~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Shree Hari Krishnamurthy
Student 1D: x21165441

School of Computing
National College of Ireland

Supervisor: Dr. Anh Duong Trinh

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shree Hari Krishnamurthy
Student ID: x21165441
Programme: MSc in Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Anh Duong Trinh
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 2830
Page Count: [25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: T ree Horne Torisrraarmaen Yy
Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). v
Attach a Moodle submission receipt of the online project submission, to | v/
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | v
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shree Hari Krishnamurthy
x21165441

1 Introduction

The present Configuration Manual provides an detailed instructions for the implement-
ation of the project focused on the prediction of unemployment rate in the Ireland, em-
ploying an various range of statistical and machine learning models. This manual is based
on the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology that
offers an comprehensive guide through each stage of the process. It covers the steps, that
includes, data collection, preprocessing, modelling, and inspection. The manual has been
carefully written to ensure that it can be easily understood by individuals with both
technical and non-technical backgrounds.

2 Hardware and Software Requirements

The following tables provide information on the hardware and software requirements.

Table 1: Hardware Specifications

Device Name/OS | MacBook Air/macOS Big Sur Version 11.0.1
RAM/CPU 8 GB/1.6 GHz Dual-Core Intel Core i5
Hard Disk 128 GB SSD
GPU Intel UHD Graphics 617

Table 2: Software Specifications

Programming Language Python
Python Version 3.8.5
IDE Jupyter Notebook
Jupyter Notebook Version 6.1.4
Main Libraries Used pandas, numpy, matplotlib, sklearn, statsmodels

3 Data Selection

3.1 Importing Python Libraries

The Figure (1] below, shows the main Python libraries that has been imported for the
purpose of this project. Libraries like as NumPy, Pandas, and Matplotlib are essential
components in the data analysis and model development phases of this work.

Importing necessary libraries for data manipulation and mathematical operations
import numpy as np
import pandas as pd

Importing visualization libraries
import matplotlib.pyplot as plt
import seaborn as sns

import plotly.express as px

Importing libraries for time series analysis

from statsmodels.tsa.statespace.sarimax import SARIMAX

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller, kpss

from statsmodels.tsa.arima.model import ARIMA

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

Importing machine learning libraries

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import Ridge

from sklearn.preprocessing import StandardScaler

from sklearn import neighbors

Importing the auto ARIMA function
from pmdarima impor

Importing XGBoost library
import xgboost as xgb

Filter warnings
import warnings
warnings.filterwarnings('ignore')

Magic function for inline plotting
smatplotlib inline

Figure 1: Python Libraries

3.2 Retrieving the Unemployment Dataset from the CSO Ire-
land

To Download Irish Central Statistics Office (CSO) unemployment data for this research.

e Visit https://www.cso.ie/en/statistics/labourmarket /monthlyunemployment/ for CSO
Ireland’s monthly unemployment data

e Move dataset to a directory after downloading. This folder’s file directory will be
utilised later to load data to a dataframe for analysis.

3.3 Loading and Preparing the Data

The unemployment data that has been imported into a Python environment as a time
series by utilising the pandas package. By selecting the ’Month’ column as the index
and using date parsing, the data undergoes the automated conversion into a time series
structure. Furthermore, it can be essential to exclude the unnecessary variables from the
dataset to simplify data and concentrate just on the data that is relevant. In this scenario,
unnecessary columns are eliminated from dataset by employing the drop function, as
shown in Figure [2] below:

Read data in form of Time series
df_timeseries=pd.read_csv('/Users/shreehari/NCI/RIC/Model/Irish_unemployment_data.csv',index_col='Month', parse_dates=True)
df_timeseries.head()

v/ 0.0s

Statistic Label Age Group Sex UNIT VALUE

Month
1998-01-01 Seasonally Adjusted Monthly Unemployment 15 - 74 years Both sexes Thousand 151.3
1998-02-01 Seasonally Adjusted Monthly Unemployment 15 - 74 years Both sexes Thousand 153.3
1998-03-01 Seasonally Adjusted Monthly Unemployment 15 - 74 years Both sexes Thousand 149.5
1998-04-01 Seasonally Adjusted Monthly Unemployment 15 - 74 years Both sexes Thousand 140.2
1998-05-01 Seasonally Adjusted Monthly Unemployment 15 - 74 years Both sexes Thousand 133.8

df_timeseries = df_timeseries.drop(['Statistic Label','Age Group','Sex',"'UNIT'], axis=1)
df_timeseries.head()

v 0.0s

Month
1998-01-01
1998-02-01
1998-03-01
1998-04-01
1998-05-01

Figure 2: Load Data to Data frame

4 Exploratory Data Analysis

4.1 Plotting the Trend Over Time

Matplotlib’s plot function shows unemployment trends. The x-axis shows months, and

the y-axis shows unemployment in thousands.

plt.legend()
plt.grid(True)
plt.show()

025

350

300

250

Unemployment Value (Thousand)

Irish Unemployment Trend Over Time ICE

2000

= Unemployment Value

2004 2008 2012 2016 2020 2024
Month

Figure 3: Irish Unemployment Trend Over Time

4.2 Histogram of Unemployment Values

To understand the distribution of unemployment values, a histogram is created using
matplotlib’s hist function. This visualization [4] helps to comprehend the frequency of

different ranges of unemployment values

plt.figure(figsize=(10, 6))
plt.hist(df_timeseries['VALUE'], bins=20, color='skyblue', edgecolor='black')
plt.title('Dis

plt.xlabel(

plt.ylabel('Fr

plt.grid(True)
plt.show()
/ 0.1s

40

w
o

Frequency
N
o

10

bution of Irish Unemployment Values')

Value (Thousand)')

Distribution of Irish Unemployment Values

100 150 200 250 300 350
Unemployment Value (Thousand)

Figure 4: Distribution of Irish Unemployment Values

4.3 Interactive Slider Graph

The plotly.express package creates a slider-enabled line graph for data analysis. This let
you analyse unemployment data over time as shown in Figure [5]

ine(df_timeseries , y='VALUE', title = 'Irish unemployment over the years fromm 1998 to 2023')
:_xaxes (rangeslider_visible = True)

Irish unemployment over the years fromm 1998 to 2023

VALUE

100

2000 2005 2010 2015 2020

I i |

Month

Figure 5: Irish unemployment over the years from 1998 to 2023

4.4 Seasonal Decomposition of Time Series Data

Seasonal_decompose from the statsmodels.tsa.seasonal module splits time series data into

trend, seasonal, and residual components. To interpret time series data, additive and
multiplicative models are decomposed as shown in Figure [6] and

res =seasonal_decompose(df_timeseries['VALUE'], model='add')

res.plot()
/ 0.bs

VALUE
300

200
100

2000 2004 2008 2012 2016 2020

300
200

Trend

100

2000 2004 2008 2012 2016 2020
1

Seasonal
o

|
—

2000 2004 2008 2012

2016 2020

Resid

2000 2004

2008 2012 2016 2020

Figure 6: Additive decomposition

res =seasonal_decompose(df_timeseries['VALUE'], model='Mul')

res.plot()
0.3s
VALUE
300
200
100
2000 2004 2008 2012 2016 2020
300
2
@ 200
l_
100
2000 2004 2008 2012 2016 2020
1
™
c
2 o0
[}
&
- 2000 2004 2008 2012 2016 2020
o
‘@A
&

2000 2004 2008 2012

2016 2020

Figure 7: Multiplicative decomposition

4.5 Checking for Null Values

A dataset null value check ensures data integrity and completeness. The check is done
by using isnull() function as shown in Figure

Check the Null Values

df timeseries.isnull().sum()
v/ 0.0s

VALUE (%]
dtype: int64

Figure 8: Null Value check

4.6 Augmented Dickey-Fuller Test

An Augmented Dickey-Fuller (ADF) test determines time series data stationarity. The

test statistic and p-value reveal time series data characteristics. This test is part of the
statsmodels.tsa.stattools module as shown below [

Augmented Dickey Fuller Test (ADF Test)

def ad_test(dataset):
dftest = adfuller(dataset, ag = 'AIC')
print("1. Test Statistic : ",dftest[@])
print("2. P-value : ", dftest[1])
print("3. Num Of Lags : ", dftest[2])
print("“4. Num Of Observations Used For ADF Regression:", dftest[3])
print("5. Critical Values :")
for key, val in dftest[4].items():
|print("\t",key, e AL gl

ad_test(df_timeseries['VALUE'])
v/ 0.0s

. Test Statistic : -1.8041306012586598
. P-Value : 0.3784129017114926
. Num Of Lags : 8
. Num Of Observations Used For ADF Regression: 296
. Critical Values :
1% : -3.452636878592149
5% : -2.8713543954331433
10% : -2.5719993576515705

Figure 9: ADF Test

5 Data Preprocessing and Transformation

5.1 Stationarity Check with Augmented Dickey-Fuller (ADF)
Test

To enhance the stability of the variance, the data that has been converted logarithmically
can be subjected to a square root transformation using the sqrt function from the numpy
library. Additionally, In order to eliminate any of the underlying pattern in the data, it is
recommended to apply a shift transformation by subtracting the preceding value from the
current value. Following the transformation of the data, the Augmented Dickey-Fuller
(ADF) test on the modified data in order to verify its stationarity as shown in Figure .

Transforms the time series data by taking the log and then the square root, and finally the shift difference

log_df = df_timeseries[['VALUE']]
log_df['log'] = np.log(log_df['VALUE'])

log_sqrt_df = log_df[['log']]
log_sqrt_df['sqrt_log']l = np.sqrt(log_sqrt_df['log'l)

log_sqrt_df['shift_log_sqrt']l = log_sqrt_df['sqrt_log'l — log_sqrt_df['sqrt_log'l.shift()
log_sqrt_df = log_sqrt_df.dropna()
log_sqrt_df

#Checking ADF test for Transformed Data
ad_test(log_sqrt_df['shift_log_sqrt'l])

v 0.0s

. Test Statistic : -3.481329667646232
. P-Value : 0.008479735799720136
. Num Of Lags : 7
. Num Of Observations Used For ADF Regression: 296
. Critical values :
1% : =-3.452636878592149
5% : —2.8713543954331433
10% : =-2.5719993576515705

Figure 10: Applying Transformation for original data

The ADF test is executed by employing the adfuller function from the statsmod-
els.tsa.stattools package. The Stationaty Plot of Transformed data can be seen in Figure

I8l

Plotting the stationary series after transformations (log, square root,
firstﬂ)rder differencing)

plt.figure(figsize=(12, 6))

plt.plot(log_sqrt_df['shift_log_sqrt'l, color='blue')
plt.title('Stationary Series: Irish Unemployment Data')

plt.xlabel('Month')
plt.ylabel('Transformed Value')
plt.grid(True)

plt.show()

0.1s

Transformed Value

Stationary Series: Irish Unemployment Data

0.02

[
(=]
o

-0.02

2000 2004 2008 2012 2016 2020 2024
Month

Figure 11: Stationary Plot for unemployment data

5.2 Visualizing Autocorrelation and Partial Autocorrelation

The autocorrelation function (ACF) may be visualised by employing the plot_acf function
from the statsmodels.graphics.tsaplots module to analyse the autocorrelation of trans-
formed data. The Autocorrelation Function (ACF) plot is a valuable tool for determining
the order of the Moving Average (MA) component inside a time series model. The par-
tial autocorrelation function (PACF) may be visualised by employing plot_pacf function
to analyse altered data. Partial Autocorrelation Function (PACF) plot is employed for
purpose of determining the order of the autoregressive (AR) component inside the time
series model.

Plot ACF

plot_acf(log_sqrt_df)

plt.xlabel('Lag")

plt.ylabel('correlation)
plt.title('Autocorrelation Function (ACF)')
#plt.show()

bxt(0.5, 1.0, 'Autocorrelation Function (ACF)')

Autocorrelation Function (ACF)

100

ZZ‘I U b,
[Il [

Autocorrelation

-0.75

-1.00

Figure 12: ACF plot

Plot PACF

plot_pacf(log_sqrt_df)

plt.xlabel('Lag")

plt.ylabel('Partial Autocorrelation')
plt.title('Partial mm?correlation Function (PACF)')

#plt.show()
/ 0.0s

xt(0.5, 1.0, 'Partial Autocorrelation Function (PACF)')

w Partial Autocorrelation Function (PACF)

0.75
050

025

Ll 11 Il .y
1 il

-0.25

Partial Autocorrelation

-0.50
-0.75

-1.00

Figure 13: PACt plot

(variable) train_data
ng and test sets

train_data = log_sqrt_df['shift_log_sqrt']l.iloc[:-30]
test_data = log_sqrt_df['shift_log_sqrt'l.iloc[-30:]

orders = .[{2, 1; @), (2,1,1)]

Running the experiments with different ARIMA orders
results_df = pd.DataFrame(columns=["Order", "RMSE", "R-squared", "MAPE (%)"])
for order in orders:
arima_model_exp = ARIMA(train_data, order=order)
arima_fit_exp = arima_model_exp.fit()
forecast_values_exp = arima_fit_exp.get_forecast(steps=len(test_data)).predicted_mean
rmse_exp = np.sqrt(mean_squared_error(test_data, forecast_values_exp))
r_square_exp = r2_score(test_data, forecast_values_exp)
mape_exp = np.mean(np.abs((test_data - forecast_values_exp) / test_data)) x 100
results_df = results_df.append({
"Order": str(order),
"RMSE": rmse_exp,
"R-squared": r_square_exp,
"MAPE (%)": mape_exp
}, ignore_index=True)

results_df

Figure 14: Model performance comparison for different ARIMA orders

6 Modelling And Evaluation
6.1 ARIMA

Prior to getting started, it is important to verify the presence of all necessary librar-
ies, that are pandas, numpy, statsmodels, and the scikit-learn, within the system. pre-
processing on the data, resulting in creation of a DataFrame named log sqrt_df. This
DataFrame should have a column entitled shift_log sqrt, which will hold the time-series
data after transformation. The dataset is partitioned into the separate training and test
sets. The training set is composed of all the data points, excluding the final 30, whereas
the test set is comprised only of latest 30 data points. The configurations of ARIMA
models are specified in the variable called "orders”. This code in Figure [14] utilises two
ARIMA setups, specifically (2, 1, 0) and (2, 1, 1).

For every ARIMA order, A model instance of ARIMA is instantiated using the current
order and then trained on the training data. Subsequently, projected values for the
duration of the test data are created. Evaluation measures, namely RMSE (Root Mean
Squared Error), R-squared, and MAPE (Mean Absolute Percentage Error), are computed
for every individual order. The measurements are saved into a DataFrame referred to as
results_df. Upon executing the code, the user may access the results_df DataFrame in
order to observe the evaluation metrics corresponding to the each ARIMA order.

10

arima to find the best order for the ARIMA model
arima(log_sqrt_df['shift_log_sqrt'], trace=True, suppress_warnings=True)
arima_model.order
best_orde

v/ 59s

Performing stepwise search to minimize aic
ARIMA(2,0,2)(0,0,0) [6] intercept 1 AIC=-2214.207, Time=0.16
ARIMA(9,0,0)(9,0,0) [@] intercept i AIC=-2061.562, Time=0.05
ARIMA(1,0,0)(0,0,0) [0] intercept : AIC=-2179.974, Time=0.11
ARIMA(9,0,1)(0,0,0) [6] intercept : AIC=-2155.183, Time=0.10
ARIMA(9,0,0)(0,0,0) [0] i AIC=-2063.184, Time=0.04
ARIMA(1,0,2)(0,0,0) [@0] intercept + AIC=-2212.774, Time=0.11
ARIMA(2,0,1)(9,0,0) [@] intercept 1 AIC=-2195.090, Time=0.24
ARIMA(3,0,2)(0,0,0) [@0] intercept : AIC=-2218.300, Time=0.35
ARIMA(3,0,1)(0,0,0) [@] intercept : AIC=-2216.857, Time=0.23
ARIMA(4,0,2)(0,0,0) [@] intercept : AIC=-2216.248, Time=0.36
ARIMA(3,0,3)(0,0,0) [@] intercept : AIC=inf, Time=0.19 sec
ARIMA(2,0,3)(0,0,0) [@] intercept : AIC=-2163.912, Time=0.22
ARIMA(4,0,1)(0,0,0) [0] intercept : AIC=-2218.139, Time=0.30
ARIMA(4,0,3)(0,0,0) [6] intercept 1 AIC=-2215.312, Time=0.39
ARIMA(3,0,2)(0,0,0) [0] i AIC=-2219.631, Time=0.08
ARIMA(2,0,2)(0,0,0) [0] : AIC=-2216.543, Time=0.10
ARIMA(3,0,1)(0,0,0) [0] 1 AIC=-2217.914, Time=0.06
ARIMA(4,0,2)(0,0,0) [0] i AIC=-2218.032, Time=0.20
ARIMA(3,0,3)(0,0,0) [0] : AIC=inf, Time=0.35 sec
ARIMA(2,0,1)(0,0,0) [0] 1 AIC=-2196.914, Time=0.13
ARIMA(2,0,3)(0,0,0) [0] i AIC=-2206.022, Time=0.20
ARIMA(4,0,1)(0,0,0) [0] + AIC=-2236.403, Time=0.20
ARIMA(4,0,0)(0,0,0) [0] 1 AIC=-2225.774, Time=0.08
ARIMA(5,0,1)(0,0,0) [0] i AIC=-2224.204, Time=0.11

ARIMA(5,0,2)(0,0,0) [0] intercept : AIC=-2158.168, Time=0.51

Best model: ARIMA(5,0,2)(0,0,0)[0]
Total fit time: 5.943 seconds

Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

(5, 0, 2)

Figure 15: Auto ARIMA model selection output

The code sets the order of the ARIMA model to (5, 0, 2) by the auto ARIMA, where
5 is the number of lag, with no difference (d), and 2 is the size of the moving average got
with lowest AIC. Then, the train_data are used to set up and fit an ARIMA model. After
the training phase, the model uses get_forecast() method to make predictions based on the
length of test_data. The mean projected values are then used to evaluate model. Lastly,
the evaluation measures and the order of model is added to the results_df dataframe so
that they can be tracked and compared.

11

Appply Again ARIMA based on auto ARIMA order

Adding the order provided b
_arima_order = (5, 0, 2)

= ARIMA(train
arima_model_auto

Adding the results to the results_df
results_df = results_df.append({
"Order": str(,_arima_order),
"RMSE'": rmse_auto,
"R-squared": r_s
"MAPE (%)": mape_g
}, ignore_index=True)

results_df

v/ 0.4s

Order RMSE R-squared MAPE (%)
0 (2,1,0) 0.011782 -0.281562 420.855880
1 (2,1,1) 001627 -0.248074 405.357544
2 (50,2) 0.009647 0.140857 268.453309

Figure 16: Model performance comparison including the order suggested by auto ARIMA

12

Predicting the
forecast_values_g arima_fit_autg get_forecast(steps=len(test_data)).predicted_mean

Plotting the predictions and actual test data

plt.figure(figsize=(12, 6))

plt.plot(forecast_values label='ARIMA Predictions', color='blue"')
plt.plot(test_data.index, test_data.values, label='Actual Test Data', color='orange')
plt.legend()

plt.title('ARIMA(5, @, 2) Predictions vs. Actual Test Data')

plt.xlabel('Date')

plt.ylabel('Value')

plt.show()

v 01s

ARIMA(5, 0, 2) Predictions vs. Actual Test Data
0.020 = AR|MA Predictions

Actual Test Data
0.015 /
0.010
J
0.005 /
0.000 /\
)
~0.005 . P ———— L\
T— —

-0.010
—0.015
-0.020

2021-01 2021-04 2021-07 2021-10 2022-01 2022-04 2022-07 2022-10 2023-01 2023-04
Date

Figure 17: ARIMA model predictions vs. actual test data

6.2 SARIMA

The code is about setting up, the training, evaluating, and visualising SARIMAX model on
time series data with different orders. At first, three different SARIMAX orders is set
up so that they can be tested. Each of the order is made up of an main ARIMA order
and a yearly component. The seasonal component stays the same in all configurations,
which shows that there is no seasonal effects and only the 12-period yearly trend. sub-
sequently each SARIMAX setup is checked against train_data in an loop. In this loop,
a SARIMAX model is created with the given order, matched to training data, and then
used to make the predictions for the test_data. After making a forecast, three evaluation
metrics—RMSE, 2 R 2, and MAPE—are used to figure out how well model did. The
sarimax_results_df dataframe stores these measure along with the SARIMAX orders so
that they can be compared later .

13

Defining different SARINAX orders for
sarimax_orders = [

(2, 1, @, (o, 0, 0, 12)),

(2, 1, 1), (0, 0, 0, 12)),

((s, 0, 2), (0, 0, 0, 12)) #

evaluation

1

Running t differ
sarinax_results_df = pd. (columns=["0rder",

for order, seasonal_order in sarimax_orders:
sarinax_model_exp = SARIMAX(train_data, order=order, seasonal_order=seasonal_order)
sarimax_fit_exp = sarimax_model_exp. fit()
forecast_values_exp = sarimax_fit_exp.get_forecast(steps=len(test_data)).predicted_mean
np.sqrt(mean_squared_error(test_data, forecast_values_exp))
_score(test_data, forecast_values_exp)
n(np.abs ((test_data - forecast_values_exp) / test_data)) x 100
f = sarimax_results_df.append({

tr(seasonal_order),

Figure 18: SARIMA Training model with different order

After all the settings have been looked at, code hides any possible warnings to make
result look better. Then, a specific SARIMAX model is built and put in the place,
with an order of (5, 0, 2) and a yearly order of (0, 0, 12). A line plot is then used to
compare this model forecasts to real test_data. The plot shows how the predictions made
by SARIMAX model compare to real numbers from the test dataset.

plt.figure(figs
plt.plot(sarinax_forecast_values, lab
plt.plot(test_data.index, test_data.values,
plt.legend()

plt.title('SARIMAX(S, @, 2) Predictions vs. Actua
plt.xlabel(

plt.ylabel()

plt.show()

', color="orange")

0.4s

Figure 19: SARIMA - Prediction of test Data

N Tit Tnf Tnint Skip Nact Projg F

50 71 1] 0 4.513D+00 -3.802D+00
F = -3.8021696709168924

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT

SARIMAX(S5, 0, 2) Predictions vs. Actual Test Data

= SARIMAX Predictions
Actual Test Data

Do

2021-01 2021-04 2021-07 2021-10 2022-01 2022-04 2022-07 2022-10 2023-01 2023-04
Date

Figure 20: Visualisation of SARIMA Prediction

14

6.3 Random Forest

The provided code in Figure 21| enhances the df timeseries dataframe by incorporating
the 3 more columns. These columns correspond to lagged versions of VALUE column,
with each column representing an different time period (1, 2 and 3 month). This modi-
fication aims to capture the historical dependencies existing in an time series data. Sub-
sequently, rows that contain the NaN values, which were created as an result of the
shifting process, that are eliminated in order to maintain the data integrity for further
analysis.

Random Forest

df_timeseries['one_month_shift']= df_timeseries['VALUE'].shift(+1)

df_timeseries['two_month_shift']=df_timeseries['VALUE'].shift(+2)
df_timeseries['three_month_shift']=df_timeseries['VALUE']l.shift(+3)
df_timeseries = df_timeseries.dropna()

0.0s

Figure 21: Introducing Lagged Features

In the code snippet 22, The numpy arrays are derived from the df timeseries data-
frame, consisting of the 3 lagged features and target variable. The arrays are undergo
an process of reshaping to create two-dimensional structure, which are subsequently com-
bined to produce an input matrix, final_ x. The dataset is there after divided into the two
subsets: a training set and a test set. The final 30 observations are specifically alloc-
ated for the purpose of the testing. In the meantime, features undergo standardisation
using StandardScaler technique, which aims to achieve an mean of 0 and a standard
deviation of 1. This process ensures that the features are an uniformly scaled, allow-
ing training and the testing of the model.

import numpy as np
x1,x2,x3,y=df_timeseries['one_month_shift'],df_timeseries['two_month_shift'],df_timeseries['three_month_shift'],df_timeseries['VALUE']
x1,x2,x3,y=np.array(x1),np.array(x2),np.array(x3),np.array(y)

1.reshape(-1,1),x2.reshape(-1,1),x3.reshape(-1,1),y.reshape(-1,1)
final_x=np.concatenate((x1,x2,x3),axis=1)
print(final_x)

X_train,X_test,y_train,y_test=final_x[:-30],final_x[-30:],y[:-30],y[-30:]

Scaling the features

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Figure 22: Data Preprocessing and Feature Scaling

The code[23|given is set up to optimise and evaluate performance of an Random Forest
Regression model by consistently trying out the different combination of the hyperpara-
meter. First, training the dataset that is y_train is changed into a one-dimensional file
to make sure it works with training process. Then, an fixed list of hyperparameter sets
is given, which includes the different number of trees that is n_estimators, the number
of features that are taken into the account for each decision split max_features, and a
consistent random state to make results repeatable.

After that in code we can see an repeated process is used in which every combination
of hyperparameter is used to create an Random Forest model and train it using training

15

data. After training, predictions is made on the test dataset. Three metric RMSE, R2,
and the MAPE has been used to measure how accurate model’s forecast are. Then,
the metrics and hyperparameter combinations for each model are saved in an structured
way in the ’evaluation_results_df’ DataFrame so that the analysis can be done. After the
evaluation loop finishes, the code finds and shows best set of hyperparameter.

Reshaping y_train to a one-dimensional arr
y_train_reshaped = y_train.ravel()

Defining different rparameters to try
hyperparameters_lis
{'n_estimators 'max_features': 2, 'random_state': 1},
{'n_estimators re 3, 'random_state': 1},
{'n_estimato 'max_featu ‘random_state': 1},
{'n_estimators 'max_feature: uto', 'random_state':

1

DataFrame to store the evaluation results
evaluation_results_df = pd.DataFrame(columns=["Hyperparameters", "RMSE", “R-squared", "MAPE (%)"])

Evaluating each hyperparameter combination

for hyperparameters in hyperparameters_list:
Creating and training the Random Forest model
model = RandomForestRegressor(kkhyperparameters)
model. fit(X_train, y_train_reshaped)

Making predictions on the testing data
Ran_pred = model.predict(X_test)

#Random Forest Evaluation
Randomforest_rmse:m(mean_squa red_error(Ran_pred,y_test))
Randomforest_r_square = r2_score(y_test, Ran_pred)
Randomforest_MAPE= MAPE(y_test,Ran_pred)

to the Dat: g
valuation_results_df.append({
"Hyperparameters": str(hyperparameters),
“RMSE": Randomforest_rmse,
Randomforest_r_square,
Randomforest_MAPE

, ignore_index=True)

Finding the best hyperpar rs based on the lowest RMSE
best_hyperparameters = evaluation_results_df.loc[evaluation_results_df['RMSE'].idxmin()]

evaluation_results_df, best_hyperparameters

0.7s

Figure 23: Hyperparameter Tuning for Random Forest Regressor

16

Plotting both the predicted values and the actual values
plt.rcParams["figure.figsize"] = (12,8)

plt.plot(Ran_pred, label='Random Forest Predictions', marker='x')
plt.plot(y_test.ravel(), label='Actual Values', marker='o"')
plt.legend(loc="upper left")

plt.xlabel('0Observation')

plt.ylabel('Unemployment Value')

plt.title('Comparison of Random Forest Predictions with Actual Values')
plt.grid(True)

plt.show()

0.1s

|
Comparison of Random Forest Predictions with Actual Values

=== Random Forest Predictions
Actual Values

180
Q
2
S 160
€
Q
£
>
i
S 140
% | ’\
0 | ""’/’.\\
100
0 5 10 15 20 25 0

Observation

Figure 24: Prediction Plot of Random Forest

6.4 Ridge Regression

The code|25] is set up to test how well the Ridge Regression, a method for linear regression
with L2 regularisation, works for an range of regularisation values that is set by the alphas
list. By changing alpha, you can fine tune the mix between bias and the variation. The
code is written such a way that , looping the each alpha number one by one. For each
iteration, a Ridge Regression model are created with the current alpha, trained on the
training dataset X_train and the y_train, and then used to make the predictions on test
dataset (X_test). Then, for these prediction, the Root Mean Squared Error (RMSE), the
R2 , and MAPE are calculated. These percentages show how big the model’s errors are,

17

how well it fits data and how accurate the predictions. The ridge results_df file keeps
track of each model performance and the related alpha.

RIDGE REGRESSION

Defining different alpha values for Ridge Regression
alphas = [0.001, 0.01, 0.1, 1, 10]

Scaling the features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Evaluating Ridge ession with different al,
ridge_results_d .DataFrame(columns=["Alpha" "R-squared", "MAPE (%)"]1)
for alpha in alphas:
ridge_model = Ridge(alpha=alpha)
ridge_model.fit(X_train_scaled, y_train_reshaped)
ridge_pre idge_model.predict(X_test_scaled)
ridge_rmse p.sqrt(mean_squared_error(ridge_pred, y_test))
ridge_r_square = r2_score(y_test, ridge_pred)
ridge MAPE = MAPE(y_test,ridge_pred) # Calculating MAPE
ridge_results_df = ridge_results_df.append({
“Alpha": alpha,
"RMSE": ridge_rmse,
“R-squared”: ridge_r_square,
"'MAPE (% ridge_MAPE
}, ignore_index=True)

best_alpha_ridge = ridge_results_df.loc[ridge_results_df['RMSE'].idxmin()]

ridge_results_df, best_alpha_ridge

/' 0.0s Python Python
Alpha RMSE R-squared MAPE (%)
0.001 5.859365 ©.942061 19.796930
0.010 5.883889 0.941575 19.779870
0.100 6.179207 ©.935563 19.697289
1.000 7.529578 0.904322 19.525697
10.000 10.846215 0.801470 19.622250,

Figure 25: Performance Evaluation of Ridge Regression

The real test values are then plotted next to the predictions so that an clear compar-
ison can be made. The graph shown in Figure gives how well the Ridge Regression
predictions match up with the real test data. Also, the models first five results are shown
so that you can get an quick look at them.

18

Using the best alpha value for Ridge regression to forecast the test data
best_alpha = best_alpha_ridge["Alpha"]

ridge_best_model = Ridge(alpha=best_alpha)
ridge_best_model.fit(X_train_scaled, y_train_reshaped)

ridge_best_pred = ridge_best_model.predict(X_test_scaled)

Plotting the actual vs predicted values
plt.plot(ridge_best_pred, label='Ridge Regression Predictions')
plt.plot(y_test, label='Actual Values')

plt.legend(loc="upper left")

plt.title("Ridge Regression Forecast vs Actual Values")
plt.xlabel("Time")

plt.ylabel("Value")

plt.show()

Returning the predicted values
ridge_best_pred[:5]

0.1s

Ridge Regression Forecast vs Actual Values

- Ridge Regression Predictions
Actual Values

180
160
QD
-
2
140 N\
120 \'/ —_
\// -
100
0 5 10 _ 15 20 25 30
Time

Figure 26: Visualization and Forecasting with Optimal Ridge Regression Model

6.5 KNN model

The code section gives the full evaluation of the k-Nearest regression method. It looks
at how well the KNN works for the different neighbourhood sizes, specifically for the k
values ranging from 1 to 5. The k-NN regression method predicts the goal value by taking
an average of k nearest data points in the feature space.

19

The process works like this for each step in the range:

e A k-NN regressor is set up with an current k value. After the model is set up, it
is trained with the X_train dataset, which gets it ready to make predictions on
data. Once the model has trained, it can predict the values for the test sample
called X _test.

e After making an prediction, 3 rating metrics are used to measure how well the
model worked that are RMSE, MAPE and the R-square This evaluation shows how
the choice of neighbours affects an capacity of the kNN model to predict future. It
does this by iterating over an range of k numbers.

20

KNN Model

rmse_val_knn
mape_val_knn
r_squre_knn

for K in range(5):
K = K+1
model = neighbors.KNeighborsRegressor(n_neighbors = K)
model.fit(X_train, y_train.ravel())
knn_pred = model.predict(X_test)
error = 2255(mean_squared_error(y_test, knn_pred))
rmse_val_knn.append(error)
Knn_r_square = r2_score(y_test, knn_pred)
r_squre_knn.append{Knn_r_square)

Knn_MAPE = MAPE(y_test,knn_pred)# Calculating MAPE
mape_val_knn.append(Knn_MAPE)

print('RMSE for k= ' , K, 'is:', error)

print('MAPE for k= ' , K, 'is:', Knn_MAPE)
print('R-squared for k= ' , K, 'is:', Knn_r_square)
print()

Return the lists with metric values
rmse_val_knn, mape_val_knn, r_squre_knn

v 0.0s

RMSE for k= 1 is: 9.52741657883535
MAPE for k= 1 is: 19.899724342478876
R-squared for k= 1 is: 0.8468132842862826

RMSE for k= 2 is: 10.246743385095584
MAPE for k= 2 is: 19.628199959274326
R-squared for k= 2 is: 0.8228086505730655

RMSE for k= 3 is: 8.94335259036317
MAPE for k= 3 is: 19.553552099735647
R-squared for k= 3 is: ©.8650193542038314

Figure 27: Evaluating k-Nearest Neighbors Regression for Different Values of k

Based on what worked best in previous code, This code uses the best KNN with
k=4. The model is learned on the X_train dataset, and then it predicts values for X _test
dataset. A plot is made so that these expectations and the real y_test values can be
seen side by side. The k-NN prediction are shown in the blue on graph, while actual
number are shown in the red. This makes it easy to compare the predicted and the real
data points.

21

Using k=4 for the K-Neighbors Regressor (as it produced the best results)
k best = 4

model_best_knn = neighbors.KNeighborsRegressor(n_neighbors=k_best)
model_best_knn.fit(X_train, y_train.ravel())

knn_pred_best = model_best_knn.predict(X_test)

Plotting the predictions vs actual values
plt.figure(figsize=(12, 8))

plt.plot(knn_pred_best, label='KNN Predictions (k=4)', color='blue')
plt.plot(y_test, label='Actual Values', color='red')
plt.xlabel('Time")

plt.ylabel('value"')

plt.title('K-Nearest Neighbors Prediction vs Actual Values')
plt.legend(loc="upper left")

plt.show()

0.0s
N
K-Nearest Neighbors Prediction vs Actual Values

== KNN Predictions (k=4)
= Actual Values

180
160
Q
-
g
140
120
100
0 5 10 15 20 25 30
Time

Figure 28: KNN Regression Predictions with Actual Data for k=4

6.6 XGBoost

The provided code [29] snippet divides xgboost_df dataset into the separate training and
test set using an predetermined date limit of '01-01-2015’. The data preceding this
specified date is utilised for purpose of the training, while the data later to this date
is allocated for testing the model. A plot is constructed in order to graphically represent
the division. The graphical representation offer an clear illustration of distribution of

22

the data and distinct boundary between training and test datasets.

xgboost_df = xgboost_df.drop(['one_month_shift', 'two_month_shift','three_month_shift'], ax
0.0s

train = xgboost_df.loc[df_timeseries.index < '01-01-2015"']
test = xgboost_df.loc[df_timeseries.index >= '01-01-2015']

fig, ax = plt.subplots(figsize=(15, 5))
train.plot(ax=ax, label='Training Set', title='Data Train/Test Split')
test.plot(ax=ax, label='Test Set')
ax.axvline('01-01-2015', color='black', 1s='--')
ax.legend(['Training Set', 'Test Set'])
plt.show()
0.1s

|
Data Train/Test Split

= Taining Set
Test Set

350

300

250

200

150

100

1999 2004 2009 2014 2019
Month

Figure 29: Visual Representation of Train/Test Data Split for XGBoost Model

def create_features(xgboost_df):
time atures based on time series index.
xgboost_df ['one_month_shift']=xgboost_df['VALUE'].shift(+1)
xgboost_df['two_month_shift']=xgboost_df['VALUE'].shift(+2)
xgboost_df['three_month_shift']=xgboost_df['VALUE'].shift(+3)
xgboost_df = xgboost_df.dropna()

return xgboost_df

df = create_features(xgboost_df)
v 0.0s

xgboost_df = xgboost_df.dropna()
xgboost_df

v/ 0.0s

Figure 30: Feature Engineering for Time Series Data in XGBoost Model.

The code[31]is set up to test how well the XGBoost regression model work with the dif-
ferent amounts of boosting round, also called estimators. The list n_estimators_list shows
the different amount of the boosting rounds to be evaluated 10, 100, 200, and 1000. A XG-
Boost regressor is set up with certain setting, such as current number of estimator, a fixed
learning rate of 0.01, and an maximum tree depth of 10.

23

The X _train dataset is used to train model, and both training and test data are used to
test the model. After training process, model is used to predict value on the X_test data-
set. The accuracy of these predictions is then measured using three metrics Root Mean
Squared Error, coefficient of determination, and MAPE . The ’evaluation_results_df’ data-
frame stores these measures along with the amount of estimator that is currently running.
This gives an consolidated view of how well different configurations are working. After the
evaluations is done, the dataframe with the results for all the tried numbers of estimators
that are printed. This gives an clear picture of how the performance of the model changes
with the number of boosting round.

List of n_estimators to try
n_estimators_list = [10, 100, 200 , 1000]

DataFrame to store the evaluation results
evaluation_results_df = pd.DataFrame(columns=["n_estimators", "RMSE", "R-squared", "MAPE (%)"1])

Looping through different n_estimators
for n_estimators in n_estimators_list:
Defining and training the XGBoost model
reg = xgb.XGBRegressor(base_score=0.5, booster='gbtree’,
n_estimators=n_estimators,
early_stopping_rounds=100,
objective="reg:linear’,
max_depth=10,
learning_rate=0.01)

reg.fit(X_train, y train,
eval_set=[(X_train, y_train), (X_test, y_test)],
verbose=100)

Making predictions on the test set
xgb_pred = reg.predict(X_test)

Calculating evaluation metrics

rmse = mean_squared_error(y_test, xgb_pred, squared=False)

r_square = r2_score(y_test, xgb_pred)

mape = MAPE(y_test, xgb_pred) # Define MAPE function as per your requirement

Appending the results to the DataFrame
evaluation_results_df = evaluation_results_df.append({
"n_estimators": n_estimators,
"RMSE": rmse,
"R-squared": r_square,
"MAPE (%)": mape
}, ignore_index=True)

Print the evaluation results
print(evaluation_results_df)

Figure 31: Evaluation of XGBoost Regression Model Across Different Numbers of Estim-
ators

The code first figures out best number of boosting rounds that is n_estimators.
The XGBoost model is set up and trained on the X_train dataset using this best number.
The model makes prediction based on the X _test data after it has trained. This makes
sure that the prediction are made using best way to set up the model.

24

Identifying the n_est value
best_n_estimators = evaluation_results_df.loc[evaluation_results_df['RMSE'].idxmin(), 'n_estimators']

Training the XGBoost model with the best n_estimators
best_model = xgb.XGBRegressor(base_score=0.5, booster='gbtree’,
n_estimato int(best_n_estimators),
early_stopping_rounds=100,
objective='reg: linear',
max_depth=10,
learning_rate=0.01)
best_model.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
verbose=100)

Making predictions using the best model
best_pred = best_model.predict(X_test)

[23:23:25] WARNING: / runn rk/xgbo 00s on-pa

[e] validation_0-rmse:205.53830 validation_1-rmse:153.23147
[100] validation_0-r 77.74616 validation_1-rmse:54.59836
[200] validation_0-rmse:29.74112 validation_1-rmse:17.06016
[300] validation_0-rmse:11.80804 validation_1-rmse:9.39711
[388] validation_0-rmse:5.73543 validation_1-rmse:11.43891

reg:linear is now deprecate

Figure 32: Optimal XGBoost Model Training and Prediction

test['prediction'] = best_pred

./ 0.0s

df = df.merge(test[['prediction']], how='left', left_index=True, right_index=True)
ax = df[['VALUE']].plot(figsize=(15, 5))

df['prediction']l.plot(ax=ax, style='")
plt.legend(['Actual Value', 'Predictions'])
ax.set_title('Raw Dat and Prediction')
plt.show()

" 0.2s

/|
Raw Dat and Prediction

350 —— Actual Value
Predictions
300
250
200 W
.7“. ‘If‘
150 \'4\.*-. I\ \
\"/\/-\ iﬁ»
N 2R,
100
1999 2004 2009 2014 2019
Month

Figure 33: Visual Comparison of Actual Values and XGBoost Predictions

	Introduction
	Hardware and Software Requirements
	Data Selection
	Importing Python Libraries
	Retrieving the Unemployment Dataset from the CSO Ireland
	Loading and Preparing the Data

	Exploratory Data Analysis
	Plotting the Trend Over Time
	Histogram of Unemployment Values
	Interactive Slider Graph
	Seasonal Decomposition of Time Series Data
	Checking for Null Values
	Augmented Dickey-Fuller Test

	Data Preprocessing and Transformation
	Stationarity Check with Augmented Dickey-Fuller (ADF) Test
	Visualizing Autocorrelation and Partial Autocorrelation

	Modelling And Evaluation
	ARIMA
	SARIMA
	Random Forest
	Ridge Regression
	KNN model
	XGBoost

