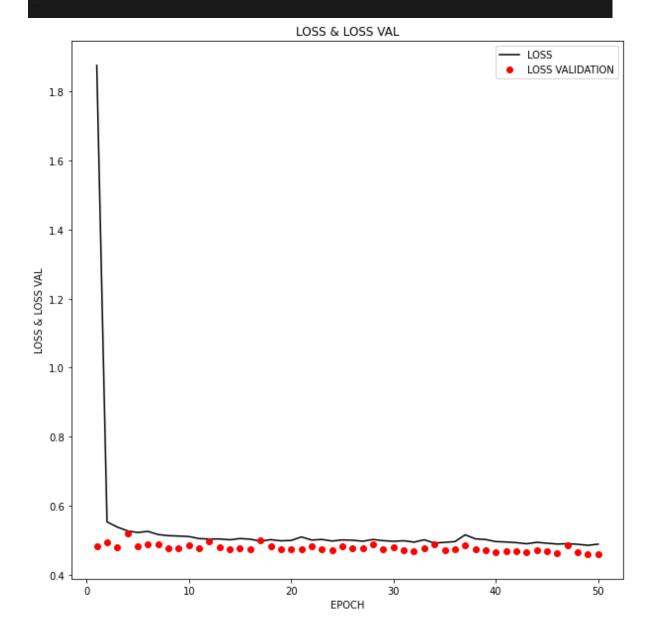
HistoryDict = vit_history.history

val_losses = HistoryDict["val_loss"]
val_acc = HistoryDict["val_accuracy"]
acc = HistoryDict["accuracy"]
losses = HistoryDict["loss"]
epochs = range(1,len(val_losses)+1)

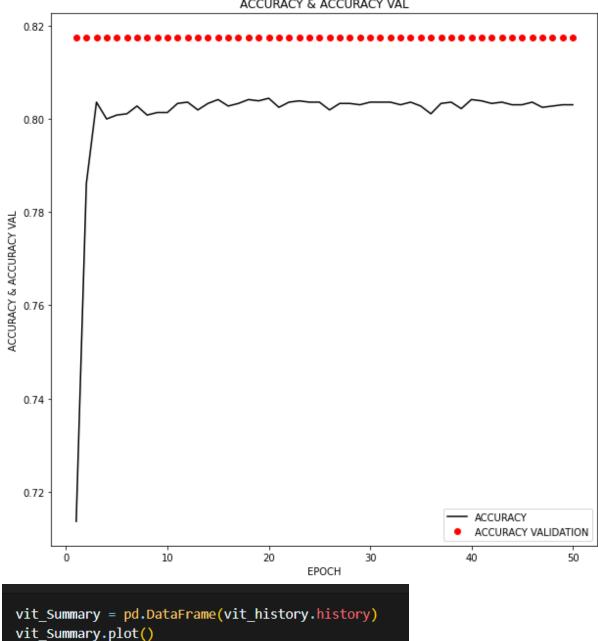
```
plt.plot(vit_history.history["accuracy"])
plt.plot(vit_history.history["val_accuracy"])
plt.ylabel("ACCURACY")
plt.legend()
plt.show()
```



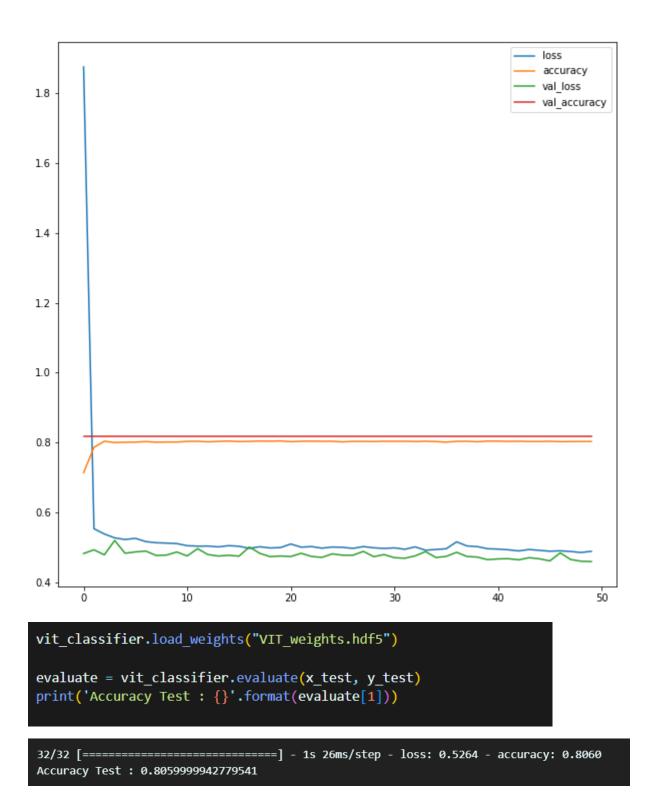
```
plt.plot(epochs,losses,"k-",label="LOSS")
plt.plot(epochs,val_losses,"ro",label="LOSS VALIDATION")
plt.title("LOSS & LOSS VAL")
plt.ylabel("EPOCH")
plt.ylabel("LOSS & LOSS VAL")
plt.legend()
plt.show()
```



plt.plot(epochs,acc,"k-",label="ACCURACY") plt.plot(epochs,val_acc,"ro",label="ACCURACY VALIDATION") plt.title("ACCURACY & ACCURACY VAL") plt.xlabel("EPOCH") plt.ylabel("ACCURACY & ACCURACY VAL") plt.legend() plt.show()



ACCURACY & ACCURACY VAL



```
# import cv2
prediction = []
original = y_test
image = []
count = 0

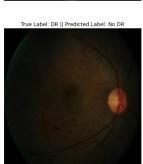
for item in x_test:
    img= item
    img = img.reshape(-1,224,224,3)
    predict = vit_classifier.predict(img)
    predict = np.argmax(predict)
    prediction.append(predict)

# Getting the test accuracy
score = accuracy_score(original, prediction)
print("Test Accuracy : {}".format(score))
```

Test Accuracy : 0.806

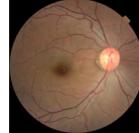
True Label: DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR



True Label: No DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR



True Label: No DR || Predicted Label: No DR

True Label: No DR || Predicted Label: No DR

cm = confusion_matrix(np.asarray(original), np.asarray(prediction))
total = sum(sum(cm))
acc = (cm[0, 0] + cm[1, 1]) / total
sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])
show the confusion matrix, accuracy, sensitivity, and specificity
print(cm)
print("acc: {:.4f}".format(acc))
print("sensitivity: {:.4f}".format(sensitivity))
print("specificity: {:.4f}".format(specificity))

[[806 0] [194 0]] acc: 0.8060 sensitivity: 1.0000 specificity: 0.0000

print(classification_report(np.asarray(original), np.asarray(prediction))) recall f1-score precision support 0 0.81 1.00 0.89 806 0.00 0.00 0.00 194 accuracy 0.81 1000 macro avg 0.40 0.50 0.45 1000 weighted avg 0.65 0.81 0.72 1000

References

Abreu, A., Ferreira, D., Neto, C., Abelha, A. and Machado, J., 2021, February. Diagnosis of Diabetic Retinopathy Using Data Mining Classification Techniques. In International Conference on Advances in Digital Science (pp. 198-209). Springer, Cham.

Alabdulwahhab, K.M., Sami, W., Mehmood, T., Meo, S.A., Alasbali, T.A. and Alwadani, F.A., 2021. Automated detection of diabetic retinopathy using machine learning classifiers. European Review for Medical and Pharmacological Sciences, 25(2), pp.583-590.

Atwany, M.Z., Sahyoun, A.H. and Yaqub, M., 2022. Deep Learning Techniques For Diabetic Retinopathy Classification: A Survey. IEEE Access.

Bora, A., Balasubramanian, S., Babenko, B., Virmani, S., Venugopalan, S., Mitani, A., de Oliveira Marinho, G., Cuadros, J., Ruamviboonsuk, P., Corrado, G.S. and Peng, L., 2021. Predicting the risk of developing diabetic retinopathy using deep learning. The Lancet Digital Health, 3(1), pp.e10-e19.

Costa, P., Araújo, T., Aresta, G., Galdran, A., Mendonça, A.M., Smailagic, A. and Campilho, A., 2019, May. EyeWes: weakly supervised pre-trained convolutional neural networks for diabetic retinopathy detection. In 2019 16th international conference on machine vision applications (MVA) (pp. 1-6). IEEE.

Farooq, M.S., Arooj, A., Alroobaea, R., Baqasah, A.M., Jabarulla, M.Y., Singh, D. and Sardar, R., 2022. Untangling computer-aided diagnostic system for screening diabetic retinopathy based on deep learning techniques. Sensors, 22(5), p.1803.

Filos, A., Farquhar, S., Gomez, A.N., Rudner, T.G., Kenton, Z., Smith, L., Alizadeh, M., De Kroon, A. and Gal, Y., 2019. A systematic comparison of bayesian deep learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481.

Imran, M., Ullah, A., Arif, M. and Noor, R., 2022. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network. Computers in Biology and Medicine, p.105424.

Kassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A. and Deters, R., 2019, December. Diabetic retinopathy classification using a modified xception architecture. In 2019 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 1-6). IEEE.

Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S. and Shah, M., 2021. Transformers in vision: A survey. ACM Computing Surveys (CSUR).

Masud, M., Alhamid, M.F. and Zhang, Y., 2022. A Convolutional Neural Network Model Using Weighted Loss Function to Detect Diabetic Retinopathy. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(1s), pp.1-16.

Mohanty, K.K., Barik, P.K., Barik, R.C. and Bhuyan, K.C., 2019, December. An efficient prediction of diabetic from retinopathy using machine learning and signal processing approach. In 2019 International Conference on Information Technology (ICIT) (pp. 103-108). IEEE.