-—

National
Collegeof

Ireland

A Machine Learning Pose Detection
Framework to Identify Suspicious Activity

Research Project — Configuration Manual
MSc Data Analytics

Rajat Deepak Agrawal
Student ID: x21172030

School of Computing
National College of Ireland

Supervisor: Paul Stynes

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student ... Rajat Deepak Agrawal.........ccooiiiiiiiiii e
Name:
Student ID: D N 0 01 O S
Programme:...MSc Data Analytics......... cccoceeuneeen. Year: 2023..........
Module: ...Research Project -Configuration Manual............ccccooeiiieiiiiiieiv e,
Lecturer: ... Prof. Paul SEYNES ...t e
Submission
Due Date: 14/08/2023 et e s
Project ... A Machine Learning Pose Detection Framework to Identify Suspicious
Title: A CEIVIEY ettt e e et e e et e e e e aare e e s eaeentes
Word
Count: 1755 e, Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rajat Deepak AGrawal ...

Date: .. 1470872023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

A Machine Learning Pose Detection Framework to
Identify Suspicious Activity

Rajat Deepak Agrawal
Student ID: x21172030

1 Introduction

This configuration manual describes the steps which were taken in the implementation of the
research project ‘A Machine Learning Pose Detection Framework to Identify Suspicious
Activity’. The document gives information about steps taken to acquire the data, system
specifications for the project, libraries used, and code walkthrough which has been used for
the implementation.

The document is divided into 6 sections. Section 2 consists of system requirements, section 3
gives information about data collection, section 4 gives information on data preprocessing
and transformation, section 5 gives information about models which were analyzed, and
section 6 provides information on alarm system.

2 System requirements

The implementation of this research was done on google colab pro platform. The whole
research was implemented using Python as programming language. The GPU hardware
accelerator used was A100 on colab. The dependencies which needed to be installed was
YOLOS5 using git cloning.

lgit clone https://github.com/ultralytics/volows # clone
#cd wolows
#pip install -gr requirements.txt # dnstall

import torch
import wtils
display = wutils.notebook_init() # checks

Figure 1 GIT cloning for YOLO

iapipe r

~t os

t numpy as np

~t torch

google.colab.patches import cw2_imshow

numpy as np
pandas == pd
tensorflow as +F

lightgbm == lgb
xgboost as xgb

matplotlib.pyplot as plt

B Figure 2 All the Necessary Libraries

1

Figure 1 shows the commands to follow for YOLO installation while Figure 2 shows all the
other libraries which needs to be installed before further processing.

3 Data Collection

To implement the study, a publicly available dataset called ‘UCF-Crime’ was used. The data
consisted of 1900 surveillance videos which were 128 hours long in total. These videos
consisted of 13 classes of suspicious activities such as Abuse, Arrest, Vandalism, etc.
https://www.dropbox.com/sh/75v5ehg4cdg5g5g/AABvnISwZI7z2Xb8 myBAOCLHa?dI=0)

[

Anomaly-Detection-Dataset
from ¢ c (UNG Charlotte]

Copy to Dropbox & Download

1
¢

Event_Recognition zip

Figure 3 Dataset

As the data is almost 100GB’s of size it is present on the open Dropbox link provided by
creators. This data needs to be copied onto our personal dropbox for the purpose of
implementation.
To download the data onto google colab Dropbox API needs to be used using python. To
access the data a scoped application needs to be created on Dropbox developer website. The
steps are as follows: -

1. Navigate to the Dropbox App Console at

https://www.dropbox.com/developers/apps/ .
2. Select the "Create app" option and select "Scoped access™ from the menu.

Create a new app on the DBX Platform

Choose an API

2. Choose the type of access you need

3. Name your app

Figure 3 Creating Scoped App on Dropbox Developer Page
3. Select the type of access which is required (like accessing just files and folders, or

team member file access or full Dropbox access etc).

2

https://www.dropbox.com/sh/75v5ehq4cdg5g5g/AABvnJSwZI7zXb8_myBA0CLHa?dl=0
https://www.dropbox.com/developers/apps/

4. Name the app and navigate to the permission sections.

Files and folders

files.co

8 files.content.read

Collaboration

Figure 4 Granting Permission

5. Provide permission for read/write.

6. After the permissions are given navigate to settings section and click on ‘Generate’
key.

7. Copy that key and paste it in below code snippet.

Dropbox access toke

access_toks ENRDIDQrL ShervBt_1gVD1TH10si_fstM1S2kiSksLYs3CoEN-5u2jp_TGSI-wOTuBNySZ8n-TmhfsCiR7ynt ZA1L gbhviq1kivkh-VBGkaBmbRR1R3sYCceNkCPMbxgAUISE jaH YBtos

Create a Dropbox instance
dbx = drophox.Dropbox(access_taken)
dbx

Figure 5. Access the data using access token

After the above code is executed, the list of files in the Dropbox can be seen using the code
below. The code uses Dropbox APIs to download the data files from the Dropbox to google
colab.

dropbox_folder_path="/Anomaly-Detection-Dataset"”
files = dbx.files_list folder(dropbox_folder_path)
files

try:
response = dbx.files list folder(dropbox_ folder_path)
for entry in response.entries:
Check if the entry represents a file
if isinstance(entry, dropbox.files.FileMetadata):
Extract the file name from the entry
file _name = entry.name
print(f"File: {file namel}")
elif isinstance(entry, dropbox.files.FolderMetadata):
This is a folder entry, you can handle it here if needed
folder_name = entry.name
print(f"Folder: {folder_name}™)
except dropbox.exceptions.AuthError as e:
print("Error: Invalid Dropbox access token.™)
except dropbox.exceptions.ApiError as e:

print(f"Error: {e.user_message_ text}")

Figure 6. Downloading the files on google colab

DESTINATION_DIRECTORY="/content"
DROPBOX_ZIP_FILE_PATH="/Anomaly-Detection-Dataset/"

def zip_upload(DROPBOX_ZIP_FILE_PATH,DESTINATION_DIRECTORY):
try:
_, response = dbx.files_download(DROPBOX_ZIP_FILE_PATH)

Save the zip file locally
with open("temp.zip", "wb") as f:
F.write(response.content)

Extract the contents of the zip file
with zipfile.ZipFile("temp.zip", "r") as zip_ref:
zip_ref.extractall(DESTINATION_DIRECTORY)
print("Zip file extracted successfully.")
except dropbox.exceptions.AuthError as e:
print ("Error: Invalid Dropbox access token.™)

except dropbox.exceptions.ApiError as e:
print (f'Error: [e.user_message_text]")

Remove the temporary zip file
import os

0. remove ("temp.zip")
zip_lst=['Anomaly-Videos-Part-1.zip', 'Anomaly-Videos-Part-2.zip', Anomaly-Videos-Part-3.zip', 'Anomaly-Videos-Part-4.zip', 'Normal_Videos_for_Event_Recognition.zip']
for i in zip_lst:

print (DROPBOX_ZIP_FILE_PATH+i)
zip_upload(DROPBOX_ZIP_FILE_PATH+i,DESTINATION_DIRECTORY)

Figure 7. Extracting the downloaded files
s
In the next step, the data zip files are extracted, and the folders of the same name are created
(Figure 6).

Specify the source and destination paths for the files you want to move
move_lst=["Anomaly-Videos-Part-1/", 'Anomaly-Videos-Part-2/"', 'Anomaly-Videos-Part-3/"', 'Anomaly-Videos-Part-4/", 'Normal_Videos_for_Event_Recognition/']

Specify the source and destination folder paths
SOURCE_FOLDER_PATH = "/content/"
DESTINATION_FOLDER_PATH = "/content/Anomaly Videos/"

Create the destination folder if it doesn't exist
if not os.path.exists(DESTIMATION_FOLDER_PATH):
o5 _makedirs(DESTINATION_FOLDER_PATH)

Move all contents of the source folder to the destination folder
for 1 in move_lst:
print(SOURCE_FOLDER_PATH+i)
SOURCE_FOLDER_PATH_=SOURCE_FOLDER_PATH+1
for item in os.listdir(SOURCE_FOLDER_PATH_):
source_item path = os.path.join(SOURCE_FOLDER_PATH , item)
destination_item_path = os.path.join(DESTINATION_FOLDER_PATH, item)

Use shutil.move to move the item to the destination folder
shutil.move(source_item path, destination_item path)

Figure 8. Moving all class files in one folder

The data is divided into 5 folders. The first four folders starting with the name anomaly
consist of videos of 13 different types while the fifth folder consists of normal event videos.
As these classes are in different folders, these folders are moved into one single folder.

normal lst= glob.glob("/content/Anomaly Videos/Normal*")
DESTINATION FOLDER PATH='/content/Anomaly Videos/Normal'
if not os.path.exists(DESTINATION_FOLDER_PATH):
os.makedirs (DESTINATION FOLDER_PATH)
for 1 in normal lst:
shutil.move(i, DESTINATION FOLDER_PATH)

Figure 9. Moving the Normal event files

The same is done with normal event videos. They are also moved into the same folder with
all the other classes. After all the videos are moved in appropriate places, we can see the
video list using the snippet below.

class_wid_lst=glob.glob("/content/Anomaly Videos/*")
class_wvid_lst=[x for x in class_wid_lst if "yolo" not in x and "zip" not in x]

class_wid_lst

['/content/Anomaly Videos/Assault®,
'/content/Anomaly Videos/Vandalism',
'/content/Anomaly_Videos/Robbery®,
'/content/Anomaly Videos/RoadAccidents”®,
'/content/Anomaly Videos/Stealing’,
'/content/Anomaly Videos/Burglary',
'/content/Anomaly Videos/Normal',
'/content/Anomaly_Videos/Explosion’,
'/content/Anomaly Videos/Arrest',
'/content/Anomaly Videos/Arson',
'/content/Anomaly Videos/Shoplifting’,
'/content/Anomaly_Videos/Fighting',
'/content/Anomaly Videos/Abuse®,
'/content/Anomaly Videos/Shooting']

Figure 10. List of all class files

4 Data Pre-Processing, Feature Creation and
Transformation

mp__pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils

model = torch.hub.load('ultralytics/yolovs', 'yolovSs', force_reload=True) # yolow5n - yolov5x6 or custom

Figure 11. Loading of Mediapipe BlazePose and YOLO

As the first step in data preprocessing, Mediapipe Blazepose model instance is initialized
using mp. solution. pose. Similarly, for the people detection part in further script “YOLOS5’
model is loaded.

master_df=pd.DataFrame()
for class_vid in class_vid_lst:
video_paths=glob.glob(class_vid+"/*")
print(video_paths)
master_dict = {}
step=30
frame_count =0
for video_path in video_paths:
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)

Get the duration (in seconds)

frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUN
fps = int(frame_rate)

duration = frame_count // fps

print(duration,fps)

Figure 12. Video preprocessing and information retrieval

In the above nested loop, glob function is used to find out video paths in all the class folders.
The above section of code is used to capture video information such as number of frames in
total, frame rate per second and duration of video. The variable ‘step’ works as parameter in
further code where it makes the algorithm consider every n’th frame for processing. Here in
the above code ‘n’ is value 30.

with mp_pose.Pose() as pose:
video dict = {}
while cap.isOpened():
success, frame = cap.read()
if not success:
break
frame_count += 1
if frame_count % step == @:
results = model(frame)
print(results)
results.crop()
1st=glob.glob("/content/yolovS/runs/detect/exp/crops/person/*")
print(lst)
count=@2
for i in 1st:
count=count+1
i=cv2.imread(i)
frame_rgh = cv2.cviColor(i, cv2.COLOR_BGRZRGE)
results = pose.process{frame_rgh)
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
keypoints = np.array([(1m.x, Im.y) for 1m in landmarks])
shoulder_distance = np.linalg.norm(keypoints mp_pose.Poselandmark.LEFT_SHOULDER.value] - keypoints[mp_pose.Poselandmark.RIGHT_SHOULDER.walue])
elbow_distance = np.linalg.norm{keypoints[mp_pose.PoselLandmark.LEFT_ELBOW.value] - keypoints[mp_pose.Poselandmark.RIGHT_ELBOW.value])

shoulder_angle = np.arctan2(keypoints[mp_pose.Poselandmark.LEFT_SHOULDER.value, 1] - keypoints[mp_pose.Poselandmark .RIGHT_SHOULDER.value, 1],
keypoints[mp_pose.Poselandmark.LEFT_SHOULDER.value, @] - keypoints[mp_pose.Poselandmark.RIGHT_SHOULDER.value, 8]}

arm_to_height_ratioc = elbow _distance / (keypoints[mp_pose.Poselandmark.LEFT_HIP.value, 11 - keypoints[mp_pose.Poselandmark.RIGHT _HIP.value, 11)

frame_number = int{cap.get(cv2.CAP_PROP_POS_FRAMES))
frame 1

! ce": shoulder_distance,

e": elbow_distance,

e": shoulder_angle,
ight_ratio™: arm_to_height ratio,
rson_number"” : count,
path" :video_path

video_dict[frame_number] = frame_features

print(frame_features)

del results,frame_rgb,landmarks,keypoints,shoulder_distance,elbow_distance,shoulder_angle,arm_to_height_ratio,frame_number
video_dict["Person "+str{count)]=frame_features

ge.-collect()

master_dict[video_path] = video_dict
print("-")
if os.path.exists{"/content/yolov5/runs/d
shutil.rmtree("/content/
gc.collect()
cap.release()

Figure 13. Video preprocessing and information retrieval

For the next step, for every video BlazePose model is initialized. For every video OpenCv
opens a video cap and starts converting videos into frames. When the frame number matches
the multiple of step variable provided, that frame is extracted for pose estimation. Then the
YOLO model is applied on this frame using model(frame) function. After that the results are
stored in ‘results. If there are multiple people in the frame, the crop () function of YOLO
crops these people and stores it in the form of image at the path ‘content/yolo5/runs/
detect/exp/crops/ person’. Every image from the path is processed using OpenCV. Every
cropped image is then converted from BGR format to RGB before being sent for pose
estimation.

When sent to pose estimation, pose. landmarks are stored in variables called results. These
landmarks consist of 33 keypoints in the form of X, y, z. These landmarks are then converted
into customised geometric features such as shoulder distance, elbow distance, shoulder angle
and arm to height ratio. After these features are calculated they are stored in the form of
dictionary. After they are safely stored in dictionary all the unnecessary variables are deleted
and garbage collector is called. After the processing is done for every frame, its cropped
images are deleted for optimal use of storage.

BL.LuiieLLyy
cap.release()
rows = []
for video_path, frame_data in master_dict.items():
for frame_number, frame_info in frame_data.items():
row = {'Video_path': video_path, 'Frame_number': frame_number}
row.update(frame_info)
rows .append (row)
feature_df=pd.DataFrame()
Create the DataFrame
feature_df = pd.DataFrame(rows)
master_df=master_df.append(feature_df)
Display the DataFrame
print(df)

Figure 14. Store features into dataframe

For every frame the results are stored in a master dictionary and later combined into a
dataframe.

master_df = master_df.loc[:, -~master_df.columns.str.contains(”"“Unnamed"”)]
master_df .head ()

The dataframe is checked if any empty column has been generated in it or not before further
processing.

label=[]
for i in range(master_df.shape[@]):
print(i)
strx=master_df.iloc[i]["Video_path"]
print(strx)
if "Abuse" in strx:
label.append("Abuse”)
elif "Arrest" in strx:
label.append("Arrest"”)
elif "Arson" in strx:
label.append("Arson")#
elif "Assult" in strx:
label.append("Assult")#
elif "Burglary” in strx:
label.append(“Burglary")
elif "Fighting" in strx:
label.append("Fighting")
elif "Normal” in strx:
label.append("Normal™)
elif "Robbery" in strx:
label.append("Robbery")
elif "Shooting” in strx:
label.append(“Shooting”)
elif "Shoplifting"” in strx:
label.append(“Shoplifting”)
elif "Stealing” in strx:
label.append(“Stealing”)#
elif "Vandalism" in strx:
label.append("Vandalism")
else:
label.append(“Unknown")
master_df["Activity_Recognition_Label"]=label

Figure 15. Label Annotation
After that, a column named ‘Activity Recognition Label’ is generated for the annotation of
activities based on the video paths as those paths contain the information about subfolders.
These subfolders’ names contain the names of the classes.

master_df=master_df[~master_df["Activity_Recognition_Label"].isin(["Unknown"])]
master_df["Activity_Recognition_Label"].value_counts()

After names are converted the dataframe is checked again for ‘unknown’ labels.

master_df=master_df.drop(['Video_path'], axis=1)
susp_label=[]
i ange (master_df.shape[@]):

if "Normal” in strx:
susp_label.append("Normal")

susp_label.append("Suspicious")

Figure 16. Changing Labels to Suspicious or Normal

Create another label column called ‘Activity_Label” which contains information of if the
activity is suspicious or not.
If we are trying to create a binary classification model,

features=['shoulder_distance', 'elbow_distance', 'shoulder_angle',
‘arm_to_height_ratio', 'Person_number']

le = LabelEncoder()

master_ df['Activity Label'] = le.fit_transform(master df['Activity Label"'])
¥ = master_df.drop{"Activity Label', axis=1)[features].values

Y = master_df['Activity Label'].values

num_classes=len(master_df["Activity_Label™].unigue())

num_classes

Figure 17. Label Encoding

Here the labels of the data are converted from strings to numbers using a label encoder.

train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

Standardize features using z-score normalization
aler = StandardScaler()

_train = scaler.fit_transform(X_train

X_test = scaler.transform(X_test)

smote = SMOTE(sampling_strategy='auto', random_state=42)

X_train, y_train = smote.fit_resample(X_train, y_train)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

Figure 18. Scaling and handling imbalance data

After label encoding the data is split into two parts training and testing. Later standard scalar
is applied to the data for scaling the data between 0 to 1 so that one feature doesn’t dominate
the model result because its range is high. Later SMOTE technology is used to create
synthetic data which is integrated into original to address the problem of data imbalance.

5 Data Modelling and Evaluation

This study proposes to create two different models where the primary model is used to detect
if the activity is suspicious or not and the second model is used to recognize the type of
activity. All the machine learning models were created in the same way but for deep learning,
the number of neurons and number of layers were changed to get better results.

5.1 DNN model
for suspicious activity identification,

Build the DNMN model
model = tf.keras.models.Seguentiall[
tf.keras.layers. Input({shape=({X_train.shape[1],}),
tf.keras.layers.Input{shape=(X_train_scaled reshaped.shape[@],% test_scaled_reshaped.shape[1])}).,
.keras.layers.Dense(512, activetion='relu'},
.keras.layers.Dropout(@.5),
.keras.layers.Dense(256, activation="relu'},
.keras.layers.Dense(l, activation="sigmoid")

e e 4

1)

Compile the model

model.compile{optimizer="adam" ,
loss="binary_crossentropy"',
metrics=["accuracy'])

Train the model
model.fit({X_train, v_train, epochs=1888, batch_size=32, wvalidation_split=08.1)
history=model.fit(X train, y_train, epochs=5, batch_size=16, validation_data=(X_test, y_test))

Figure 19. DNN to predict if actvity is suspicious or not

For activity type recognition,

model = tf.keras.models.Seguentiall]
tf.keras.layers.Input(shape=({X_train.shape[1],)),
tf.keras.layers.Input(shape={X_train_scaled_reshaped.shape[@],X_test_scaled_reshaped.shape[1]}),
tf.keras.layers.Dense(512, activation="relu'},
tf.keras.layers.Dropout(®.5),
tf.keras.layers.Dense(512, activation="relu'},
tf.keras.layers.Dropout(®.5),
tf.keras.layers.Dense(128, activation="relu'},
tf.keras.layers.Dropout(@.5)},
tf.keras.layers.Dense(128, activation='relu'},
tf.keras.layers.Dropout(8.5),
tf.keras.layers.Dense(64, activation='relu'},
tf.keras.layers.Dropout(@.5),
tf.keras.layers.Dense(num_classes, activation="softmax')

1)

Compile the model

model.compile{optimizer="'adam",
loss="sparse_categorical_crossentropy’,
metrics=["accuracy'])

Train the model
model.fit(X_train, y_traim, epochs=1888, batch_size=32, validatlion_split=8.1)
history=model.fit(X_train, y_train, epochs=188, batch_size=16, validation_data=(¥_test, yv_test))

Figure 20. DNN to predict activity type

Make predictions

predicted_probabilities = model.predict(X_test)

y_pred_classes = np.argmax(y_pred, axis=1)

threshold = 8.5

y_pred_classes = (predicted probabilities > threshold).astype(int)

print("Predicted Binary:", y_pred classes)

Decode imteger labels back to original species labels
y_test_original = le.inverse_transform(y_test)
y_pred_original = le.inverse_transform{y_pred classes)
print({classification_report(y_pred_original, y_test_original))

Figure 21. Classification Report

Here is the model. predict () function is used for predicting the data while le.
inverse_transform () is used for inverse transformation of the converted labels.

5.2 XgBoost model

In the case of machine learning the models followed the same approach where gridsearch ()
was applied to models to find the best parameters which is then used to create the model. For
evaluation part the models used classification report and accuracy score.

Define the parameter grid to search through
param_grid = {
'n_estimators': [58, 128, 150
"max_depth': [3, 5, 7]

*learning_rate':

)

Create an XGBoost classifier

xgb_classifier =

Initialire GridSearchCW

xgbh . ¥WGBClassifier()

grid_search = GridSearchCV(estimator=xgb_classifier, param_grid=param_grid,

Perform the grid search on the data

grid_search.fit{X_train, y_train}

Get the best parameters and best estimator from the grid search
best_params = grid_search.best_params_

best_estimator = grid_search.best_estimator_

Predict using the best estimator
y_pred = best_estimator.predict(X test)

Calculate accuracy
accuracy = accuracy_scorel(y_test, y_pred)}
print("Best Parameters:", best_params)}

print("Best Accuracy:™,

accuracy}

scoring="accuracy', cv=3)}

y_test_original
y_pred_original

le.inverse_transform{y_test)
le.inverse_transform{y_pred)

print({classification_report(y_test original, y_pred_original))

Figure 22. XgBoost Model creation and Evaluation

5.3 Random Forest Model

param_grid = {

‘n_estimators': [58, 1e8, 28],

"'max_depth': [Mone, 18, 28],
‘min_samples_split': [2, 5, 18],
‘min_samples_leaf': [1, 2, 4]

¥

Create a Random Forest classifier
rf_classifier =

Create a GridSearchCV object

RandomForestClassifier{random_state=42)

grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, scoring='accuracy", cv=3)

Fit the GridSearchCV object to the data

grid_search.fit(X_train, y_train)

Get the best parameters and best score

best_params =
best_score = grid_search.best_score_

print(“Best Parameters:", best_params)

print("Best Score:", best_score)

Evaluate the best

grid_search.best_params_

model on the test data

best_model = grid_search.best_estimator_

test_accuracy =
print("Test Accuracy:"

best_model.score(X_test, y_test)
, test_accuracy)

Figure 23. Random Forest Model creation and Evaluation

10

54 LightGBM Model

Define the parameter grid for GridSearchCV
param_grid = {
"mum_leaves': [28, 3@, 48],
'max_depth': [3, 4, 5],
'learning_rate': [8.1, @.8]

1, @.801],
'n_estimators': [5@, 188, 208

.]

Create a LightGBM classifier
lgb_classifier = lgb.LG@BMClassifier({random_state=42)

Create a GridSearchCV object
grid_search = GridSearch{V({estimator=1lgb_classifier, param_grid=param_grid, scoring='accuracy', cv=3)

Fit the GridSearchCV object to the data
grid_search.fit(X_train, y_train)

Get the best parameters and best score
best_params = grid_search.best_params_
best_score = grid_search.best_score_

print("Best Parameters:"”, best_params)
print("Best Score:", best_score)

Evaluate the best model on the test data
best_model = grid_search.best_estimator_
test_accuracy = best_model.score(X_test, y_test)
print("Test Accuracy:", test_accuracy)

Figure 24. LightGBM Model creation and Evaluation

6 Alarm System

det alarm()
account_sid = "ACS462BEFE726a083basbBd821deeclcT2"
auth_token = '2241588355133cd1b923aacB@1955+47"
client = Client(account_sid, auth_token)

meszage = client.messages
.create(
body="Suspicious activity Detected”,
from_="+15384567450" ,
to="+353594147223"

print({message.sid)
armi)

al
Figure 25. Alarm system using Twilio

As an alarm system the framework uses twilio library of python. This library provides a
facility of audio, video or email using python. To access this one must register on twilio and

11

open a free account. The twilio provides an account number and authentication token which
needs to be used as shown in the above diagram.

frame_features

shoulder_distance,
elbow_distance,
ulder_angle,

: anm_to_height_ratio,

selected_features = [frame_features|'shoulder_distance'], frame_festures['shoulder distance’],frame features['shoulder_angle'],frame_features['arm_to_height_ratio'],frame_features|'Person_number']]
features = np.array([selected_featurss])

rgb_predictions = best_model.predict(features)

if rgb_predictions[@] :

= best_estimator.predict(features)

Figure 26. Real time prediction

The above method is called when multiple frames at a time are predicted as suspicious
consecutively.

12

