
 
 

 
 
 
 
 
 
 
 
 
 

 

A Novel Tool for Prevention of SQL 

Injection and XSS Attacks 
 
 
 

 

MSc Research Project 
 

MSc Cybersecurity 
 
 

 

Vaibhav Ramdas Vhatkar  

21194149 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Prof. Vikas Sahni 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student Name: 

 

 Vaibhav Ramdas Vhatkar 

 

Student ID: 

 

 21194149 

 

Program: 

 

 MSc Cybersecurity  

 

Year: 

 

 2022-23 

 

Module: 

 

 MSc Research Project 

 

Supervisor: 

 

 Prof. Vikas Sahni 

Submission Due 

Date: 

 

 14th Aug 2023 

 

Project Title: 

 

 A Novel Tool for prevention of SQL Injection and XSS attacks 

Word Count: 

 

  5244 words                               Page Count 21 pages 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

 Vaibhav Ramdas Vhatkar 

 

Date: 

 

 13th Aug 2023 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 

both for your own reference and in case a project is lost or mislaid.  It is 

not sufficient to keep a copy on a computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



 

  
 

A Novel Tool for Prevention of SQL Injection and XSS 

Attacks 
Vaibhav Ramdas Vhatkar 

21194149 
 

 

Abstract 

SQL injection is a critical vulnerability that allows attackers to manipulate 

database queries. This can lead to unauthorized access, data breaches, and other 

serious consequences. SQLI affects a variety of industries, including finance and 

healthcare. Since 2017, SQL injection has been in the Top 10 web security risks 

on OWASP1. SQLI has the potential to cause significant data loss, financial losses, 

and reputation damage. It is therefore a paramount concern for organizations of all 

sizes. Secure coding practices and regular security assessments are essential for 

mitigating the risk of SQLI attacks. This work of the developed application can be 

seamlessly integrated into existing web applications, making it an easy way to 

improve their security posture. The application is a valuable tool for protecting 

user data and preventing cyberattacks. 

 
 

1 Introduction 
 

Web applications are increasingly relied upon in a variety of domains and one of the most 

prevalent and concerning security threats facing web applications is SQL injection (SQLi) and 

Cross Site scripting (XSS) attacks. SQL injection and XSS attacks exploit vulnerabilities in 

web application inputs to execute unauthorized SQL queries, potentially leading to data 

breaches and system compromise. As cyber attackers continuously evolve their techniques 

(Gandotra, Bansal and Sofat, 2015), it is imperative to develop effective countermeasures to 

safeguard user data and maintain the integrity of web applications. In 2017, Equifax suffered a 

massive data breach due to an SQLI attack, exposing the sensitive data of 143 million people. 

The final financial loss was estimated to be well above $1.7 billion2. 

This research project presents a web application designed(571b and Survey Paper, 

2012) to bolster the security of online systems by detecting SQL injection attacks and 

implementing IP blacklisting measures. The application leverages PHP and Python to provide 

a robust and user-friendly platform (Zborowski and Pańczyk, 2023) that empowers users to 

identify potential SQL injection vulnerabilities within their applications. Using regular 

expressions (Li et al., 2008), the application proactively identifies and thwarts SQL injection 

attempts, minimizing the risk of unauthorized data access. 

The primary objectives of this research project are twofold: 

 
1 https://owasp.org/www-project-top-ten/ 
2 https://www.housingwire.com/articles/equifax-expects-to-pay-out-another-100-million-for-data-breach/ 



 

• To evaluate the effectiveness of the application in detecting and mitigating SQL 

injection attacks. 

• To assess the impact of IP blacklisting as a defence mechanism against repeat offenders. 

By investigating these research objectives, this study aims to contribute to the advancement of 

web application security and strengthen the overall resilience of online systems against 

emerging cyber threats. 

Specific contributions of the research presented in this report are as follows: 

• It introduced a web application designed to detect SQL injection attacks and implement 

IP blacklisting measures. 

• It evaluated the effectiveness of the application in detecting and mitigating SQL 

injection and XSS attacks. 

• It assessed the impact of IP blacklisting as a defence mechanism against repeat 

offenders. 

• It provides recommendations for improving the security of web applications against 

SQL injection and XSS attacks. 

 

Significance of the research: 

The research presented in this report is significant because it addresses a critical 

security challenge for SQL injection and XSS attacks facing web applications. It provides a 

valuable tool for detecting and mitigating SQL injection and XSS attacks, and it can help to 

improve the security of web applications. 

The research also provides valuable insights into the effectiveness of IP blacklisting 

(Sreedhar et al., 2012) as a defence mechanism against repeat offenders. IP blacklisting can be an 

effective way to prevent attackers from repeatedly exploiting vulnerabilities in web 

applications. However, the research also found that IP blacklisting is not a silver bullet, and it 

should be used in conjunction with other security measures. 

 

2 Related Work 

2.1 SQL Injection 
 

SQL injection has been a critical security threat and a comprehensive review of SQL 

injection attacks(Halfond, Viegas and Orso, 2006) and research was carried out by Halfond, 

Vieges, and Orso. They have identified the different types of SQL injection attacks and 

evaluated the effectiveness of existing techniques in detecting and preventing them. They also 

analyzed the mechanisms through which SQL injection attacks can be introduced into an 

application and identify which techniques are best suited to handle each mechanism. The paper 

further evaluated the deployment requirements of each technique and assessed the extent to 

which detection and prevention mechanisms could be automated. The difference between 

prevention-focused and general detection and prevention techniques and explained the 

difference in their effectiveness. The paper provided recommendations for web application 

developers to better protect their databases from SQL injection vulnerabilities.  



 

The paper by Byod and Keromytis proposed a practical protection mechanism against 

SQL injection attacks by applying instruction-set randomization(Boyd and Keromytis, 2004) 

to SQL. The technique can be easily retrofitted to existing systems and imposes negligible 

performance overhead. However, the performance evaluation was conducted on a sample 

database, and the results may not be generalizable to other configurations or environments. The 

authors acknowledged that modifying the database's interpreter to accept the new set of 

keywords was a daunting task, which may have limited the practicality of their proposed 

technique in some cases.  

 In another paper proposing a Static Analysis Framework for Detecting SQL Injection 

Vulnerabilities in Web applications(Fu et al., 2007), the framework used symbolic execution and 

a hybrid constraint solver to identify more sophisticated SQL injection attacks than traditional 

black-box Web security inspection tools. The paper presented a motivating example of a non-

trivial SIA vulnerability that cannot be easily detected by black box testing tools. The proposed 

approach has the potential to improve the security of Web applications by identifying 

vulnerabilities that may have been missed by traditional inspected tools. 

The research on an automated approach for identifying SQL injection vulnerabilities 

using a prototype tool called SQLInjectionGen (MeiJunjin, 2009) was conducted. The tool 

combined static analysis, runtime detection, and automatic testing to facilitate the identification 

of true input manipulation vulnerabilities. The paper presented case studies performed on two 

small web applications to evaluate the effectiveness of SQLInjectionGen. The results showed 

that the tool is effective in identifying SQL injection vulnerabilities and can be used to 

complement existing security testing techniques. However, the paper acknowledged the 

limitations of the evaluation and suggests future work to evaluate larger programs.  

To study more about the attacks a paper by Jai Puneet Singh provided an extensive 

review of advanced SQL Injection attacks (Singh, 2017) , such as Fast Flux SQL Injection, 

Compounded SQL Injection, and Deep Blind SQL Injection. The paper analysed various 

detection and prevention techniques, including static code analysis, machine learning, and 

runtime monitoring. The evaluated different tools for detection and prevention are also 

discussed. The paper highlighted the challenges faced in researching these types of attacks and 

emphasizes the importance of proper coding and knowledge of these attacks to prevent their 

implications on web applications and businesses. 

2.2 Cross-Site Scripting (XSS) 
 

For detecting and preventing cross-site scripting (XSS) vulnerabilities in web 

applications research was made by Lwin Khin Shar and Hee Beng Kuan Tan to discuss 

different approaches like static string analysis and code-based input validation testing(Shar and 

Tan, 2012). The paper also highlighted the need for simpler and more flexible security 

defences, as well as the integration of program analysis, pattern recognition, and AI algorithms 

to enhance vulnerability detection.  

Another study about the evolution of cross-site scripting (XSS) attacks and their potential 

dangers was conducted. It effectively explained the process of XSS attacks, including the 

insertion of malicious code and social engineering techniques(Endler, 2002). The paper also 

highlighted the possibility of automated techniques for session hijacking, which could have 



 

made these attacks more prevalent. Additionally, it offered practical solutions and workarounds 

for web application developers and users to protect against XSS vulnerabilities.  

Furthermore, the detection and prevention of cross-site scripting (XSS) attacks in web 

applications were explored. It discussed various types of XSS attacks and explored different 

approaches to mitigate them, including bounded model checking, software testing techniques, 

and browser-enforced embedded policies(Pandian, Nithya and Malarvizhi, 2015). The paper 

also highlighted the limitations of existing solutions and emphasizes the need for more 

effective and practical methods to secure web applications against XSS vulnerabilities. 

A similar research paper by Philipp Vogt and Nentwich was studied for a combination 

of dynamic and static analysis techniques. They proposed an anomaly-based intrusion detection 

system(Vogt et al., no date) that analyzed web server logs and compared incoming user requests 

to typical parameter profiles. They also introduced a static analysis approach for web 

applications to detect XSS vulnerabilities. The paper highlighted the importance of using a 

hybrid analysis approach for precision and efficiency. They implemented their techniques in 

the Firefox web browser and conducted a large-scale evaluation and demonstrated reliable 

protection against XSS attacks. 

A different research analysis of a machine learning-based approach to detect blind cross-

site scripting (XSS) (‘Detecting Blind Cross-Site Scripting Attacks Using Machine Learning’, 

2018) attacks was conducted. The proposed approach uses a linear Support Vector Machine 

(SVM) classifier to identify malicious payloads likely to be stored in databases through web 

applications. Experimental results show the feasibility of the proposed approach in detecting 

blind XSS attacks. 

2.3 Web Application Firewall (WAF)  
 

Web application firewalls (WAF) are used in penetration testing and security assessment. 

A comparative analysis of various web application firewalls (WAFs) using a comprehensive 

evaluation framework (Ghanbari et al., 2016). The WAFs studied were ModSecurity, NAXSI, 

PHP-IDS, Applicure dotDefender, Barracuda WAF, F5 BIG-IP Application Security Manager, 

Imperva SecureSphere WAF and Trustwave WAF. The paper evaluated the effectiveness of 

each WAF in terms of security features, performance, and usability. It also conducted 

penetration testing and vulnerability assessment to identify the strengths and weaknesses of 

each WAF. The results showed that no single WAF is perfect, and each has its strengths and 

weaknesses.  

A similar study of comparison of different WAF solutions and detailed analysis of their 

features, limitations, and effectiveness (Razzaq et al., 2013) in preventing web application attacks 

was conducted. The paper highlighted the importance of web application security and the 

vulnerabilities that exist in current technologies. It compared different WAF solutions and 

provided a detailed analysis of their features, limitations, and effectiveness in preventing web 

application attacks. The WAFs compared in this paper are F5, Barracuda, SecurSphere, and 

WebDefend along with ModSecurity. The paper aims to help users select the most suitable 

WAF solution for their environments by providing a comprehensive overview of the available 

options. Overall, the paper provided valuable insights into the current state of web application 

security and the importance of deploying an effective WAF solution. 



 

Apart from comparisons of the existing firewalls, a new approach was studied proposing 

a hybrid web application firewall (Tekerek, Gemci and Bay, 2014) that combined signature-

based detection and anomaly detection methods to prevent web-based attacks. The paper 

highlighted the limitations of traditional network layer firewalls and the need for more 

sophisticated methods to secure web applications. They provided a detailed analysis of the 

proposed system, including the use of character frequency values, request length, and load 

distribution to detect anomalies. The study concluded that the hybrid system is effective in 

removing the deficiencies of the two methods and can prevent zero-day attacks. 

Another novel approach towards securing WAFs was a self-healing web application 

firewall called TokDoc (Krueger et al., 2010), which used local, anomaly-based models to detect 

and prevent web-based attacks. The paper introduced a data-driven setup procedure that 

automatically assigned data types to extracted tokens based on structural and statistical 

features. The paper evaluated the detection performance and runtime of TokDoc using real 

HTTP traffic and demonstrated its robustness against contaminated data. Overall, the paper 

presented a promising approach to web application security that differed from traditional 

signature-based detection techniques. 

Finally, the WAF-A-MoLE (Demetrio et al., 2020) is is a tool that used adversarial 

machine learning to evade web application firewalls (WAFs). The authors developed a set of 

syntactical mutations to produce adversarial examples against WAFs and evaluated the 

performance of various machine learning classifiers against these examples. They found that 

WAF-A-MoLE was effective at bypassing WAFs and outperformed other classifiers in terms 

of accuracy, recall, and precision. However, the authors noted that WAF-A-MoLE required a 

guided approach and might not be effective against more sophisticated WAFs. 
 

3 Research Methodology 
 

SQL injection is a serious web security vulnerability that allows attackers to inject 

malicious code into database queries. This can lead to the exposure of sensitive data, the 

modification of records, or even the complete control of the application. The 2015 TalkTalk 

breach3 is a prime example of the damage that SQL injection can cause.  

Cross-site scripting (XSS) is a web security vulnerability that allows attackers to inject 

malicious code into websites. This code can then be executed in the victim's browser, leading 

to a variety of problems, such as data theft, session hijacking, and malware distribution. XSS 

is a serious threat to web security and user data. Organizations need to implement preventive 

measures such as input validation, output encoding, and security headers to protect themselves 

from XSS attacks. For example, in 2018, British Airways4 was breached with an XSS attack 

that allowed attackers to steal the session cookies of thousands of users.  

A comprehensive solution was developed to mitigate the risks of SQL injection and XSS 

attacks. The solution involves detecting and preventing these attacks, and then integrating a 

web application firewall (WAF) to enhance security measures further. This innovative 

approach ensures the identification and prevention of SQL injection and XSS attacks, offering 

an advanced safeguarding mechanism for web applications. 

 The patterns of the attacks were studied as discussed below: 

SQL injection basic patterns inserted in the script of the tool (Shar and Tan, 2013): 

 
3 https://www.comparitech.com/blog/information-security/cross-site-scripting 
4 https://www.bbc.com/news/technology-45446529 



 

• (union|select|from|where|and|or) and (select|update|insert|delete) 

These are set of SQL keywords which if entered as a combination, would be marked as 

potentially harmful.  

• (and|or) and (=|>|<|>=|<=|<>|!=) 

These are set of Logical operators followed by numeric comparisons which can be used 

to manipulate SQL queries.  

• (and|or) and (=|>|<|>=|<=|<>|!=) 

These detect ‘and’ or ‘or’ followed by non-whitespace characters, then a comparison 

operator, and more non-whitespace characters. This pattern captures variations in 

whitespace. 

• “exec” 

This pattern identifies the presence of the ‘exec’ keyword followed by parentheses. The 

exec command is often exploited to execute arbitrary code.  

• “create” 

This pattern identifies the presence of the ‘create’ keyword followed by parentheses. 

The ‘create’ command is often used to create malicious objects or modify the database 

structure.  

• “drop” 

This pattern identifies the presence of the ‘drop’ keyword followed by parentheses. The 

‘drop’ command is often exploited to delete database objects.  

• “delete” 

This pattern identifies the presence of the ‘delete’ keyword followed by parentheses. 

The ‘delete’ command is often exploited to delete rows in database tables.  

• “insert” 

This pattern identifies the presence of the ‘insert’ keyword followed by parentheses. 

The ‘insert’ command is used to insert commands into database tables.  

• “update” 

This pattern identifies the presence of the ‘update’ keyword followed by parentheses. 

The ‘update’ command is used to modify existing data in the database.  

 

XSS basic patterns are inserted in the script of the tool (Bozic and Wotawa, 2013) 

• <script[\s\S]*?> 

This pattern detects the presence of the “<script>” tag in HTML, which can be used to 

include malicious JavaScript code on a webpage. 

 

• r"on\w+\s*=\s*['\"].*['\"]" 

This pattern identifies event handlers like “onclick”, “onload”, etc., followed by an 

equal sign and a value wrapped in single or double quotes. Attackers may exploit these 

attributes to execute JavaScript code when the event is triggered. 

• r"<img\s+src\s*=\s*['\"]\s*javascript\s*:\s*[^'\"\s]+": 

This pattern detects the use of the “<img>” tag with a javascript: URL in the “src” 

attribute. This can be abused to execute JavaScript in certain cases. 

 



 

• r"<a\s+href\s*=\s*['\"]\s*javascript\s*:\s*[^'\"\s]+": 

Similar, to the previous pattern, this identifies the use of the “<a>” tag with a javascript: 

URL in the “href” attribute. 

 

• r"<iframe\s+src\s*=\s*['\"]\s*javascript\s*:\s*[^'\"\s]+": 

This pattern detects the “<iframe>” tag with a javascript: URL in the “src” attribute. 

Attackers can use “iframes” to load malicious content. 

 

• r"<object\s+data\s*=\s*['\"]\s*javascript\s*:\s*[^'\"\s]+": 

Similar to the previous patterns, this detects the “<object>” tag with a javascript: URL 

in the data attribute. 

 

• r"expression\s*\(": 

This pattern identifies the “expression()” function, which is used in old versions of 

Internet Explorer for CSS. It can be used to execute JavaScript code in some contexts. 

 

• r"url\s*\(\s*['\"]\s*javascript\s*:\s*[^'\"\s]+": 

This pattern detects the “url()” function in CSS with a javascript: URL. Attackers can 

exploit this to inject JavaScript code into a webpage's CSS. 

 

• r"\beval\s*\(": 

This pattern identifies the use of the “eval()” function, which is commonly used to 

dynamically execute code. Attackers can use it to execute arbitrary code on the page. 

 

• r"\balert\s*\(": 

This pattern detects the use of the “alert()” function, which displays pop-up alerts in 

JavaScript. It's often used in XSS payloads to test a vulnerability. 

 

4 Design Specification  
 

The design specification for the tool outlines the use of PHP, Python, and WAF. The 

requirements focus on performance, user experience, security, scalability, and maintenance to 

ensure the tool's effectiveness and long-term viability. 

Techniques and Architecture: 

The web application security tool utilizes a combination of techniques, architecture, 

and frameworks to provide robust protection against SQL injection and Cross-Site Scripting 

(XSS) attacks: 

• Front-End: 

Language: PHP 

Framework: Basic PHP for frontend interaction, form input handling, and user 

interface. 

User Input Validation: Frontend validation for basic input sanity checks. 

 



 

• Back-End: 

Language: Python 

Framework: Custom Python script for advanced pattern detection and attack 

prevention. 

Pattern Detection: Manually entered attack patterns for identifying SQL injection and 

XSS patterns. 

Logging: Python's logging module for capturing attack details. 

Blacklisting: Logic to manage IP blacklisting based on attack frequency. 

 

• Security Enhancements: 

Web Application Firewall (WAF): Integration of WAF rules for real-time detection and 

blocking of suspicious requests. 

 

Associated Requirements: 

• Performance: 

Speed: Pattern detection is efficient and quick to ensure minimal impact on user 

experience. 

Resource Usage: The application is light and optimized to prevent excessive resource 

utilization during pattern matching. 

 

• User Experience: 

User Interface (UI): The UI is user-friendly, indicating the status of input safety and 

providing meaningful feedback. 

Minimal False Positives: The tool avoids flagging legitimate user input as malicious to 

ensure accurate results. 

 

• Security: 

Pattern Accuracy: The attack patterns are accurately identified as malicious patterns 

while minimizing false negatives. 

IP Blacklisting: Effective handling of IP blacklisting to prevent repeat attacks from the 

same source. 

 

• Scalability: 

Scaling Consideration: Architecture is designed to accommodate future scalability 

needs as the user base grows. 

 

 



 

 
Figure 1:  Design flow of the application. 

 
 

5 Implementation 
 

The tool detects and prevents SQL injection and XSS attacks works by identifying 

potential attack patterns in user input, and determining whether an input is safe or malicious 

and suspicious inputs. This helps to protect user data, maintain application integrity, and uphold 

user trust. 

The final outputs of the tool can be summarised below. 

• Pattern detection: The tool uses patterns to identify potential attacks in user input. This 

includes looking for common keywords and phrases, as well as specific character 

sequences that are often used in attacks. 

• Attack detection status: The tool determines whether an input is safe or malicious based 

on the results of the pattern detection, upon detection of a potential attack, the tool re-

directs to the blocked screen. 

• IP blacklisting and logging: If the tool detects an attack, it will log relevant information 

such as the attacker's IP address, and the attacker's IP address is automatically added to 

a blacklist, which will prevent them from accessing the web application in the future. 

• User-friendly interface feedback: The tool provides feedback to users regarding the 

outcome of their inputs. 

 

 

 



 

Tools and Languages Used: 

The developed tool combines the capabilities of multiple tools and languages: 

• Frontend: PHP is used to create the user interface where the user input data and 

receives feedback. 

• Backend Detection Script: Python is used to implement the backend script responsible 

for pattern detection and attack prevention. 

• Pattern Detection: Manual SQL injection attack and XSS attack patterns are entered 

within the Python script to identify attack patterns based. 

• Logging and IP Blacklisting: Python handles the logging of attack information and 

adding attacker IPs to the blacklist. 

• User Interface: PHP is used to create the user interface that presents the detection 

results and feedback to users. 

 

Figure 2:  Frontend of the application without detection capability using PHP. 

 



 

 
Figure 3:  Frontend of the application with detection capability using PHP. 

 

 

6 Evaluation 
 

To validate the application, experiments were conducted using manual SQL injection 

attacks and XSS patterns as input. The application was tested with both detection capabilities 

turned on and off. 

In the experiments with detection capability turned on, the application was able to 

successfully detect all the attack patterns. In the experiments with detection capability turned 

off, the application was vulnerable to the attack patterns and allowed them to execute. 

6.1 Experiment 1: The SQL injection attack without the detection and 

prevention 
 

In this experiment, an SQL injection attack pattern is the user input without the defence 

mechanism and the attack is not blocked.  
 

1' UNION SELECT null, username || '-' || password FROM admin -- 
 

Now, in this the input  

• (1' UNION SELECT null, username || '-' || password FROM admin --) is concatenated 

into the SQL query.  

• The UNION SELECT is used to add a new ‘row’ to the result set as an attempt to 

retrieve the username and password columns from the admin table. 

• ‘null’ is used to fill in the id column for the first part of the query.  

• The || operator concatenates the username and password columns and separates them 

with a hyphen. 

 

 

 



 

 
Figure 4:  SQL injection attack without detection capability 

 

 

Further, this input is accepted by the application without any detection and registered as input. 

 

 
Figure 5:  SQL injection attack successful without detection 

 

6.2 Experiment 2: The SQL injection attack with the detection and 

prevention 
 

In this experiment, the same SQL injection attack pattern is the user input but now with 

the defence mechanism, the attack is blocked.  

 

1' UNION SELECT null, username || '-' || password FROM admin – 
 
 



 

 
Figure 6:  SQL injection attack with detection capability 

 

 

Further, this input is detected as a potential threat by the application and IP is blacklisted. 

 

 
Figure 7:  SQL injection attack detected and prevented. 

 

6.3 Experiment 3: The XSS attack without the detection and prevention 
 

In this experiment, an XSS attack pattern is the user input without the defence mechanism 

and the attack is not blocked.  

 

<script>alert(document.cookie);</script> 

 



 

Now, in this input the missing closing angle bracket ("/>") for the <script> tag is added, and 

the alert function correctly ends with a closing parenthesis “)”. 

 

 
Figure 8:  XSS attack without detection capability 

 

Further, this input is accepted by the application without any detection and registered as input. 

 

 
Figure 9:  XSS attack successful without detection. 

 

6.4 Experiment 4: The XSS attack with the detection and prevention 
 

In this experiment, an XSS attack pattern is the user input with the defence mechanism 

and the attack is blocked.  

 

<script>alert(document.cookie);</script> 

 



 

 
Figure 10:  XSS attack with detection capability 

 

Further, this input is detected as a potential threat by the application and IP is blacklisted. 

 

 
Figure 11:  XSS attack detected and prevented. 

 

 

 

 

 

 

 

 



 

6.5 Experiment 5: The Safe input with the detection and prevention 
 

In this experiment, a simple ‘hello’ word is used as input, and it is registered as safe 

input. 
 

 
Figure 13:  Safe input ‘’. 

 
 

 
Figure 13:  Safe input has been successfully registered. 

 
 
 
 
 
 
 



 

6.6 Discussion 
 

The developed application is a novel tool to mitigate both SQL injection and XSS attacks. 

Further, these attacks when detected can be blocked by identifying the IP address of the 

attacker, and for security purposes, the IP is blacklisted. The application has been tested 

manually for both SQL injection and XSS attacks with IP blacklisting.  

The work could have been made more robust and enhanced with suggested improvements 

for the application. 

• Enhanced Pattern Detection (Meharaj Begum and Arock, 2021): The pattern detection 

mechanism can be updated and expanded to cover emerging attack vectors and evasion 

techniques. This will help us to detect and block attacks more effectively. 

• Real-time Alerts (Pereira, Campos and Vieira, 2019): Real-time alerts and notifications 

for the administrator when an attack is detected can be implemented allowing the 

administrator to take swift action to mitigate the attack. 

• Machine Learning (Bhardwaj et al., 2022): The integration of machine learning algorithms 

to enhance the accuracy of attack detection and minimize false positives can be done. 

This can help detect attacks more accurately without generating unnecessary alerts. 

• WAF Integration (Robinson, Akbar and Ridha, 2018): The Web Application Firewall 

(WAF) can further be refined to allow adaptivity to adjust WAF rules based on 

incoming threats, providing even more protection. 

• Security Reports (Martin and Lam, no date): The generation of automated detailed 

security reports, including attack logs and analysis can be implemented to help the 

administrator with the threat landscape to make informed security decisions. 

• Community Contribution (Schryen, 2011): The application can be open-sourced for 

encouraging community contributions allowing collaboration with others from the 

security field to continuously improve the application. 
 

 

7 Conclusion and Future Work 
 

The developed application is a powerful and innovative solution to protect web 

applications from two critical security vulnerabilities: SQL injection and cross-site scripting 

(XSS). The application uses a combination of PHP and Python scripts to effectively detect and 

mitigate potential attacks, safeguarding user data. The implementation of IP blacklisting adds 

a layer of defence, further strengthening the security posture. 

For future work, web application security can be continuously improved by enhancing 

pattern detection, implementing real-time alerts, integrating machine learning, refining WAF 

integration, providing security reports, and encouraging community contributions. 

 

References 
 
571b, E. and Survey Paper, T. (2012) ‘Approaches to detect SQL injection and XSS in web applications’. 

 
Bhardwaj, A., Chandok, S.S., Bagnawar, A., Mishra, S. and Uplaonkar, D. (2022) ‘Detection of Cyber Attacks: 
XSS, SQLI, Phishing Attacks and Detecting Intrusion Using Machine Learning Algorithms’, 2022 IEEE Global 
Conference on Computing, Power and Communication Technologies, GlobConPT 2022 [Preprint]. Available at: 
https://doi.org/10.1109/GLOBCONPT57482.2022.9938367. 
 

https://doi.org/10.1109/GLOBCONPT57482.2022.9938367


 

Boyd, S.W. and Keromytis, A.D. (2004) ‘SQLrand: Preventing SQL injection attacks’, Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3089, 
pp. 292–302. Available at: https://doi.org/10.1007/978-3-540-24852-1_21/COVER. 
 
Demetrio, L., Valenza, A., Costa, G. and Lagorio, G. (2020) ‘WAF-A-MoLE: Evading web application firewalls 
through adversarial machine learning’, Proceedings of the ACM Symposium on Applied Computing, pp. 1745–
1752. Available at: https://doi.org/10.1145/3341105.3373962. 
 
‘Detecting Blind Cross-Site Scripting Attacks Using Machine Learning’ (2018). Available at: 
https://doi.org/10.1145/3297067.3297096. 
 
Endler, D. (2002) ‘The Evolution of Cross-Site Scripting Attacks’. 
 
Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K. and Tao, L. (2007) ‘A static analysis framework for detecting SQL 
injection vulnerabilities’, Proceedings - International Computer Software and Applications Conference, 1, pp.  
 
87–94. Available at: https://doi.org/10.1109/COMPSAC.2007.43. 
 
Gandotra, E., Bansal, D. and Sofat, S. (2015) ‘Computational Techniques for Predicting Cyber Threats’, 
Advances in Intelligent Systems and Computing, 308 AISC(VOLUME 1), pp. 247–253. Available at: 
https://doi.org/10.1007/978-81-322-2012-1_26/COVER. 
 
Ghanbari, Z., Rahmani, Y., Ghaffarian, H. and Ahmadzadegan, M.H. (2016) ‘Comparative approach to web 
application firewalls’, Conference Proceedings of 2015 2nd International Conference on Knowledge-Based 
Engineering and Innovation, KBEI 2015, pp. 808–812. Available at: 
https://doi.org/10.1109/KBEI.2015.7436148. 
 
Halfond, W.G.J., Viegas, J. and Orso, A. (2006) ‘A Classification of SQL-Injection Attacks and Countermeasures’. 
Krueger, T., Gehl, C., Rieck, K. and Laskov, P. (2010) ‘TokDoc: A self-healing web application firewall’, 
Proceedings of the ACM Symposium on Applied Computing, pp. 1846–1853. Available at: 
https://doi.org/10.1145/1774088.1774480. 
 
Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S. and Jagadish, H. V (2008) ‘Regular Expression Learning 
for Information Extraction’, pp. 21–30. 
 
Martin, M. and Lam, M.S. (no date) ‘Automatic Generation of XSS and SQL Injection Attacks with Goal-Directed 
Model Checking’, (1). Available at: http://example.com/search_ (Accessed: 13 August 2023). 
 
Meharaj Begum, B.A. and Arock, M. (2021) ‘Efficient Detection of SQL Injection Attack(SQLIA) Using Pattern-
based Neural Network Model’, Proceedings - IEEE 2021 International Conference on Computing, 
Communication, and Intelligent Systems, ICCCIS 2021, pp. 343–347. Available at: 
https://doi.org/10.1109/ICCCIS51004.2021.9397066. 
 
MeiJunjin (2009) ‘An approach for SQL injection vulnerability detection’, ITNG 2009 - 6th International 
Conference on Information Technology: New Generations, pp. 1411–1414. Available at: 
https://doi.org/10.1109/ITNG.2009.34. 
 
Pandian, S.L., Nithya, V. and Malarvizhi, C. (2015) ‘A Survey on Detection and Prevention of Cross-Site Scripting 
Attack Question and Answering System for Tamil Documents View project A Survey on Detection and 
Prevention of Cross-Site Scripting Attack’, Article in International Journal of Security and Its Applications, 9(3), 
pp. 139–152. Available at: https://doi.org/10.14257/ijsia.2015.9.3.14. 
 
Pereira, J.D.A., Campos, J.R. and Vieira, M. (2019) ‘An exploratory study on machine learning to combine 
security vulnerability alerts from static analysis tools’, 2019 9th Latin-American Symposium on Dependable 
Computing, LADC 2019 - Proceedings [Preprint]. Available at: 
https://doi.org/10.1109/LADC48089.2019.8995685. 
 



 

Razzaq, A., Hur, A., Shahbaz, S., Masood, M. and Ahmad, H.F. (2013) ‘Critical analysis on web application 
firewall solutions’, pp. 1–6. Available at: https://doi.org/10.1109/ISADS.2013.6513431. 
 
Robinson, Akbar, M. and Ridha, M.A.F. (2018) ‘SQL Injection and Cross Site Scripting Prevention using OWASP 
ModSecurity Web Application Firewall’, JOIV : International Journal on Informatics Visualization, 2(4), pp. 286–
292. Available at: https://doi.org/10.30630/JOIV.2.4.107. 
 
Schryen, G. (2011) ‘Is open source security a myth?’, Communications of the ACM, 54(5), pp. 130–140. 
Available at: https://doi.org/10.1145/1941487.1941516. 
 
Shar, L.K. and Tan, H.B.K. (2012) ‘Defending against cross-site scripting attacks’, Computer, 45(3), pp. 55–62. 
Available at: https://doi.org/10.1109/MC.2011.261. 
 
Singh, J.P. (2017) ‘Analysis of SQL Injection Detection Techniques’, Theoretical and Applied Informatics, 28(1 & 
2), pp. 37–55. Available at: https://doi.org/10.20904/281-2037. 
 
Sreedhar, V., Ji, P., Luo, L., Yang, S., Zhang, Y. and Zurko, M.E. (2012) ‘IBM Research Report User Friendly Web 
Application Firewall with Client Pre-Checking User Friendly Web Application Firewall with Client Pre-checking’, 
Computer Science, pp. 25297–1207. 
 
Tekerek, A., Gemci, C. and Bay, O.F. (2014) ‘Development of a hybrid web application firewall to prevent web 
based attacks’, 8th IEEE International Conference on Application of Information and Communication 
Technologies, AICT 2014 - Conference Proceedings [Preprint]. Available at: 
https://doi.org/10.1109/ICAICT.2014.7035910. 
 
Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C. and Vigna, G. (no date) ‘Cross-Site Scripting 
Prevention with Dynamic Data Tainting and Static Analysis’. 
 
Zborowski, J. and Pańczyk, M. (2023) ‘Comparative analysis of web applications implemented in: PHP and 
Python’, Journal of Computer Sciences Institute, 26, pp. 18–22. Available at: 
https://doi.org/10.35784/JCSI.3071. 
  

 


