==

-\\
National

Collegeof
Ireland

Configuration Manual

Detecting Type and Severity of Speech Impairment using Deep-
Learning Algorithms and Clustering

MSc. in Data Analytics

Ankit Chatterjee
Student ID: x21169993

School of Computing
National College of Ireland

Supervisor: Hicham Rifali

Student
Name:

Student ID:

Programme:

Module:
Lecturer:
Submission

Due Date:

Project
Title:

Word
Count:

\‘-
National College of Ireland National

College
MSc Project Submission Sheet Ireland

School of Computing

Ankit Chatterjee

Detecting Type and Severity of Speech Impairment using Deep-
Learning Algorithms and Clustering

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Ankit Chatterjee

Signature ...

14/08/2023

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including | o
multiple copies)

Attach a Moodle submission receipt of the online project | o
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the | o
project, both for your own reference and in case a project is lost
or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Detecting Type and Severity of Speech
Impairment using Deep-Learning Algorithms and
Clustering

Ankit Chatterjee
21169993

1 Introduction

This project deals with the detection of the type of speech impediments using the Long Short-Term Memory
Recursive Neural Network deep learning technique. The project makes use of raw audio files as dataset and
splits the dataset into train and test validation sets. This document serves as a configuration manual and
helps us to understand the configuration details of the entire project.

2. Environment configuration

To develop the code for the project, we have used python programming language. The version of python
used for this project is 3.10.2.

v o Ipython --version

> Python 3.10.12

2.1 Google Colab Pro

In this project, we have used Google Colab pro to run and execute the python code. Google Colab is a hosted
Jupyter Notebook Service that provides access to the computing resources like GPUs and TPUs. The reason
behind using the Colab service is its suitability for data mining, data science and machine learning projects.
Google Colab provides a platform for the code to run in an environment with high specifications.

2.2 Python Libraries

The project code requires several python libraries for different steps. The following is the list of all the
libraries that are required for importing, preprocessing and training of the data.

° Ipip list command
Pac

confectior 8.1.1

The above snippet shows the different libraries required for different steps of the project.

3. Data Collection:

The data used for this project is in the form of audio data files that comprise of the voice recordings of
patients suffering from stammering and dysarthria. The data for stammering is collected from the audio
library of the University College London and all the data is in ‘.wav’ format. The data for the dysarthria voice
samples and control group is collected from Kaggle website.

4. Data Storage:

The data collected is stored in different directories with a label on each library in the google Colab platform.
There are three directories for each of the labels i.e., ‘stammering’, ‘dysarthria’ and ‘normal’ speech. The
below code snippet demonstrates the procedure for accessing the data in the Colab platform.

° directory = '/content/'

Iterate over subdirectories in the main directory
for subdir in os.listdir(directory):

Create full path to subdirectory

subdir_path = os.path.join(directory, subdir)

if not os.path.isdir(subdir_path):
continue

#Assigning Labels
if ‘stammer® in subdir:
label = @ # stammering
elif "normal’ in subdir:
label = 1 # normal speech
elif ‘dysarthria’ in subdir:
label = 2 # dysarthria speech
else:
continue # if the folder does not match any of the above, skip

Tterate over files in subdirectory
for filename in os.listdir(subdir_path):
if filename.endswith(".wav"):
Create full path to audio file
filepath = os.path.join(subdir_path, filename)
audio_files.append(filepath)
labels.append(label)

5. Stratified Sampling of the Data:

In the below code snippet, we use the ‘train_test_split’ function of the ‘sklearn’ package to split the entire
dataset into test and train data. In this case, a stratified sampling technique is used to maintain the ratio of
the test and train data sets.

train_files, test files, train_labels, test_labels = train_test_split(audio_files, labels, test size=0.2, stratify=labels, random_state=42)

6. DatalLoader:

To ensure the effective use of memory, we use the PyTorch’s DataLoader instance for this project. PyTorch is
an opensource machine learning framework that makes use of the Python Programming language and the
Torch library.

The Dataloader is used to load the audio data files in batches rather than loading the entire dataset at one
instance.

BATCH_SIZE = 64

LEARNING RATE = ©.0001

EPOCHS = 5@

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_dataloader = Dataloader(train_dataset, batch_size=BATCH SIZE, shuffle=True)
test dataloader = DatalLoader(test dataset, batch size=BATCH SIZE, shuffle=True)

6

7. Plotting Spectrograms:

Spectrograms are widely used when examining data in the form of audio files. Spectrograms are like images
of a photograph of a signal. It plots Frequencies in X-axis and Time in Y-axis. In the spectrograms used in this

project, the plot conveys the strength of the waveform. The higher the energy of the waveform, brighter the
color of the spectrogram.

The below snippet shows the spectrogram of smoothed audio waveform post of normal speech post the
noise cancellation and the smoothing techniques.

Spectrogram
-50
20000
17500 e
=
15000 <
~ o
=)
< 12500 -150 &
e S
£ 10000 §
U L.
z &
* 7500 -200 §
&
5000
| —-250
2500 . | L
| R ') I !
i | RSO T ‘ RL i LR S
o Lt R TR Y ulJ bR g ‘.ml [
20 40 60 80 100 120
Time (s)

As part of the project, we use three datasets for analysis- Stammering, dysarthria and normal speech.
Below are three Mel-Spectrograms for each type of speech.

import numpy as np

def plot_sample spectrogram(dataset):
Select the first sample of each class
classes [e, 1, 2] # e: stammering, 1: normal, 2: dysarthria
samples {c: next(file for (file, label) in zip(dataset.files, dataset.labels) if label == c) for ¢ in classes}

for c, file in samples.items():
waveform, sr = torchaudio.load(file, normalize=True)
waveform = waveform.squeeze().numpy()

print(f“class: {c}")

Compute the Mel spectrogram
S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=128)

Convert to log scale (dB). We'll use the peak power (max) as reference.
log_s = librosa.power_to_db(s, ref=np.max)

Plot the Mel spectrogram

plt.figure(figsize=(12,4))

librosa.display.specshow(log S, sr=sr, x_axis='time', y axis="mel’")
plt.title('Mel power spectrogram (dB)")
plt.colorbar(format="%+02.af dB")

plt.tight_layout()

plt.show()

Call the function after creating the datasets
plot_sample_spectrogram(train_dataset)

The below Mel-Spectrograms are for the following three speech types respectively.
Stammering.

Mel power spectrogram (dB)

+0dB
8192
-10 dB
4096 -20dB
2048 20/88
ks
-40 dB
1024
-50 dB
512 I IR i 1 , !] -60 dB
, TR {1 hiedl 4y i
i bl dg | A, IR R RS 70 dB
0:00 0:50 1:40 2:30
Time
Normal Speech
Mel power spectrogram (dB)
+0 dB
-10 dB
4096
-20 dB
2048 30dB
™~
* dB
1024 40
-50 dB
512
-60 dB
0 -70 dB
0 0.5 1 15 2
Time
Dysarthria
-10 dB
4096
-20 dB
2048 -30dB
N -40 dB
1024 50dB
-60 dB
512
-70 dB
0 -80 dB

8. Defining and Training the LSTM-RNN Model:

The following are the libraries used for defining and training the LSTM model.

1. ‘torch.nn’: The layers of the LSTM model are defined with the PyTorch’s neural network module.

2. torch.optim.Adam: This is used for implementing the Adam optimizer during the training of the
model.

3. ‘nn.CrossEntropyloss’: This is used for calculating the Cross Entropy Loss during the training of the
model.

model = LSTMNetwork(num mfcc).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING RATE)
loss_fn = nn.CrossEntropyLoss()

4. ‘train_single_epoch’ This function is used for training one epoch so as to minimize the time taken
during training of the model.

def train_single epoch(model, data loader, loss fn, optimizer, device):
for waveforms, labels in data_loader:
waveforms, labels = waveforms.to(device), labels.to(device)
outputs = model(waveforms)
loss = loss fn(outputs, labels)

optimizer.zero grad()
loss.backward()
optimizer.step()

print(f"Loss: {loss.item()}")

5. ‘train’: This function is used to train the LSTM-RNN model on the entire dataset for the specified
epochs.

def train(model, data loader, loss fn, optimizer, num_epochs, device):
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}")
train_single_epoch(model, data_loader, loss_fn, optimizer, device)
pPrint(M-—--mmm et ")
print("Training completed!!™)

train(model, train_datalecader, loss_fn, optimizer, EPOCHS, device)

Epoch 1
Loss: ©.994987796382904

Loss: ©.9121618866922471

9. Testing the Model:

The ‘test’ function is used for testing the model on the test data

def test(model, data loader, device):
model.eval ()
correct predictions = @
total predictions = @
with torch.no _grad():
tor waveforms, labels in data loader:
wavetorms, labels = waveforms.to(device), labels.to(device)
outputs = model{wavetorms)
_, predicted = torch.max(outputs.data, 1)
total predictions += labels.size(8)
correct predictions += (predicted == labels).sum().item()

print(f'Accuracy: {correct predictions / total predictions * 10@:.2f}%")

test(model, test dataloader, device)

10. Accuracy:

The accuracy of the model is calculated as 83.33%.

def test(model, data loader, device):
model.eval ()
correct predictions = ©
total predictions = @
with torch.no _grad():
for waveforms, labels in data loader:
waveforms, labels = waveforms.to(device), labels.to(device)
outputs = model{waveforms)
_, predicted = torch.max(outputs.data, 1)
total predictions += labels.size(®)
correct_predictions += (predicted == labels).sum().item()

print(f'Accuracy: {correct predictions / total predictions * 1@@:.2f}%")
test(model, test dataloader, device)

Accuracy: 83.33%

11. Severity:

To detect the severity of the speech impediments, we use the K-Means Clustering method. We import the
KMeans library from sklearn package. The code snippet for the plot is as follows:

10

from sklearn.cluster import KMeans

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

Initialize t-SNE
tsne = TSNE(n_components=2, random state=0)

Use only 1@@@ instances to speed up the process
smaller mfcc features = mfcc features[:1000]
smaller labels = severity labels[:1060]

Apply t-SNE to the data
tsne results = tsne.fit transform(smaller mfcc_features)

Create a scatter plot
plt.figure(figsize=(10,10))
for severity class in [@, 1, 2]:
Select just the instances for this severity class
selection = tsne_results[smaller labels == severity class]
Plot these instances
plt.scatter(selection[:, @], selection[:, 1], label=f"Class {severity class}")

plt.legend()
plt.show()

In the below figure, the severity of the impediment is represented as follows:
Class O represents "Mild Severity.’
Class 1 represents "Moderate Severity.’

Class 2 represents ‘Severe Severity.’

Severity Distribution based on MFCC Features

@& Severkty O
150 ad » Severly 1
e GSeverity 2
100
L
L]
bl]
-
L]
30 1
..
L
L
0 L L]
]
. L]
L]
50 .
100 4 L
-
L
=150 A
-
=130 =100 =50] =0 100

