
DATA AUGMENTATION TECHNIQUES USING CIFAR10 DATASET and

FMNIST

DATA:

Cifar10 dataset:

This code displays 5 randomly selected CIFAR-10 dataset images in a horizontal row, each

with its index in a subplot. The images are shown without axis labels.

Data Augmentation Techniques Used:

1.Normalization

Data augmentation is a technique used in machine learning and deep learning, particularly

in computer vision tasks. It involves creating new training data by applying various

transformations to existing examples. These transformations include rotations, flips,

translations, scaling, cropping, and changes in brightness, contrast, or color. Data

augmentation aims to increase the diversity of the training dataset, which helps improve the

model's ability to generalize and perform well on new, unseen data. By presenting the model

with a wider range of variations, it learns to recognize features that are invariant to these

changes, leading to enhanced robustness and reduced overfitting. Data augmentation is

especially valuable when the available training data is limited, as it effectively increases the

effective size of the dataset and can lead to more accurate and reliable machine learning

models.

2.Random Eraser

The `random_erasing` function performs a data augmentation technique often used in

computer vision tasks. It enhances neural network training by randomly erasing a

rectangular region in an input image. The probability parameter controls the likelihood of

applying the transformation. A target area and aspect ratio are randomly selected within

specified ranges. The function then calculates the erasing rectangle's dimensions and

position, ensuring they fit within the image. This region is replaced with random pixel values,

simulating occlusion. This process encourages the network to learn more robust features

and reduces overfitting. By introducing controlled variations, the function aims to improve

the model's generalization performance during training, ultimately enhancing its ability to

handle diverse real-world scenarios.

3.Salient

The provided code defines a series of functions for generating saliency images, which

highlight regions in an input image that contribute most to the output of a neural network

model. Saliency maps are a form of data augmentation used for visualizing model attention

and understanding decision-making.

The `normalize_image` function takes an image as input and computes the normalized

gradient magnitudes across color channels. The values are normalized to the range [0, 1].

The `saliency` function blends the gradient image (img1) and the original image (img2) to

create a new image (img_new). The blending factor is controlled by the parameter `mix_val`,

and the output image is normalized within the range specified by `vmin` and `vmax`.

The `grads_saliency` function computes the gradient of the highest predicted score in the

model's output with respect to the input image. This gradient indicates the importance of

each pixel for the predicted class.

The `saliency_image` function calculates the saliency map for an input image using the

`grads_saliency` function and enhances it using the `saliency` function.

In summary, the provided functions enable the visualization of regions that significantly

influence the output of a neural network, offering insights into how the model makes

predictions. This type of data augmentation aids in understanding the model's decision-

making process and identifying areas where its attention is focused.

The left side are normal image while the right image is salient image.

Data Preprocessing:

Splitting training data for validation with 30% size to assess model training.

Code checks and displays data dimensions for training, validation, and testing sets.

Converts categorical labels into one-hot encoded format, changing shape[1] from 1 to 10 for

each y_train, y_val, and y_test dataset. This is used for multi-class classification.

Neural Networks.

This code snippets defines all the model used in here.

This code Snippet defines the batch_size and epochs.

The code snippets below show the Layers used in the different base_models defined before.

1.VGG19

2.ResNet50

3.DenseNet121

4.MobileNetV2

5.EfficientNet

Results:

Case1: Normal Data Augmentation

1.Accuracy Snippet

1.VGG19

2.ResNet50

3.DenseNet121

4.MobileNetV2

5.EfficientNetB0

Case2: Random Images

1.Accuracy Snippet

1.VGG19

2.ResNet50

3.DenseNet121

4.MobileNetV2

5.EfficientNetB0

Case3: Salience

1.Accuracy Snippet

1.VGG19

2.ResNet50

3.DenseNet121

4.MobileNetV2

5.EfficientNetB0

