

A Technique to Steal OAuth Tokens in Android-

Based Devices Using a Malicious Application

MSc Research Project

MSc. Cybersecurity

Rajendra Yashwant Topare

Student ID: 21222061

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Rajendra Yashwant Topare

Student ID:

21222061

Programme:

MSc in Cybersecurity

Year:

2022-23

Module:

MSc Research Project

Supervisor:

Mr. Vikas Sahni

Submission Due

Date:

18/09/2023

Project Title:

A Technique to Steal OAuth Tokens in Android-Based Devices

Using a Malicious Application

Word Count:

5343 Page Count: 19

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Rajendra Yashwant Topare

Date:

16/09/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

A Technique to Steal OAuth Tokens in Android-

Based Devices Using a Malicious Application

Rajendra Yashwant Topare

21222061

Abstract

The OAuth protocol is used to authorize and authenticate access to third-party

services. But its implementation in Android-based mobile devices is vulnerable to attacks,

which allows attackers to get unauthorized access to private information. This research

demonstrates a new technique to capture OAuth tokens using a malicious Android

application while accessing third-party applications using a Facebook login. It presents

useful insights into the different strategies used by cybercriminals to obtain OAuth tokens

and highlights flaws in existing security mechanisms. It highlights the need for the

development of new countermeasures to mitigate these threats. These insights can be

utilized by mobile app developers to improve app security while protecting user data.

Keywords: Mobile Threats, OAuth tokens, Android Security.

1 Introduction

 By using Open Authorization (OAuth), a user can authorize a third party (such as a

mobile app) to access the user's data on a resource provider (RP) by using the user's credentials.

Due to OAuth, users don't have to trust third-party applications with their credentials in order

to provide them access. Google, Facebook, and Twitter are just a few of the major SPs that

give software development kits (SDKs) that can be integrated into mobile applications to make

using their services effortless. Third-party applications often use OAuth to connect to the HTTP

services of well-known Service Providers (SPs). OAuth implementations in Android

applications are not always consistent with the recommended standard, primarily due to

differences between providers and platforms and the various types of implementations that

often leave apps vulnerable to attacks (Rahat, Feng and Tian, 2019).

 The stealing of OAuth tokens on Android devices is a big threat to OAuth security.

Android has become by far one of the most popular mobile operating systems for attackers to

target, with over 3.3 billion active users1 (Abdullah and Zeebaree, 2021). To gain access to

sensitive information such as emails, social networking accounts, and bank account

information, attackers may exploit gaps in Android applications or the operating system itself.

Unfortunately, OAuth token thefts can happen invisibly, and users may be unaware of security

vulnerabilities until it is too late. The compromised credentials or OAuth tokens can be used to

gain access to user accounts and get involved in a variety of illegal activities such as data

mining, spamming, and posting offensive information on social networking sites. To secure

1 https://www.bankmycell.com/blog/how-many-android-users-are-there

https://www.bankmycell.com/blog/how-many-android-users-are-there

2

user information and privacy, it is critical to research mobile issues such as the stealing of

OAuth tokens on Android devices.

 The purpose of this research study is to highlight the seriousness of the OAuth token

hijacking issue on Android smartphones while accessing third-party apps. The OAuth protocol

is often used to offer authorization and authentication for third-party services (Fett, Küsters

and Schmitz, 2016). However, the way it's implemented in Android smartphones leaves it

vulnerable to attack, enabling attackers to get unauthorized access to personal data. Despite

widespread acceptance of the necessity of OAuth token security, there is still a significant gap

in understanding of how to successfully secure tokens on Android devices. This study aims to

identify the strategies that attackers can use to steal OAuth tokens from Android devices and

to evaluate the effectiveness of current security measures in mitigating this threat. This study

contributes to the world of mobile security by putting the spotlight on the present status of

OAuth token security on Android devices and pointing out the need for more research to

enhance it.

 The research on OAuth token stealing on Android devices is critical because it increases

awareness of the severity of this security issue and the possible risks associated with

utilizing mobile apps that utilize the OAuth protocol. The research gives useful insights into

the various strategies used by cybercriminals to steal OAuth tokens and reveals flaws in

existing security mechanisms, which may be utilized when developing new countermeasures

to reduce this risk. Mobile application developers can use the insights to enhance application

security and protect user data. Furthermore, this study emphasizes the necessity for future

research to address the security flaws in the OAuth protocol in order to enhance its

implementation on Android devices. This study also adds to the area of mobile security by

emphasizing the present status of OAuth token security on Android devices and highlighting

the need for ongoing efforts to enhance mobile application security.

Research Question: How OAuth tokens can be stolen on Android devices?

2 Related Work

 Many researchers have discovered a number of security issues associated with poor

OAuth implementation. The protocol is multi-party and is intended for helping third-party

authorizations and authentications. It combines password authentication with third-party

delegated authentication. Significant security problems can be introduced by either the service

provider (SP) because of an unsafe OAuth implementation or by developers incorrectly

interpreting or abusing the protocol. Because of variations in operating systems, mobile app

developers frequently do mistakes in their code. Due to a lack of complete security analysis,

poor OAuth implementation is not going to have its security problems recognized and

corrected. Without a comprehensive and thorough examination, even competent analysts may

overlook various intricacies and minor flaws in an Android-based OAuth process.

 One of the major security risks related to OAuth session handling highlighted by

(Abdullah and Zeebaree, 2021) in their paper was improper session management. For session

management, developers commonly use OAuth tokens, SSO, and cookies. However, if

someone with malicious intent obtains these tokens, they can carry out activities as

3

authorized users and get access to higher privileges. Mobile application vulnerabilities are

caused by developers' lack of awareness of security and bad coding practices. Furthermore,

Android's permission system has problems, and inappropriate permission system usage leads

to vulnerabilities and data thefts. To prevent this issue, implement proper session management

by verifying the user's identity through the backend, creating difficult-to-guess session tokens,

and defining session timeouts. If they are correctly implemented, attackers might need to

deploy new token-stealing strategies.

 (Rahat, Feng and Tian, 2019) investigated for flaws in the design as well as

implementation of dependent parties that use OAuth protocols, assuming that service providers

use OAuth security techniques effectively. The research looked at authentication attacks, where

an attacker acquired access to mobile apps on behalf of victims, and authorization attacks, in

which malicious dependant parties attempt to get unauthorized access to user data. The article

described TikTok, a popular application that connects user accounts from service providers

(SP) such as Facebook, Instagram, and Google by applying the standard authentication

mechanism using the OAuth 2.0 protocol. However, after running OAUTHLINT, the authors

uncovered many flaws in the app's OAuth protocol implementation.

 The activity-in-the-middle attack which was highlighted by (Xiao et al., 2017) can

occur during the OAuth 2.0-based Single Sign-On (SSO) process. In this attack, the attacker

executes an undetectable malicious activity that prevents communication from the user's device

system that should be forwarded to the Service Provider (SP) and transmits its own data. The

attacker can subsequently utilize the access token to get access to the user's private information

hosted on the SP's servers. If strong SSL setups are used, a secure connection between the user's

device along with the service provider is ensured, making it harder for attackers to intercept or

alter communications.

 (Fett, Küsters and Schmitz, 2016) discussed several attack strategies such as State Leak

attacks and Cross Social-Network Request Forgery. In OAuth 2.0, a state leak attack can allow

session altering or login CSRF. The attack can cause a browser to be logged in at an RP or

encourage a Relying Party (RP) to utilize an attacker-controlled website instead of a user-

controlled resource by using the Referrer header in the HTTP request. The analysis also

mentions that compromises of sensitive data by using the Referrer header are not uncommon,

based on previous research.

 When paired with IdPs that simply fail to validate the redirect URI, cross-social-

network request forgery occurs. This applies to RPs with basic user intention monitoring. This

research emphasized that even if an IdP carefully reviews redirect URIs, the IdP mix-up attack

can be successful and that this class of attacks is not restricted to certain implementations, but

rather a systematic vulnerability in the OAuth standard. It also disclosed the Malicious

Endpoints Attack, which is limited to OpenID Connect and uses the OpenID Connect

Discovery technique. This vulnerability indicates the RP is vulnerable to CSRF.

 (Shehab and Mohsen, 2014, 2016) explained a JavaScript injection technique for

OAuth token theft that can be used when the source code of a mobile app has the WebView

component. In this attack, an attacker may inject JavaScript into the WebView,

jeopardizing the secrecy and integrity of the OAuth transaction. An attacker can obtain a user's

credentials during the authentication step by injecting JavaScript to capture the user's email

address and password when clicking the submit button. The injected JavaScript can then send

4

the login information to the mobile application, which can subsequently transfer them to the

malicious developer's remote server. An attacker can also alter the authorisation page presented

to the user during the OAuth procedure by manipulating the list of requested permissions. The

mitigation solution proposed in the research paper is a whitelist access control framework

called "SecureOAuth" to fight against JavaScript injection attacks on the OAuth-WebView

implementation.

 (Wang et al., 2015) highlighted the various attack surfaces which are linked with OAuth

implementation on Android, putting user data at risk. User-agent hijacking is an example of

such an attack surface, in which a malicious RP application takes control of the WebView to

launch attacks against user authentication and app permission. This may lead to the theft of

critical user information as well as the manipulation of WebView content. Another major

difficulty with the Android OAuth implementation is the network attack surface. Because the

protocol is completely dependent on SSL for server authentication and secrecy, sensitive data

such as login details and OAuth credentials can be captured and altered by a network attacker

if transport security measures are not correctly implemented. This can result to data theft and

a violation of user privacy.

 (Li and Mitchell, 2014) explained Client secret theft in their lecture notes which

threaten OAuth protocol security. This vulnerability is caused by an attacker gaining the client

secret, which authenticates the client with the authorization server. The attacker can obtain

tokens for the vulnerable client or repeat refresh tokens and authorization codes. An attacker

could obtain the client's secret by gaining access to the source code, binaries, or deployment-

specific secret. This risk allows an attacker to bypass client authentication and get refresh

tokens or authorization codes. Theft of refresh tokens also jeopardizes OAuth security. An

attacker acquires the refresh token, which allows a client to receive a new access token when

the previous token expires. To get access to the protected resources, the attacker could pretend

as the user. The refresh token can be stolen, duplicated, or obtained through online or native

applications. This flaw allows an attacker to get unauthorized access to protected resources,

which is dangerous.

3 Research Methodology

 In recent years, a lot of research has been conducted on the various methods by which

attackers could compromise OAuth frameworks. Others have undertaken security research,

investigating how SP and RP implementations are utilized in the real world, and discovered

several major flaws that an attacker can exploit to get control the victim user's resources.

Facebook's OAuth 2.0 implementation has security weaknesses that might allow OAuth

credentials to be stolen (Wang, Chen and Wang, 2012). As most previous research has focused

on security issues of OAuth implementations on Web platforms, this study seeks to analyze the

potential security difficulties that could occur when implementing OAuth on the Android

operating system. Several researchers investigated OAuth implementation difficulties in

mobile settings. Researchers discovered major discrepancies between mobile platforms and the

Web, as well as the challenging areas of the OAuth protocol flows for mobile app developers

(Wang et al., 2015). Even with OAuth, native mobile apps make stealing login credentials

5

easier. They advised avoiding implementing the end-user authorization procedure inside an

embedded browser due to risks connected with the OAuth 2.0 threat model and security issues.

In contrast to the most of previous work, which focuses on the authorization phase, this study

focuses only on the process of authentication.

 Each method for obtaining OAuth tokens includes its own set of limitations, though

some of them may not be appropriate in specific situations. An approach for creating an

Android application for acquiring OAuth tokens has been presented to bring attention to an

additional potential vulnerability in the OAuth protocol that needs to be fixed.

 The technique used for the perpetration of OAuth Token theft includes a methodical

strategy aimed at comprehending, evaluating, and enhancing its performance inside the

Android application. Once the development environment and projects have been set up,

attention is directed toward understanding the manner in which the code will manage deep

linkages using the Intent object. Upon careful examination of the layout XML file and the UI

components, it becomes evident that a clear linkage exists between the code and the TextView

element, which serves the purpose of presenting data. The focus is directed on the logical

process that verifies intents and data, guaranteeing the extraction and display of the data as a

string in the TextView. The application behaviour is tested by conducting a series of test cases,

which include starting the application with and without intent data.

 This work builds an Android app for stealing OAuth tokens using a novel technique.

This technique has the potential to succeed in certain conditions, while earlier approaches are

likely to not work in the same circumstances. To ensure the security of user information and

prevent unauthorized access, it is critical to regularly discover and resolve any vulnerabilities

associated with the OAuth protocol.

4 Design Specification

 Fig.1 shows the OAuth flow for the client apps that uses an embedded Web browser

(Web view) (Shehab and Mohsen, 2014). Facebook login for authentication complies with a

well-defined process to ensure secure verification of user identities and the permission of

application access. The authentication process is initiated by the user by the action of clicking

the "Login with Facebook" option, which then redirects the user to Facebook's server. After

that, the application transmits an authorization request including its unique client identifier and

the permissions it intends to get. After being provided with a consent screen, users give

approval for the required rights, therefore enabling Facebook's server to generate an

authorization grant, which is then returned to the application. The application initiates a token

request to facilitate the exchange of permission for an access token. This access token serves

as the necessary credentials to get user data from Facebook's servers. This functionality allows

the application to get authorized data, such as the user's name and profile image, and verify the

user's identity within its own system. The access token, which is followed by a specified expiry

time frame, enables authorized interactions to occur without the need for repetitive login

processes. The continuity of user sessions is ensured by means of this token until the user

decides to log out or the token is revoked. The OAuth flow not only guarantees secure access

to user data but also enhances the process of user authentication and improves user experience.

6

Figure 1. OAuth Web Client Flow

Figure 2. Flowchart of token theft during the Authentication Process

 The flowchart demonstrates each step through which a user interacts with an application

using Facebook Login. It includes the smooth authentication procedure as well as the possible

challenges that may arise due to improper OAuth configurations. The process begins when the

user interacts with the "Login with Facebook" button, prompting the application to send an

authorization request to Facebook. This request includes the necessary credentials and

permissions that the application is requesting. The obtaining of user permission is made easier

via a consent screen, which ultimately results in the issuing of an authorization grant after

acceptance. But at this point, a key turning point appears: if OAuth is not carefully

7

implemented, vulnerabilities appear. In the given situation, it is possible for a malicious

application to take advantage of this vulnerable setup, secretly acquiring the OAuth token.

whereas when appropriately configured, the flowchart progresses to the stage when the

authorization grant is exchanged for an access token. This exchange allows for the recovery of

user data and enables smooth authentication inside the application's domain. The access token

serves as a means for enhancing user interactions, ensuring a seamless experience by reducing

the need for repeated logins. This feature contributes to the enhancement of the overall user

experience. Users maintain control over their accounts and have the ability to log out or adjust

application permissions via their Facebook accounts.

 For instance, the diagram shows how different the two situations are: if OAuth is not

set up properly, a malicious app can steal tokens, but if it is set up correctly, this threat is

eliminated, and regular login processes can be used. The substantial discrepancy shown in this

scenario highlights the critical need for implementing strong security mechanisms in OAuth,

which serve to enhance the safety of user data and maintain the authenticity of the

authentication process.

5 Implementation

During the implementation of the project following steps have been followed:

5.1 Platform Selection:

 The main objective of the project implementation is to create an Android application

that will capture the OAuth token while accessing the third-party application. Android Studio

has been used to create this application. Android Studio is an official IDE to create and deploy

Android applications. It is an open-source application and can be installed and used by any

user. In 2023, 49.11% of all smartphone users around the world are likely to be using an

Android phone2. API 23: Android 6.0 (Marshmallow) was selected for SDK development so

that it can be installed on approximately 97.7 percent of devices3.

5.2 Language Selection:

 The choice of a suitable programming language within the Android Studio framework

has significant implications. The application can be developed in Java or Kotlin languages4

2 https://www.bankmycell.com/blog/how-many-android-users-are-there
3 https://developer.android.com/studio
4 https://developer.android.com/training/basics/supporting-devices/languages

Platform Selection
Language
Selection

Development
Deployment

of application

Approaching
the Problem
Statement

https://www.bankmycell.com/blog/how-many-android-users-are-there
https://developer.android.com/studio
https://developer.android.com/training/basics/supporting-devices/languages

8

however Java has been chosen over Kotlin for the development due to its maturity, large

developer base, compatibility, and established effectiveness. This decision is based on Java's

extensive adoption and established reliability within the Android development community.

Considering the broad community support and exhaustive documentation available for Java in

the context of Android. This deliberate decision enabled the development of a streamlined and

effective application that successfully met the project's objectives.

5.3 Development:

 The code and configuration aim to create an Android app that can manage and display

deep links, especially those associated with Facebook authentication, without any issues. When

a user clicks on a link with the specified scheme (for example, "fb_login_protocol_scheme"),

the app's MainActivity will launch and display the deep link's content in a TextView. This

integration improves the user experience by enabling the app to respond to relevant actions

activated by external sources, such as web browsers or other apps, and display the relevant

information within the app's interface.

5.4 Deployment of Application:

 After the application has been developed and its functionality has been tested in

Android Studio, an APK is generated and deployed on Genymotion and an Android device.

Genymotion is a versatile fast Android emulator used for testing and developing applications5.

It provides a variety of virtual devices with different Android versions and configurations,

allowing developers to simulate real-world scenarios and test the applications efficiently in a

variety of environments.

5.5 Approaching the Problem Statement:

 A website and mobile application were evaluated via testing on both an Android device

and the Genymotion Android emulator. The primary objective of this study was to examine

and analyze the challenges associated with Oauth configurations in the Facebook login

procedure. During the examination of this testing, a comprehensive analysis was conducted on

the Android application that was created for the project. Additionally, throughout the testing

process, it was discovered that the OAuth token-gathering method in the Android application

worked efficiently. The application successfully acquired Oauth tokens, hence highlighting its

possibilities in addressing the Oauth configuration issues pointed out during the evaluation of

the website and mobile application.

5 https://www.geeksforgeeks.org/how-to-install-genymotion-emulator-and-add-its-plugin-to-android-studio/

https://www.geeksforgeeks.org/how-to-install-genymotion-emulator-and-add-its-plugin-to-android-studio/

9

6 Evaluation

6.1 Experiment 1 – Stealing token of an Android application.

 The following experiment demonstrates the token theft inside a Monopoly game

performed using a malicious application. Users are presented with the choice of playing the

game through a Guest login or by playing alongside their Facebook friends. When the user tries

to authenticate using valid Facebook credentials, the gaming application leads to a malicious

app that has been installed on the Android mobile device. This malicious application then

collects the login token, which may then be misused by an attacker with malicious intentions.

Figure 3. Monopoly Game Application Launch Using Facebook Login

10

Figure 4. Stealing OAuth Token Using Malicious Application

6.2 Experiment 2: Stealing token in the web view.

 Another experiment was carried out on the SurveyMonkey website in the Web view.

When a user attempts to log in using the Facebook Login option, they input their valid

credentials, and then an attacker adjusts the redirect URL to "fbconnect". It matches with the

intent, and it allows us to continue with Facebook. It was created by Facebook, enabling users

to seamlessly proceed with their application. The authentication method aligns the intended

purpose with the malicious application, hence allowing to choose the application to continue

further. Upon selecting the malicious application, it will proceed to gather the token, so creating

an opportunity for exploitation.

11

Figure 5. Signing In on SurveyMonkey Website Using Facebook Login on WebView in Genymotion.

Figure 6. Redirect URI during Facebook Login on SurveyMonkey Website.

12

Figure 7. Tampering with the redirect URI to match the intent.

Figure 8. Capturing the OAuth Token

13

6.3 Experiment 3: Stealing token using open redirect method.

 The following experiment was carried out using an alternate method- Open Redirect

URI on the same website SurveyMonkey for which the token theft was performed using a

malicious application. It showed that when modifying the redirect URL of Facebook

authentication for SurveyMonkey, an authentication mechanism throws the invalid URL. As

the URL did not match with the whitelisted domain such as SurveyMonkey.com therefore

redirect method failed.

Figure 9. Tampering URL using Open redirect method.

Figure 10. An error of Failed attempt using the Open redirect method.

14

6.4 Discussion

 After reviewing the case studies, it is observed that: when the coding scheme matches

the redirect URI, the intended operation is executed, and the token is sent to the designated

recipient. In the first two instances, the intent URL matches the expected parameters, resulting

in successful execution; therefore, the malicious application receives the authentication token

provided by Facebook. Whereas the third case represents a scenario in which the scheme does

not match the expected configuration, resulting in the URL being blocked and the redirect

method failing. Therefore, when an external application attempts to log in with Facebook

credentials and successfully matches the predefined scheme, the subsequent

login authentication token becomes vulnerable to interception.

7 Conclusion and Future Work

 In summary, this research has provided insights into the critical issue of OAuth token

theft in Android devices, revealing the weaknesses and possible risks linked to the

implementation of OAuth in the mobile ecosystem. The research findings have shown that the

security of OAuth tokens on Android devices is an issue of significant concern, as it may have

implications for both user privacy and data integrity. It highlights the need for increased

awareness and enhanced protective measures in mitigating the risk of token theft. By focusing

on the authentication process and exploring potential vulnerabilities, this study contributes to

a deeper understanding of the complexities involved in securing OAuth tokens on Android

devices. The introduction of a novel technique for creating an Android application to capture

OAuth tokens further emphasizes the need to enhance security measures to counter potential

threats.

 In the future, real-time behaviour monitoring can be implemented to detect and prevent

malicious token capture attempts. When adopting OAuth, developers should prioritize the

protection of users' privacy. This may be achieved by avoiding the usage of WebView-based

OAuth and instead prompting users to install the native app of the service provider. If the web

browser is the only available option, developers should include a procedure to identify and

prevent malicious applications' potential hijacking of the authentication token.

15

References

Abdullah, H. and Zeebaree, S.R.M. (2021) ‘Android Mobile Applications Vulnerabilities and

Prevention Methods: A Review’, Proceedings of 2021 2nd Information Technology to Enhance

E-Learning and other Application Conference, IT-ELA 2021, pp. 148–153. Available at:

https://doi.org/10.1109/IT-ELA52201.2021.9773615.

Armando, A., Carbone, R., Compagna, L., Cuellar, J., Pellegrino, G. and Sorniotti, A. (2011)

‘From Multiple Credentials to Browser-Based Single Sign-On: Are We More Secure?’, in S.

and M.Y. and P.A. and R.C. Camenisch Jan and Fischer-Hübner (ed.) Future Challenges in

Security and Privacy for Academia and Industry. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 68–79.

Bansal, C., Bhargavan, K., Delignat-Lavaud, A. and Maffeis, S. (2014) ‘Discovering concrete

attacks on website authorization by formal analysis’, Journal of Computer Security, 22, pp.

601–657. Available at: https://doi.org/10.3233/JCS-140503.

Campbell, B., Mortimore, C. and Jones, M. (2015) ‘Security Assertion Markup Language

(SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants’. Available

at: https://doi.org/10.17487/RFC7522.

Chari, S., Jutla, C. and Roy, A. (2011) ‘Universally Composable Security Analysis of OAuth

v2.0’. Available at: https://eprint.iacr.org/2011/526.

Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R. and Tague, P. (2014) ‘OAuth Demystified

for Mobile Application Developers’, in Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security. New York, NY, USA: Association for Computing

Machinery (CCS ’14), pp. 892–903. Available at: https://doi.org/10.1145/2660267.2660323.

Cherrueau Ronan-Alexandre and Douence, R. and R.J.-C. and S.M. and de O.A.S. and R.Y.

and D.M. (2014) ‘Reference Monitors for Security and Interoperability in OAuth 2.0’, in G.

and C.-B.N. and F.S. and F.W.M. Garcia-Alfaro Joaquin and Lioudakis (ed.) Data Privacy

Management and Autonomous Spontaneous Security. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 235–249.

Chin Erika and Wagner, D. (2014) ‘Bifocals: Analyzing WebView Vulnerabilities in Android

Applications’, in H. and P.A. Kim Yongdae and Lee (ed.) Information Security Applications.

Cham: Springer International Publishing, pp. 138–159.

Enck, W., Ongtang, M. and McDaniel, P. (2009) ‘Understanding Android Security’, IEEE

Security & Privacy, 7(1), pp. 50–57. Available at: https://doi.org/10.1109/MSP.2009.26.

Ferry, E., Raw, J.O. and Curran, K. (2015) ‘Security evaluation of the OAuth 2.0 framework

OAuth 2.0 framework 73’, Information & Computer Security, 23(1), pp. 73–101. Available at:

https://doi.org/10.1108/ICS-12-2013-0089.

Fett, D., Küsters, R. and Schmitz, G. (2016) ‘A Comprehensive Formal Security Analysis of

OAuth 2.0’, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. Association for Computing Machinery, pp. 1204–1215. Available

at: https://doi.org/10.1145/2976749.2978385.

https://doi.org/10.1109/IT-ELA52201.2021.9773615
https://doi.org/10.17487/RFC7522
https://eprint.iacr.org/2011/526
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1108/ICS-12-2013-0089
https://doi.org/10.1145/2976749.2978385

16

Li, W. and Mitchell, C.J. (2014) ‘Security Issues in OAuth 2.0 SSO Implementations’, Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 8783, pp. 529–541. Available at:

https://doi.org/10.1007/978-3-319-13257-0_34.

Lodderstedt, T., McGloin, M. and Hunt, P. (2013) ‘OAuth 2.0 Threat Model and Security

Considerations’, Internet Engineering Task Force (IETF) RFC [Preprint]. Edited by T.

Lodderstedt. Available at: https://doi.org/10.17487/RFC6819.

Luo, T., Hao, H., Du, W., Wang, Y. and Yin, H. (2011) ‘Attacks on WebView in the Android

System’, in Proceedings of the 27th Annual Computer Security Applications Conference. New

York, NY, USA: Association for Computing Machinery (ACSAC ’11), pp. 343–352. Available

at: https://doi.org/10.1145/2076732.2076781.

Mohsen, F. and Shehab, M. (2016) ‘Hardening the OAuth-WebView Implementations in

Android Applications by Re-Factoring the Chromium Library’, in 2016 IEEE 2nd International

Conference on Collaboration and Internet Computing (CIC), pp. 196–205. Available at:

https://doi.org/10.1109/CIC.2016.036.

Rahat, T. Al, Feng, Y. and Tian, Y. (2019) ‘OAUTHLINT: An empirical study on oauth bugs

in android applications’, Proceedings - 2019 34th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2019, pp. 293–304. Available at:

https://doi.org/10.1109/ASE.2019.00036.

Rosen, S., Qian, Z. and Mao, Z.M. (2013) ‘AppProfiler: A Flexible Method of Exposing

Privacy-Related Behavior in Android Applications to End Users’, in Proceedings of the Third

ACM Conference on Data and Application Security and Privacy. New York, NY, USA:

Association for Computing Machinery (CODASPY ’13), pp. 221–232. Available at:

https://doi.org/10.1145/2435349.2435380.

Shehab, M. and Mohsen, F. (2014) ‘Towards enhancing the security of OAuth implementations

in smart phones’, Proceedings - 2014 IEEE 3rd International Conference on Mobile Services,

MS 2014, pp. 39–46. Available at: https://doi.org/10.1109/MOBSERV.2014.15.

Shernan Ethan and Carter, H. and T.D. and T.P. and B.K. (2015) ‘More Guidelines Than Rules:

CSRF Vulnerabilities from Noncompliant OAuth 2.0 Implementations’, in V. and M.F.

Almgren Magnus and Gulisano (ed.) Detection of Intrusions and Malware, and Vulnerability

Assessment. Cham: Springer International Publishing, pp. 239–260.

Sucasas, V., Mantas, G., Althunibat, S., Oliveira, L., Antonopoulos, A., Otung, I. and

Rodriguez, J. (2018) ‘A privacy-enhanced OAuth 2.0 based protocol for Smart City mobile

applications’, Computers & Security, 74, pp. 258–274. Available at:

https://doi.org/https://doi.org/10.1016/j.cose.2018.01.014.

Sun, S.-T. and Beznosov, K. (2012) ‘The Devil is in the (Implementation) Details: An

Empirical Analysis of OAuth SSO Systems’, in Proceedings of the 2012 ACM Conference on

Computer and Communications Security. New York, NY, USA: Association for Computing

Machinery (CCS ’12), pp. 378–390. Available at: https://doi.org/10.1145/2382196.2382238.

Wang, H., Zhang, Y., Li, J. and Gu, D. (2016) ‘The Achilles Heel of OAuth: A Multi-Platform

Study of OAuth-Based Authentication’, in Proceedings of the 32nd Annual Conference on

https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.17487/RFC6819
https://doi.org/10.1145/2076732.2076781
https://doi.org/10.1109/CIC.2016.036
https://doi.org/10.1109/ASE.2019.00036
https://doi.org/10.1145/2435349.2435380
https://doi.org/10.1109/MOBSERV.2014.15
https://doi.org/https:/doi.org/10.1016/j.cose.2018.01.014
https://doi.org/10.1145/2382196.2382238

17

Computer Security Applications. New York, NY, USA: Association for Computing Machinery

(ACSAC ’16), pp. 167–176. Available at: https://doi.org/10.1145/2991079.2991105.

Wang, H., Zhang, Y., Li, J., Liu, H., Yang, W., Li, B. and Gu, D. (2015) ‘Vulnerability

assessment of OAuth implementations in android applications’, ACM International

Conference Proceeding Series, 7-11-December-2015, pp. 61–70. Available at:

https://doi.org/10.1145/2818000.2818024.

Wang, R., Chen, S. and Wang, X. (2012) ‘Signing Me onto Your Accounts through Facebook

and Google: A Traffic-Guided Security Study of Commercially Deployed Single-Sign-On

Web Services’, in 2012 IEEE Symposium on Security and Privacy, pp. 365–379. Available at:

https://doi.org/10.1109/SP.2012.30.

Xiao, Y., Bai, G., Mao, J., Liang, Z. and Cheng, W. (2017) ‘Privilege Leakage and Information

Stealing through the Android Task Mechanism’, Proceedings - 2017 IEEE Symposium on

Privacy-Aware Computing, PAC 2017, 2017-January, pp. 152–163. Available at:

https://doi.org/10.1109/PAC.2017.29.

Zhou, Y. and Evans, D. (2014) ‘SSOScan: Automated Testing of Web Applications for Single

Sign-On Vulnerabilities’, in 23rd USENIX Security Symposium (USENIX Security 14). San

Diego, CA: USENIX Association, pp. 495–510. Available at:

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou.

https://doi.org/10.1145/2991079.2991105
https://doi.org/10.1145/2818000.2818024
https://doi.org/10.1109/SP.2012.30
https://doi.org/10.1109/PAC.2017.29
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou

