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Abstract 

 

 

Artificial Intelligence is significantly expanding in the current age of Information 

Technology, with many people utilizing the potential of AI to make machines intelligent 

enough to perform repetitive tasks creatively and more simply. With the advancement of 

technologies, AI research, and development have narrowed to two research areas: Machine 

Learning and Deep Learning. Machine learning algorithms are trained on data to learn 

how to perform a task. However, they are stringent for domain knowledge, while deep 

learning (a subset of machine learning) has an excellent capability to achieve flexibility in 

computational tasks and accuracy and offers to learn through neural network architecture. 

In this research paper, we examine the effect of a stacked autoencoder architecture on text 

embedding by employing Bidirectional Long Short-Term Memory (BiLSTM) and 

Bidirectional Gated Recurrent Unit (BiGRU) models. The stacked autoencoder 

architecture can capture complex patterns and parameters within the dataset due to 

multiple layers and Bidirectional LSTMs and Bidirectional GRUs, known for their 

capability to capture context from both past and future sequences, are used as components 

to study autoencoder architectures. By leveraging the strengths of both, we will show that 

there is indeed a trade-off between model complexity and accuracy using layered 

architecture. Our results showcased that a three-layered bidirectional GRU autoencoder 

has the best accuracy. Moreover, the higher number of layers has a negligible impact on 

the accuracy, while potentially taking more computing resources. 

 

 
 

1 Introduction 
 

The research area of artificial intelligence has proved to be a boon in the big data era.  Artificial 

intelligence is at the core of computer and human interaction. The motivation behind creating 

AI technologies is their ability to make machines think like human beings, mimic their 

behaviour, and perform tasks as humans do. AI-integrated machines learn from their 

surroundings, perform specific tasks, and aim to maximize the probability of success in each 

problem. Many researchers are utilizing AI techniques to solve real-world, domain-specific 

problems that started with conventional approaches, ranging from automating repetitive human 

tasks to optimization techniques and much more. In the research field of AI, Machine learning 

is a subset of AI techniques that enable computers to learn from historical data and apply what 

they learn by making intelligent decisions (Simon, 2013). The benefit of utilizing machine 
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approaches is its ability to extract the significant features out of the data while training (LeCun, 

Bengio and Hinton, 2015). Moreover, the machine learning techniques are classified into three 

approaches: supervised, unsupervised, and reinforcement learning methods. Supervised 

learning is about training the model on a labelled dataset to make predictions. There are several 

algorithms that use this type of learning, such as SVM (Support Vector Machine), etc. 

Supervised learning, being powerful, faced some challenges, including overfitting, biases, and 

difficulty scaling the data quality. Unsupervised learning is another approach to learning in 

which the algorithms are asked to find out the hidden patterns and significant features based 

on unlabelled data. The algorithms used in the learning are aimed to capture the relationships 

in the data, clusters, and characteristics of the data. These types of techniques are basically 

used for clustering, dimensionality reduction, etc. (Thomas and Gupta, 2020) Last, but not 

least, the Semi-supervised learning approach which possesses a combined method of both the 

other approaches, the algorithms in this approach are trained on a small amount of labelled 

dataset and a large amount of unlabelled dataset so that the training model will utilize the 

labeled data to improve and its accuracy and aim to uncover the hidden patterns to predict the 

unseen data. 

Traditional machine learning approaches are a broad term covering various methods and 

algorithms to make predictions. Although machine learning seems complex, these stringent 

techniques require human intervention and domain expertise. To overcome the problems 

associated with machine learning, the concept of deep learning is introduced, which promises 

excellent flexibility and power by learning the hierarchy concepts, which can be further defined 

to achieve more straightforward tasks with more accuracy and less human intervention. Deep 

learning is a subset of machine learning that comes under the unsupervised learning category 

and works on multi-layer structures. The multi-layer structures have several benefits over 

single layers as they can comprehend complex and non-linear relationships of the input data. 

Moreover, the multi-layers networks generalize the data effectively and utilize their ability to 

extract abstract features even from small datasets (Li, Pei and Li, 2023). Each layer in a 

structure performs low-level to high-level feature extraction, calling it a feature selection 

process. Among the myriad of deep learning techniques, autoencoders (Rumelhart, Hinton and 

Williams, 1985) have played a crucial role in feature extraction, dimensionality reduction, and 

data representation. A detailed introduction to autoencoders is given by (Bourlard and Kamp, 

1988). It is a specific type of neural network that promises the potential to convert raw data 

into compact and meaningful representations. As a result, they can aid in the understanding 

and manipulation of complex data. Autoencoders belong to a category of unsupervised 

machine-learning models that aim to learn compressed versions of representations of input data 

by transforming it into a latent space with reduced dimensions. The principal architecture of 

autoencoders involves two key components: an encoder and a decoder. The encoder's job is to 

compress and encode the input data, also known as the encoding phase. As the name suggests, 

it transforms or maps the input data with low-dimensional latent space or extracts meaningful 

features from input data. The purpose of the decoder is to reconstruct the original input data 

from the encoded representations, and it is known as the decoding phase. This process of 

encoding and decoding techniques in the model facilitates the acquisition of salient 

characteristics present in the input data which is why autoencoders is a valuable model 
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architecture in deep learning for various tasks like dimensionality reduction and feature 

extraction. 

 

 

One of the remarkable aspects of autoencoders is their ability to learn efficient data 

representations without requiring explicit labelling. These characteristics have gained 

significant attention in the big data era. By utilizing the potential of deep neural networks, 

autoencoders can uncover hidden patterns and relationships within the data, which can be the 

basis of improved decision-making in domain-specific tasks such as sentiment analysis and 

anomaly detection. Autoencoders have been employed not just for the purpose of reducing 

dimensionality and representing data, but they have also gained popularity as generative 

models. Variational Autoencoders (Pinheiro Cinelli et al., 2021) and Generative Adversarial 

Networks (Goodfellow et al., 2014) are the techniques that work on the principle of 

autoencoder architectures and elevate the power and creativity of AI to a new level. These 

generative models have been employed in many domain specific platforms such as image 

synthesis, drug discovery, etc. due to their ability to learn and acquire knowledge from the 

underlying probability distribution of data. The primary objective of this thesis is to examine 

the multifaceted domain of deep learning, with a specific focus on autoencoders. The 

exploration commences with an examination of the theoretical concepts and basic frameworks 

of autoencoders, in order to establish a robust groundwork for our subsequent inquiry. We 

undertake a critical experiment on the stack-layered architecture of autoencoders utilizing 

Bidirectional-LSTMs and Bidirectional-GRUs. The multiple hidden layers in autoencoders 

allow us to grasp the complex features of the input data and contribute to improving the 

outcomes (Bengio, 2009). However, some challenges are encountered due to multiple hidden 

layers while training the data, increasing training time and model complexity. This 

experimental study aims to examine the effect of the stack-layered architecture of autoencoder 

in text embedding using the Bidirectional LSTMs and Bidirectional GRUs as a combination. 

 

Following that, we have mentioned the literature study of research papers in the context to the 

topic. In Section 3, set the base for suitable methodology. Then Section 4 discusses design 

requirements and specifications, and Section 5 discusses how the model was implemented. 

Subsequently, the Result and evaluation obtained related to the model are covered, and in the 

end, the Conclusion and suggestions for future work is given. 

 

Research Question 

 

The research questions originated from the lack of detailed studies on the trade-offs between 

parametric complexity and accuracy in stack-layered autoencoders. The specific questions we 

want to address are: 

 

Question 1: What effect do Bi-LSTM and Bi-GRU layers have on the autoencoders for Text 

Embedding? 
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Question 2: What effect does stacking layers have on the accuracy of autoencoders for Text 

Embedding? 

 

2 Related Work 
 

 

The essence of any scholarly endeavour lies in including a literature review, as it provides an 

all-encompassing assessment of prior research in the field. It briefly outlines the problem, the 

ongoing investigations, and the relevant theories to explore. In the context of text 

summarization, extensive studies have been undertaken in the past, delving into diverse NLP-

based methods for textual summarization. This study delves into a comprehensive evaluation 

of various algorithmic models, focusing on exploring the impact of Deep Learning techniques 

in this domain. 

  

2.1 A Historical Journey through Autoencoders in Literature 

 

The concept of Autoencoders was first introduced in the "Learning Internal Representation by 

back propagating error" research paper, which provides simple two-layer architecture 

networks. The architecture has two input layers directly mapped to patterns in the output layer, 

with no hidden units involved. The author (Rumelhart, Hinton and Williams, 1985) introduced 

the backpropagation algorithm which is a technique to automatically adjust the weights of 

neural networks using gradient descent optimization and the delta rule. But the author 

mentioned that the loss function can be reduced (namely, the problem of local maxima or 

minima) but could not explicitly guarantee the execution period. Furthermore, a proper 

continuous, non-linear activation function for experiments is carried out, as the linear threshold 

function is discontinuous and hence does not suffice for delta generalized rules. A pioneering 

role in demonstrating the significant use of autoencoders in dimensionality reduction in neural 

networks and deep learning is studied by (Hinton and Salakhutdinov, 2006) The author utilized 

the efficient adaptive, multilayer encoder network of autoencoders to convert high-dimensional 

data to low-dimensional code and reconstruct it with the help of a decoder. Facing the problem 

of optimizing the weights of a non-linear autoencoder, the author introduced a "pretraining" 

procedure for binary data for the hidden units and generalized it to real-valued data. In contrast, 

linear units replace the visible units with Gaussian noise, which allows low-dimensional code 

to make good use of continuous variables to facilitate comparisons with PCA. The pre-trained 

algorithms allowed us to fine-tune networks and minimize the cross-entropy error. The 

autoencoder consists of layer size (28*28) with a symmetric decoder trained on 20,000 images 

and tested on 10,000 new photos. This showed that pretraining improved the model architecture 

and outperformed PCA as it has lower reconstruction loss in less training time. 

 

The non-linear functions at the hidden layer of the autoencoder are not necessary, as proposed 

by (Bourlard and Kamp, 1988). Removing non-linear functions does not affect the performance 

of the autoencoder network; even linear output weight values can be calculated using standard 

linear algebra techniques such as singular value decomposition (SVD). This finding was 
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proven to be the discovery of its time, as training the autoencoders with a large number of units 

in the hidden layer is pretty expensive. Also, the optimal weight values for autoencoders could 

be achieved by minimizing the mean squared error between the input and output of the network. 

Moreover, it suggests that it is an efficient alternative technique for error backpropagation 

algorithms but does not directly evaluate the methods. 

 

To build a deep neural network based on Stack-layered architecture for denoising 

autoencoders, a new method is proposed by (Vincent et al., 2010), which yields lower 

classification errors bridging the gap utilizing the concept of a deep belief network. The author 

aims to introduce a straightforward denoising autoencoder architecture trained to reconstruct 

the input from the corrupted version of it. This is done by first corrupting the input data using 

the masking noise, and geometric mapping between input and corrupted inputs is achieved 

using the stochastic operator's so-called manifold assumptions. Several techniques are 

compared for the Classification performance problem in which stack-layered denoising 

autoencoder architecture outperformed SVM, ordinary autoencoder pretraining (SAE) 

architecture. 

 

2.2 A Critical survey of Techniques in Text Embedding 
 
 

A lot of significant change has come to deep learning through its evolution and Artificial 

Intelligence. The progress observed in recent years in deep learning techniques, namely in the 

domain of text analysis and Natural Language Processing, is groundbreaking due to the 

emergence and improvement of neural network structures. These Structures comprised stacked 

autoencoders, LSTM networks, bidirectional LSTM networks, convolutional neural networks 

(CNNs), and bidirectional GRU. The structure of these architectures has been specifically 

designed to tackle numerous obstacles of different kinds in text embedding and sequence-to-

sequence learning. This literature review section examines and analyzes various approaches 

the researchers utilize in developing efficient hierarchical text embedding through stack-

layered autoencoders. 

 

 

The multilayered deep Long Short-Term Memory (LSTM) outperformed shallow LSTM in the 

study proposed by (Sutskever, Vinyals and Le, 2014). The model consists of two main 

components: an encoder LSTM, which reads the input sequences and generates the fixed 

dimensional vector, and a decoder LSTM, which uses the vector to create the output sequences, 

trained to maximize the conditional probability. The author trained the dataset on the WMT'14 

English to French dataset, which consists of 12 million sentences1. The possible reason behind 

the high performance of multilayered LSTM could be a large number of hidden layers and 

(input, forget, and output) gates that control the flow of information in each cell. The input and 

forget gates utilized the sigmoid and tanh functions, respectively. Moreover, the output from 

the last LSTM is fed into the naive softmax layer to generate the outcome. We implemented 

the same approach in our work, but it didn't work well with the dataset we have. However, 

 
 
1 https://www.kaggle.com/datasets/dhruvildave/en-fr-translation-dataset 
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regarding limitations, the author assesses the model evaluation of only one language pair and 

utilizes naive softmax, which is computationally expensive. 

 

 

 

A novel approach to Bidirectional LSTM with Conditional Random Field (CRF) is proposed 

by (Huang, Xu and Yu, 2015) for sequence tagging. Various LSTM-based models are utilized, 

including LSTM networks, Bidirectional LSTM, and BiLSTM-CRF. The BiLSTM-CRF 

technique outperformed the other two approaches and achieved great accuracy (close to SOTA 

techniques) on POS, chunking, and NER datasets. The novel approach of BiLSTM-CRF 

utilizes the power of BiLSTM (efficiently using both past and future input features) and CRF 

(sentence-level tag information). In the model's architecture, the LSTM layer processes the 

input sequence and generates the hidden state sequence fed to the CRF layer; then, it models 

the dependencies between the adjacent tags to predict the probable tags for the input sequences. 

 

 

In this proposed study, the authors presented an LSTM (Long Short-Term Memory) Encoder-

Decoder model for text simplification. The model comprises an encoder that generates fixed-

length sequences from the input vector representations and a decoder that decodes and 

generates output sequences by predicting the following words based on given inputs and vector 

representations. Moreover, (Wang et al., 2016) also utilized attention-based LSTM to generate 

sequences that focus on the relevant part of the input sequences. Both models are trained and 

evaluated for text simplification tasks. The evaluation is based on the model's ability to generate 

simpler sentences from their complex counterparts. The results showed that the Attention-

based LSTM Encoder-Decoder model outperformed the basic LSTM Encoder-Decoder model 

and other existing methods for text simplification tasks. However, The author mentioned 

several limitations to the proposed experiment, such as the dataset's quality and the model 

needing help with sentences with syntactically complex structures. 

 

 

A novel approach introduced in this paper for text representation and (Zhang, Liu and Song, 

2018) proposed a new LSTM structure for encoding text named Sentence-LSTM (S-LSTM) 

and argued that the traditional bidirectional LSTM has limitations in capturing long-term 

dependencies and contextual information exchange due to sequential which we have observed 

in our stacked-layer architecture experiment. The S-LSTM addresses these limitations by 

introducing the concept of a sentence-state vector, which captures the global context of the 

sentence. The sentence vector updates each timestep, relying on the input sequence and 

previous hidden states. The author evaluated the novel approach based on accuracy, F1-Score, 

and even training time and compared it with different architectures such as  Bi-directional 

LSTMs, CNNs, Bi-directional LSTMs+Attention mechanism, and Transformers. Moreover, 

The S-LSTM is trained and evaluated in several benchmark datasets, such as Sentiment 

Analysis, NER, and POS tagging, and the model outperformed all of State-Of-The-Art models 

and achieved a reward in the field of Text Representation. 

 

 

Improved and effective Variational Autoencoders (VAEs) for text modeling are proposed in 

the study by (Yang et al., 2017). The author introduced a new decoder architecture that uses 

dilated convolutions to increase its contextual capacity while effectively using encoding 

information and mentioned that dilated convolutions and the use of Gaussian prior for the latent 

variable are two significant components of their model. The author evaluated the models on 
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two datasets, Yahoo Answer and Yelp 15 reviews, and highlighted the model's potential for 

semi-supervised and unsupervised labeling tasks. The author's model evaluation is based on 

perplexity for language modeling in which dilated convolutional VAE outperformed standard 

LSTM models. Moreover, several limitations are also discussed, such as the model is 

unsuitable for the generation of long sequences, not computationally efficient as it requires a 

large number of parameters, and is slow to train. 

 

 

In comparison to the performance of LSTM, GRU, and Bidirectional RNN deep learning 

models for generating new conversations and scenario-based scripts, LSTM performed the 

best, then GRU and bidirectional RNN in the end. The study proposed by (Mangal, Joshi and 

Modak, 2019) uses the script of famous TV series, dialogues, and descriptions of the dialog to 

train the models, with the motive that the trained model will generate new scripts and will assist 

writers in developing new content. The author divided the architecture into five modules for 

each model: an embedding layer, a neural layer, a dropout layer, a dense layer, and an output 

layer. The embedding layer maps the vocabulary with 256 units; the neural layer can be either 

LSTM, GRU, or Bi-RNN and could be any combinations such as bi, tri, or quad layers. The 

dropout layer generalizes the learning process and prevents overfitting, and the dense layer 

connects all the neurons and produces the output from the layers which generate the text. On 

evaluation, the LSTM performed better in developing text in the least time than GRU and 

bidirectional RNN. 

 

 

The paper proposes a unified structure of neural networks to enhance the accuracy of text 

classification by combining the techniques of word embedding and Gated Recurrent network. 

(Zulqarnain et al., 2019) claims that this approach outperformed other RNN approaches and 

can help organizations manage and exploit meaningful information from large amounts of 

online data. The GRU model is a Recurrent neural network capable of processing sequential 

data over its RNN architecture, and it is designed in a way that overcomes the issue of vanishing 

gradient that existed in other RNNs. In this approach, the online posts were first converted into 

vector representation with the help of the word embedding technique and later fed to GRU to 

extract the contextual semantics between words. This approach is compared with other RNNS: 

Recursive Neural Networks, Matrix-Vector Recurrent Neural Networks (MV-RNN), and Long 

Short Term Memory (LSTM), in which they observed that GRUs are effective in the Text 

classification task. Moreover, the author utilized the dropout strategy and L2 regularization to 

deal with the problem of overfitting. 

 

 

The paper study about the learning effect of different hidden layers in stacked autoencoders. 

(Xu et al., 2016) utilizes the MNIST dataset to train the model on 60,000 images and to test the 

algorithm with 10,000 examples. Each image has a dimension of 28*28 pixels which converts 

into 784 numbers. The author introduces stacked autoencoders, a neural network consisting of 

multiple layers in the encoder and decoder. The stacked autoencoder is trained layer by layer, 

with each layer learning a new representation of the data. The author evaluated the stacked 

autoencoder using training error and validation error in which training error measures the 

distance between the predicted out and the actual out of the training data. For validation error, 

it measures the difference between the predicted and actual output of the validation set. In 

conclusion, the author tests the effect of different hidden layers of numbers on the learning 

capability of neural networks, and the result showed that increasing the number of hidden layers 
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can improve the performance of the autoencoder up to a certain point, beyond a certain number 

of hidden layers it starts to degrade. 

 

 

The research study proposes a new method for learning mapping in the embedding space of an 

autoencoder which allows the generation of long and complex sentences called Bag-of-Vectors 

Autoencoders (BoV-AEs). BoV-AEs encode the text into a variable-size bag of vectors that 

grows with the size of the text, which is similar to the attention-mechanism method, and 

proposed a novel regularization technique that helps in learning meaningful patterns in the 

latent space. (Mai and Henderson, 2021) evaluated the effectiveness of BoV-AEs on three 

unsupervised learning tasks, such as style transfer, sentiment transfer, and sentence 

summarization with different datasets. The proposed method is compared based on the tasks 

with standard autoencoder, fixed-size autoencoder, and seq-to-seq model and outperformed 

previous methods on all three tasks. 

 

 

A comparative study on classic and contextualized word embeddings in deep learning was 

conducted by (Wang, Nulty and Lillis, 2020)  for text classification tasks. The author utilized 

various datasets to train the models (word2vec, GloVe, and FastText) for classic word 

embeddings and models (ELMo and BERT) for contextualized embeddings. Moreover, the 

Bidirectional LSTM is used as a downstream encoder in contextualized word embedding on 

SST-2 dataset. Similarly, CNN is also used in classic word embeddings in AAPD, Reuters, and 

20NewsGroup datasets. According to the neural network architectural viewpoint, the 

embedding layer passes the text representation to the downstream encoder, which could be 

either Bidirectional LSTM or CNN; the Bidirectional LSTM processes the representation 

forward and backward to seize the contextual information, whereas CNN applies a series of 

convolutional filters to capture the essential local features. The following fully connected layer 

maps the input sequence with fixed vector representations. It passes it to the classification layer, 

which could be either a single softmax or multi-label sigmoid layer to predict the label of input 

text. Overall, the study utilized different architectures and evaluated the models' performances 

on various datasets to learn the effective representations of text in classification tasks. It was 

found that (ELMo and BERT) performed better than (word2vec, GloVe, and FastText) on SST-

2 dataset. However, the result is vice versa on the rest of the datasets. 

 

 

With the motive to understand pattern recognition for adaptive user interfaces, (Umer et al., 

2023) proposed a study focussed explicitly on text classification tasks using machine learning 

and deep learning models. The author investigated the impact of convolutional neural network 

(CNN) and FastText embedding and compared it with machine learning approaches, including 

random forest, logistic regression, extra tree classifier, gradient boosting machine, and 

stochastic gradient descent. Several preprocessing steps are performed on every dataset which 

deals with missing or inconsistent values, and stops word is removed. Then tokenized and 

converted to vector representations. FastText is a popular word embedding technique used to 

extract high-quality features represented in high-dimensional space. These vector 

representations are passed to the dropout layer to prevent over-fitting and passed to a 3-layered 

convolutional neural network. These layers will slide multiple filters on input data along with 

convolutional operations to generate feature maps. The generated maps are then passed through 

the max-pooling layer for dimensionality reduction, and the maps will be moved further to fully 

connected layers which predict the output. The results showed that FastText embedding with 

the CNN approach is potentially effective and surpasses all other machine-learning models. 
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                                                        Table 1: Summary of Related work. 

 

Reference Work 

(Rumelhart, Hinton and 
Williams, 1985) 

Learning Representations by back Propagating error. 

(Hinton and Salakhutdinov, 
2006) 

Dimensionality reduction techniques. 

(Bourlard and Kamp, 1988) Standard Autoencoders. 

(Vincent et al., 2010) Standard Stacked Autoencoders. 

(Sutskever, Vinyals and Le, 
2014) 

Multilayered LSTM, Shallow LSTM 

(Huang, Xu and Yu, 2015) Bi-LSTM with CRF. LSTM 

(Wang et al., 2016) LSTM, LSTM+Attention Mechanism 

(Zhang, Liu and Song, 2018) LSTM, Bi-LSTM, Bi-LSTM+Attention, CNN 

(Yang et al., 2017) CNN-VAE, LSTM. 

(Mangal, Joshi and Modak, 
2019) 

LSTM, GRU, Bidirectional RNN. 

(Zulqarnain et al., 2019) GRU, RNN, MV-RNN, LSTM. 

(Xu et al., 2016) Stacked Autoencoders. 

(Mai and Henderson, 2021) Bag-of-Vectors Autoencoders. 

(Wang, Nulty and Lillis, 
2020) 

CNN, Bidirectional LSTM, FastText, GloVE. 

(Umer et al., 2023) FastText with CNN model. 

 

 

 

3 Research Methodology 
 

The section research methodology is a systematic and structured approach used in the 

experiment of hierarchical text embedding using stack-layered autoencoders. The selection of 

the most suitable data mining approach is a crucial part of crafting a model to generate precise 

and accurate results. With the careful examination of various data mining techniques, we have 

selected the KDD (Knowledge Discovery in Databases) approach, which starts with data 

collection, preparation, and preprocessing, generating meaningful insights from the massive 

corpora, and model development. The rationale judgement behind selecting this approach for 

this study is derived from its comprehensive framework, which allows a detailed explanation 

of each component. Figure 1 depicts thorough sequence-wise steps involved in the process. 
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3.1 Data Collection and Data Description 

 

For the purpose of data collection in this study, the well-known Brown Corpus from the Natural 

Language Toolkit (NLTK)2 library was used to collect data. The Brown Corpus is a crucial 

dataset that has been around since the 1960s and is extensively utilized in the field of natural 

processing language. It is the first million words corpora in the English language, which was 

collected electronically. The corpus consists of 500 samples and is categorized into 15 genres, 

including politics, books, sports, culture, and even news, which make up the corpus as a whole. 

In this research project, the Brown Corpus is used as a foundational dataset for hierarchical 

text embedding techniques utilizing autoencoders. 

 

3.2 Data Preprocessing and Visualizations 

 

In this study, comprehensive data processing was performed to prepare the Brown Corpus, 

which is a collection of sentences in the English language. The corpora are rich textual data 

categorized into 15 types of various genres and are utilized for subsequent analysis and text 

embedding using stack-layered autoencoders. Initially, the Brown Corpus was assessed using 

the Natural Language Toolkit (NLTK) library, which is a powerful and famous Python library 

specially designed to work with human language data in the field of Natural Language 

Processing. To gain insights into the language and frequency distribution from the Brown 

corpus, The text was tokenized into words, and the frequency distribution of the words in the 

dataset was calculated to reveal the top 30 most common words, which shows the prominence 

of specific words in the dataset.   

 

 
Fig.1: Top 30 common words in the Brown corpora. 

 

POS tagging or Part-of-Speech tagging is a crucial step of data preprocessing in the domain of 

Natural Language Processing, which involves assigning a grammatical category to each word 

in a given sentence. The words in the Brown corpus are analyzed and assigned POS tags to 

 
 
2 https://www.nltk.org/book/ch02.html 
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each word. The frequency distribution of resulting POS tags is shown in Fig. 2, which provides 

insights into the text structure. 

 

 
Fig. 2: Top 30 POS Tag Distribution. 

 

A word cloud is generated to visually understand the frequency of the most common words. 

The frequency influences the size and color of the words; the most common words will be more 

significant in size. Furthermore, the maximum length of a sentence and the number of sentences 

from the corpus are calculated and analyzed. Thus, a resulting distribution graph for sentence 

lengths was plotted, which helps to understand the variability and structure of sentences within 

the corpus. 

 

 
Fig. 3: Sentence length distribution graph in the Brown corpus. 

 

In the context of text embedding, the vocabulary size refers to the number of unique words in 

the corpus. Furthermore, the data is preprocessed for tokenization and padding. Tokenization 

is the process of breaking down text or a sequence of characters into smaller units known as 
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tokens. They are units of text that are used as input for natural processing tasks. The nltk 

tokenizer class (version 3.8) from Keras Library was employed to tokenize the sentences into 

sequences of integers, padding was employed to ensure tokenized sequence should be used in 

fixed length. The resulting padded sequences are the basis for text embedding and modeling 

processes. 

 

 
Fig. 4: This word cloud represents the frequency of words within the Brown Corpus, it is a 

comprehensive collection of American English texts comprised of various genres and 

published between 1961 and 1972. In this visualization, larger and bolder words indicate higher 

frequency. 

 

4 Design Specification 
 

This design specification outlines the techniques, architecture, and framework for 

implementing hierarchical Text embedding using stack-layered autoencoders. The primary 

goal of this section is to investigate the influence of Bidirectional LSTMs and Bidirectional 

GRUs on stack-layered autoencoders, with a focus on capturing intricate hierarchical features 

within textual data. The proposed architecture in this study comprised eight models: four 

models using Bidirectional LSTMs (Long-short-term memory) and four others Bidirectional 

GRUs (Gated Recurrent unit). According to (Tan et al., 2000), Text is a rich source of 

information and gives us the opportunity to gain valuable insights which cannot be achieved 

using quantitative methods. The main aim of different natural language processing methods is 

to get a human-like understanding of the text (Wang, Nulty and Lillis, 2020). Several 

approaches are available to carry out information from vast amounts of text from the corpora; 

one of them is autoencoder. Autoencoders are employed in unsupervised learning techniques 

to reduce the dimensions of the data which non-linear to describe relationships between 

dependent and independent features. Thus, effectively used for feature extraction. However, 

feature extraction for datasets having complex relationships is not a small feat. That is why an 
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autoencoder is not sufficient. A single autoencoder might not be able to capture all the intrinsic 

features. Therefore, for such cases, we study the effect of stack-layered autoencoders with 

Bidirectional LSTMs and Bi-directional GRUs. The Bidirectional LSTM has distinctive 

characteristics to process input sequences in both forward and backward directions making it 

an asset for valuable tasks where patterns are complex and required to capture relationships 

between the elements of sequences. Thus, it is very crucial to feature extraction tasks. 

Bidirectional GRUs has almost the same abilities as Bi-LSTM but has an advantage in terms 

of less training time and operate on fewer parameters. Therefore, Bi-LSTM and Bi-GRU are 

the well-suited layer for stacked autoencoders and for our research endeavour. 

  

In our study, the proposed architecture involves building four incremental models of 

autoencoders (Bidirectional LSTMs and Bidirectional GRUs). Each model has two significant 

components: an encoder and a decoder. The encoder is constructed using Bidirectional LSTMs 

and Bidirectional GRUs in a stack-layered manner. The input sequential data is processed 

through successive layers of these recurrent units to extract meaningful hierarchical features 

from the input text sequences. The encoder is responsible for encoding or capturing the intricate 

features from the input text, and the decoder aims to reconstruct the input text from the encoded 

representation while preserving the hierarchical features. The encoder is responsible for 

transforming input sequences into latent representations by using Bidirectional LSTMs and 

Bidirectional GRUs. It starts with the embedding layer, which maps words to continuous 

vectors, Bi-LSTM layers follow the embedding layer, capturing the context in both forward 

and backward directions at each layer to uncover the intricate dependencies present in the text. 

Similarly, Bidirectional-GRU is applied in the same manner in other models, which provides 

an alternative mechanism to capture temporal patterns. The decoder's objective is to reconstruct 

the input sequences from the encoded representations keeping the hierarchical information 

intact. A RepeatVector layer is used to duplicate the encoded representation across the 

sequence length, facilitating reconstruction. Moreover, the decoder includes layers similar to 

the encoder's architecture to generate the output sequences. 

 

 
Fig. 5: Architecture for Design Specification. 

 

Figure. 5 illustrates the architecture for design specification utilized in the study and also 

demonstrates the processes carried out in this research from the beginning to the execution. 

The dataset is downloaded and is made available from the nltk library to preprocess. Python is 

used to perform cleaning, visualize, or to gain insights from the corpus. Necessary calculations 

such as vocab size, maximum length of sentences, and count of sentences, and words are carried 
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out in order to understand the variability of sentences in the corpus. Subsequently, the data was 

pre-processed for tokenization and padded up to a fixed length before feeding to the 

autoencoder. The model received the prepared data for training and testing. The models are 

evaluated on the basis of training time, Training and Testing Accuracy, and Loss functions.        

 

5 Implementation of the Models 
 

The methods used to complete the assignment for the study are briefly discussed in this section. 

 

5.1 Experimental Setup 

 

Utilizing the advantages of readily accessible library modules, Python programming language 

is employed for the completion of this task, specifically version 3.6.9. Both the local 

workstation and Google web services are used for the execution of tasks. The local workstation 

with the hardware configuration of 64-bit Windows 11 OS, 11th Gen Intel(R) Core(TM) i5-

11300H @ 3.10GHz Processor and 16GB of RAM was initially used. The first model training 

was done on the local workstation, but as we started training the model, it required massive 

amount of training time. Because of this, we switched to Google Clab Pro services. The Google 

Colab Platform is based on IaaS, which utilizes the Google Compute engine for computing 

operations. It offers a platform to write and execute code collaboratively and has a Jupyter 

Notebook interface specially designed for tasks like data analysis, machine learning, and deep 

learning. The High-end CPU, 25GB of RAM, and 100 computing units were configured to 

execute the task. 

 

5.2 Implementation of Stack-Layered Autoencoders 

 

The implementation process involved several key steps in preprocessing and analyzing the text 

data using Python programming language (version 3.6.9) along with essential libraries such as 

keras, numpy, pandas, matplotlib, etc. The Natural Language Toolkit (NLTK) and Keras 

libraries were employed, requiring installation through pip commands at the beginning. These 

libraries are required to facilitate work with text processing and deep learning operations. 

To begin, the Brown Corpus was downloaded using the NLTK library. The corpus consists of 

text documents in the English language categorized by 15 genres, making it suitable for several 

NLP tasks. The frequency distribution of words is calculated using the FreqDist function, and 

a visualization was created to plot the top 30 most common words in the corpus utilizing the 

matplotlib library. In the next step, we conducted a POS tagging analysis in which tags or 

grammatical categories were assigned to each word in a sentence, the frequency distribution of 

POS tags was determined, and the corresponding plot was generated. For further analysis, the 

number of sentences in the corpus and the length of sentences were calculated with the help of 

the number of words in a sentence. The distribution of the maximum length of sentences was 

plotted using a histogram which offered insights into the structure of text data in the corpus. A 

vocabulary set was created to store unique words from the Brown Corpus. The number of 

unique words and the count of sentences are calculated and printed to provide an overview of 
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the corpus characteristics. Unique words from the vocabulary were combined into a single 

string and to add the element of randomness, a function was defined to generate random colors, 

and a visually appealing word cloud was created to get more insights. Following these 

preliminary steps, parameters were defined for the subsequent data processing. These included 

the number of words in the vocabulary (num_words), the maximum length of the sequence 

(maxlien), and other hyperparameters required for the models. Furthermore, Tokenization, is a 

crucial step in natural language processing, was performed to convert the text data into 

sequences of integers or tokens. The Tokenizer class from Keras was utilized to tokenize the 

sentences into the sequence of tokens. The tokenizer was fitted on the input text data, and 

sequences were generated by mapping each word to its corresponding integer. The tokenized 

sequences were then padded to fixed uniform length using the pad_sequences function, 

ensuring consistent input dimensions for subsequent processing. These steps laid the 

groundwork for further processing and analysis using the autoencoder architecture with 

bidirectional LSTM and GRU layers. 

 

 

Table 2: Description of Hyperparameters. 

 

Hyperparameters 

 

Description 

 

Value 

 

Hidden Layers 

Intermediate layers between the 

input layer and the output layer of a 

neural network. 

 

(1,2,3,4) 

 

Neural Layers 

All layers within a neural network.  

(1-8) 

 

Embedding_Dimension 

The embedding dimensions in 

encoder and decoder. 

 

128, 256 

 

Loss_Function 

A measure of the difference 

between the predicted values and 

actual target values. 

 

Sparse categorical crossentropy 

 

Optimizer 

A method for minimizing the loss 

function. 

 

Adam 

 

Activation 

To capture complex relationships 

between input features and model 

predictions. 

 

SoftMax, ReLu 

 

Early_Stopping 

It Stops the training process once 

the model's performance starts to 

degrade. 

 

1 

 

Workers 

Speed up data processing by 

performing tasks concurrently. 

 

16 

 

Epochs 

Number of times the entire training 

dataset will be used to train the 

model 

 

15 
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5.2.1 Implementation of Stack-Layered Autoencoders using Bidirectional 

LSTMs 

 

To build a hierarchical text embedding model using a stack-layered autoencoder architecture, 

we utilized Bidirectional LSTMs, sequentially in the incremental form in different models. We 

first started off with the input layer in the encoder component. It is designed to accept input 

sequences, where each sequence can have a maximum length of 'maxlen'. Then, we utilized the 

embedding layer to convert input sequences into dense vector representations. These vectors 

capture the semantic and syntactic relationships between words. The possible words in a 

sequence can be represented 'num_words' which is associated with the embedding dimension 

provided for the layers. A series of Bidirectional Long Short-Term Memory (LSTMs) are 

employed as per the model architecture, constituting the essence of the encoder phase. The 

benefit of utilizing the LSTM is its ability to capture temporal dependencies within sequential 

data. The term 'Bidirectional' denotes its capability to perform concurrent analysis and capture 

semantic and contextual nuances in both forward and backward directions. The purpose of 

employing stacked bidirectional LSTMs hierarchically is to construct representations at each 

stage, which are modified from the previous one to enhance their capacity to comprehend the 

context in a much better way. Each layer encompasses 128 units and employs the Rectified 

Linear Unit (ReLU) activation function to introduce non-linearity. Each layer passes its output 

sequences to the next layer and the following layer tries to capture the output sequences and 

produce its own sequences with the modified version of meaningful representations. The last 

layer processes the output sequence of the previous layer and generates a singular output 

sequence. An encoder model is designed to take the input sequences from the last layer and 

generates its output sequence, which encapsulates the encoder component of the hierarchical 

text embedding architecture. 

The outcome of the encoder model serves as the input for the decoder segment of the 

architecture and the RepeatVector layer is employed to replicate the encoder output sequence 

and to match the sequence length 'maxlen' which prepares the input for the Decoder 

Bidirectional LSTM layers. Similar to the encoder architecture, the decoder employs a 

comparable number of Bidirectional layers. However, the role of these is to reconstruct the 

original sequences from the hierarchical embeddings learned by the encoder. The multiple 

decoder LSTM layers are duplicated for each layer in the encoder. The output from the decoder 

bidirectional LSTM layers is directed to the dense layer, designed with the softmax activation 

function to predict the most probable word from the vocabulary for each position in the 

sequence. The number of neurons in this dense layer corresponds to "num_words". 

The conclusive output from the dense layer signifies the regenerated sequences founded on the 

acquired hierarchical embeddings.  This methodology holds the potential to comprehend 

intricate patterns and relationships present within text data.    

 

5.2.2 Implementation of Stack-Layered Autoencoders using Bidirectional 

GRUs 

The same architecture and implementation are utilized for stack-layered autoencoders using 

bidirectional GRUs. However, GRU has a simpler architecture as compared to LSTMs Which 
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require fewer parameters and can lead to efficient memory utilization. Moreover, GRUs 

address the vanishing gradient problem more efficiently than LSTMs and have faster 

convergence rates due to simpler architecture and gating mechanisms.    

 

6 Evaluation. 
 

In the result and evaluation section, we have shown the trade-off between complexity and 

accuracy in stacked autoencoder architecture. A number of experiments are proposed with 

incremental layers from one to four and evaluate every single bidirectional LSTM and 

bidirectional GRU layer to show their efficacy in the model. 

6.1 One-Bidirectional LSTM In Stack-Layered Autoencoder. 
 
 

 
 

Fig. 6: Loss Graph for One-Bidirectional LSTM in Stack-Layered Autoencoder. 
 

 

 
 

Fig. 7: Accuracy Graph for One-Bidirectional LSTM in Stack-Layered Autoencoder. 

6.2 Two-Bidirectional LSTM In Stack-Layered Autoencoder. 
 

 
Fig. 8: Loss Graph for Two-Bidirectional LSTM in Stack-Layered Autoencoder. 
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Fig. 9: Accuracy Graph for Two-Bidirectional LSTM in Stack-Layered Autoencoder. 

 

6.3 Three-Bidirectional LSTM In Stack-Layered Autoencoder. 
 
 

 
 

Fig. 10: Loss Graph for Three-Bidirectional LSTM in Stack-Layered Autoencoder. 

 

 

 
Fig. 11: Accuracy Graph for Three-Bidirectional LSTM in Stack-Layered Autoencoder. 
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6.4 Four-Bidirectional LSTM In Stack-Layered Autoencoder. 
 

 
 

Fig. 12: Loss Graph for Three-Bidirectional LSTM in Stack-Layered Autoencoder. 

 

 

 

Fig. 13: Accuracy Graph for One-Bidirectional LSTM in Stack-Layered Autoencoder. 

 

6.5 One-Bidirectional GRU In Stack-Layered Autoencoder. 
 

 
                 Fig. 14: Loss Graph for One-Bidirectional GRU in Stack-Layered Autoencoder. 
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             Fig. 15: Accuracy Graph for One-Bidirectional GRU in Stack-Layered Autoencoder. 
 

6.6 Two-Bidirectional GRU In Stack-Layered Autoencoder. 
 

 
                Fig. 16: Loss Graph for Two-Bidirectional GRU in Stack-Layered Autoencoder 

 

 
                Fig. 17: Loss Graph for Two-Bidirectional GRU in Stack-Layered Autoencoder 

6.7 Three-bidirectional GRU In Stack-Layered Autoencoder. 

 

                Fig. 18: Loss Graph for Three-Bidirectional GRU in Stack-Layered Autoencoder. 
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           Fig. 19: Accuracy Graph for Three-Bidirectional GRU in Stack-Layered Autoencoder. 

 

 

6.8 Four-Bidirectional GRU In Stack-Layered Autoencoder. 
 

 

 

                Fig. 20: Loss Graph for Four-Bidirectional GRU in Stack-Layered Autoencoder. 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 21: Accuracy Graph for Four-Bidirectional GRU in Stack-Layered Autoencoder 
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6.9 Discussion 
 

In the bidirectional LSTM architecture of the stacked autoencoders, the models with increasing 

layers consistently decrease the loss function and improve accuracy. With Two-BiLSTM and 

Three-BiLSTM models demonstrate enhancing accuracy and reducing loss. However, the Four 

Bi-LSTM model encounters converging issues. On the other hand, Bidirectional GRUs 

architecture performance benefited from the increased number of layers, resulting in improved 

accuracy, decreased training loss, and efficient training time. Moreover, it can be noted that 

Four Bi-GRU has outperformed all other models with its performance in accuracy in a 

reasonable amount of time. 

                Table 3: Result and Evaluation table for Bidirectional LSTMs in Stack-Layered Autoencoder. 

 
Layers 

 
 Loss 

 
 Accuracy 

 
Training 

Time 

 
Figure 

Reference 

 
Bi-LSTM 

 
2.6530 

 
70.25 

 
3hrs 7mins 

 
Fig. 6 and Fig. 7 

 
Two_Bi-LSTM 

 
1.2044 

 
78.33 

 
6hrs 1mins 

 
Fig. 8 and Fig. 9 

 
Three_Bi-LSTM  

 
1.2277 

 
78.18 

 
7hrs 11mins 

 
Fig. 10 and Fig. 11 

 
Four_Bi-LSTM 

 
nan 

 
68.81 

 
2hrs 36mins 

 
Fig. 12 and Fig. 13 

       

                Table 4: Result and Evaluation table for Bidirectional LSTMs in Stack-Layered Autoencoder. 
 

Layers 

 
Loss 

 
Accuracy 

 
Training 

Time 

 
Figure 

Reference 

 
Bi-GRU 

 
2.7098 

 
68.81 

 
1hr 56mins 

 
Fig. 14 and Fig. 15 

 
Two_Bi-GRU 

 
1.1583 

 
78.58 

 
6hrs 20mins 

 
Fig. 16 and Fig. 17 

 
Three_Bi-GRU  

 
1.1466 

 
79.74 

 
7hrs 17mins 

 
Fig. 18 and Fig. 19 

 
Four_Bi-GRU 

 
1.0873 

 
79.75 

 
6hrs 29mins 

 
Fig. 20 and Fig. 21 

                  

This section will discuss the results obtained from the experiments as part of our research study. 

Evaluating the results will challenge the effectiveness and design of our models. The goal of 

this study is to investigate the effect of stack-layered autoencoder on hierarchical embedding 

utilizing bidirectional LSTM and GRU layers. The obtained outcomes from the result of 

experiments provide valuable insights into the effectiveness of different architectures of the 

autoencoder. The incremental layered architecture from a single Bi-LSTM or GRU layer to 
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multiple layers sheds light on the layer depth's impact on loss and accuracy. The increase in 

the layer in the autoencoder showcased the improvement in its accuracy and decrementing loss 

values. However, there are cases where more complex architectures lead to diminishing results. 

Moreover, as we move up the hierarchy of layers, the trade-off between complexity and 

accuracy becomes clear. The training time of a model has great significance in the design and 

specification of architectures. As the model evolves in complexity, the associated training time 

changes considerably. It drives a crucial factor in organizations while implementing large 

models for research and development. 

Though our model design has been diligently executed, there are some areas for potential 

improvements. The bidirectional LSTM model with four layers fails to converge even though 

the same model with two and three layers displayed good accuracy and lower training loss 

values. The models' convergence and performance stabilization could be further optimized by 

tuning the hyperparameters, such as exploring adaptive learning rate, and utilizing 

regularization methods to mitigate overfitting. Additionally, the presence of Nan values in 

training loss indicates potential instabilities which could be solved through modified training 

approaches. Relating to our findings, we could have also evaluated the hierarchical embedding 

representations downstream to several tasks such as machine language translation, Sentiment 

analysis, Q/A system, etc. Comparison with other similar studies shows how the architecture 

could be improved with better efficiency. 
 

7 Conclusion and Future Work 
 

In summary, this research investigated the effects of bidirectional LSTM and GRU layers in a 

stack-layered autoencoder architecture for hierarchical text embedding. The research question 

revolves around finding the impact of these layers on text-embedding techniques and model 

performance. Our objectives successfully addressed the understanding of hierarchical 

meaningful representations, construction of experimental setups, and analysis results. Our 

study clearly indicates the impact of layer depth in an autoencoder on both loss and accuracy 

metrics. Our models have shown promising results with incrementing layers in the 

autoencoders. From the results, we have shown that a three-layered bidirectional GRU 

autoencoder architecture has the best trade-off between model complexity and accuracy. The 

higher number of layers such as in four GRU layered architecture could increase the learning 

time, but as seen in the work, the early stopping function can actually reduce the learning time. 

However, the accuracy is marginally higher than the three-layered GRU architecture. 

Moreover, several inconsistencies are observed in the model architecture of four bidirectional 

LSTM layers. The model displayed a complexity-performance trade-off, and the optimization 

algorithm struggled to find the optimal set of weights that minimizes the loss function, resulting 

in convergence issues. These convergence issues might arise due to improper initialization of 

weights, inadequate learning rates, or vanishing gradients problems. These issues can be 

addressed by carefully performing hyper-tuning the parameters or using L2 regularization 

methods. 

We have also observed that stack-layered autoencoder architecture captures meaningful 

representation hierarchically, but we needed to evaluate the model by downstream the tasks to 

machine translation or Q/A system. Furthermore, we analysed the parameters we selected in 

strict conditions. This is because these models are computationally expensive and require 

considerable training time to execute diligently. Moreover, customizing the model to achieve 

better results using attention mechanisms in stack-layered autoencoders may deliver better 

results utilizing bidirectional LSTM, and GRU is still an open question. Ultimately, our study 

contributes to a deeper comprehension of these models while revealing untapped research 

directions. 
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