"""‘-
\ National

Collegeof
Ireland

Configuration Manual

MSc Research Project

MSc in Cyber Security (MSCCYB1)

Shivam Thakur
Student 1D: x21220891

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

‘——
\ National

National College of Ireland
MSc Project Submission Sheet
School of Computing

Student Name: Shivam Thakur

Student ID: X21220891

Programme: MSc in Cyber Security Year:
Module: MSc Research Project - Configuration Manual
Lecturer: Vikas Sahni

Submission

Due Date: 14t August 2023

Project Title: Configuration Manual

Word Count: 837 Page Count: 8

College
Ireland

2022-2023

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: SHIVAM THAKUR
Date: 8t August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shivam Thakur
Student ID: x21220891

1 Introduction

This is a configuration manual which will help understand how to setup the project and
replicate the results. All the hardware specifications, software specifications, code libraries that
were used for the implementation of the artefact have been mentioned in this manual. The
suggested proposal and the research conducted significantly relies upon this configuration
manual.

2 Hardware Specifications

e Central Processing Unit (CPU) - AMD Ryzen 7 5800H with Radeon Graphics @ 3.20
GHz, x64 based processor.

System Memory (RAM) — 16.0 GB (15.4 GB Usable)

Operating System (OS) — Windows 11 Home, 64-bit Operating System,

OS Version — 22H2

OS Build - 22621.1992

Storage — 1 TB Solid State Drive.

Graphics Processing Unit (GPU) — Nvidia GeForce RTX 3070 Laptop GPU

Laptop Manufacturer - Acer

Laptop Model — Nitro AN515-45

3 Software Specifications

For the purposes of this project, the coding language used was Python and the Integrated
Development Environment (IDE) used was Jupyter Notebook. For the purposes of machine
learning, data processing, computation, visualization as well as analysis several packages of
Python were used. In order to access both Python and Jupyter Notebook we installed the
Anaconda Navigator which is a popular software package that comes with Python, Jupyter
Notebook and several libraries.

e Anaconda Navigator (version 2.4.2) !
e Jupyter Notebook (version 6.5.4) — pre-packaged with Anaconda.
e Python —3.11.3 — pre-packaged with Anaconda.

! https://www.anaconda.com/

S

{) ANACONDA NAVIGATOR

Figure 1 - Anaconda Navigator, Python and Jupyter Notebook

4 Dataset Download, Directory and Execution

The NSL-KDD Dataset 2 needs to be downloaded from the official website of University of
New Brunswick and saved in a folder. The full file path must be noted so that it can be loaded
into the notebook and code. Once the dataset is downloaded, the notebook
MalwareDetection.ipynb must be opened and each block of code must be run.

Note: This line needs to be changed to represent the file path on your system:

In [4]: data_train = pd.read_csv("/Shivam/NCI Coursework/Thesis/NSL-KDD/KDDTrain+.txt") #Read the datoset

Figure 2 - Change this to the directory where dataset is stored.

5 Python Libraries Used

Anaconda Navigator comes installed with several Python libraries however, manual install
maybe required for the below libraries:

Numpy — 1.24.3
Pandas — 1.5.3
Matplotlib — 3.7.1
Seaborn - 0.12.2
Tensorflow — 2.13.0
Xgboost — 1.7.6
Scikit-learn - 1.2.2

2 https://www.unb.ca/cic/datasets/nsl.html

In [1]: import numpy as np # NumPy Library is for numerical calculations.
import pandas as pd # Pandas will help in manipulating data as a DataFrame.
import warnings # This module will manage warnings.
import matplotlib.pyplot as plt # This Llibrary will help in plotting graphs
import seaborn as sns # Library for visualizations
import tensorflow as tf # Tensorflow will help in ML
from tensorflow.keras import regularizers # Imports regularizers from TF
import xgboost as xgb # Imports XeBoost Library
from sklearn.decomposition import PCA # Principal Component Analysis
from sklearn import tree # Decision Tree Algorithms
from sklearn.naive_bayes import GaussianNB # nagive Bayesian Gaussian classifier
from sklearn.linear_model import LogisticRegression # Logistic Regression
from sklearn.neighbors import KMeighborsClassifier # kwv
from sklearn.tree import DecisionTreeclassifier # Decision Tree
from sklearn.preprocessing import RobustScaler # Data Scaling
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor # RF
from sklearn.model_selection import train_test_split # Split Train and Test sets
from sklearn import svm # SvM
from sklearn import metrics # Model Performance
from datetime import datetime #Date and time runs

Figure 3 : Libraries Imported

6 Timestamping

Before starting the experiment, we will grab the time and store it as the start time of the
experiment. We will repeat this at the end of the experiment to grab the time the experiment
ended. We will calculate the difference as the runtime.

In [2]: nowl = datetime.now()
start time = nowl.strftime("%H:%M:%s")
start time formatted = nowl.strptime(start time, 'XH:%M:%S")

Figure 4 : Start Time

In [23]: now2 = datetime.now()
end time = now2.strftime("%H:%M:%S™)
end_time formatted = now2.strptime(end time, '%H:%M:%S")

diff = end_time formatted - start time formatted

print("The experiment was started today at {}.".format(start time))
print("The experiment was ended today at {}.".format(end time))
print('The runtime of the experiment was {} seconds.'.format(diff.total seconds()))

The experiment was started today at ©1:48:45.
The experiment was ended today at @1:5@:16.
The runtime of the experiment was 91.@ seconds.

Figure 5 : End Time and Runtime - Code + Output

7 Data Processing

In this phase we will refine the dataset. We will first import the dataset into the code and see
what the first few values look like. We find out that there are no column labels, so we will
assign them manually and then re-display to see if they have been applied. We will also perform
data scaling on the dataset so that it can be fed into the Al models in a format that can be
processed quickly and efficiently. Data splitting into test and train partitions also happens here

In [4]: data_train = pd.read csv("/Shivam/NCI Coursework/Thesis/NSL-KDD/KDDTrain+.txt") #Read the dataset

In [5]: data_train.head() #Check the data

purEr: 0 tep ftpdata SF 491 01 02 03 04 05 06 07 08 08 010 041 012 013 0.14 015 0.16 0.18 2 21 0.00 0.001 0.002 0003 1
0 0 udp other SF 146 ¢ 0 0 0 O©O O 0 0 0 4] 0 0 1] 0 0 4] 0 13 1 00 0.0 0.0 00 0
1 0 tcp private SO 0 o o0 0 0 ©o 0 0 0 0 0 0 0 0 0 o] 1] 0 123 6 10 1.0 0.0 00 0
2 0 ftcp hitp SF 232 815 0 0 0 o0 0 1 0 0 0 0 0 0 0 0 1] 0 5 5 0z 0.2 0.0 00 1
30 tcp hitp SF 199 420 0 0 0 0 0 1 o 0 0 Q 0 1] 0 0 o] 0 30 32 00 0.0 0.0 00 1
4 0 tcp private REJ 0 ¢ 0 0 0 ©0 O 0 0 0 0 0 0 0 0 0 1] 0 121 19 00 0.0 1.0 10 0

In [6]: columns = (['duration’,'protocol type','service','flag','src_bytes','dst bytes','land','wrong_fragment','urgent','hot’
, 'num_failed_logins','logged_in', 'num_compromised’, 'root_shell','su_attempted', 'num_root®, 'num_file_creations’
, 'num_shells', 'num_access_files', 'num_outbound_cmds','is_host_login','is_guest_login', 'count’, 'srv_count’, 'serror_rate’
,'srv_serror_rate', 'rerror_rate','srv_rerror_rate','same_srv_rate','diff_srv_rate','srv_diff_host_rate','dst_host_count', 'dst_ho:
, 'dst_host_same_srv_rate', "dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', "dst_host_srv_diff_host_rate’, 'dst_host_serror_r
,'dst_host_srv_serror_rate','dst_host_rerror_rate','dst_host_srv_rerror_rate’,'outcome’,'level’])

Making a list of columns.

In [7]: # Assign name for columns
data_train.columns = columns
data_train.head()

Pt duration protocol_type service flag src_bytes dst bytes land wrong_fragment urgent hot num_failed_logins logged_in num_compromised root_shell
[} 0 udp other SF 146 0 0 0 0 0 (1] 0 0 0
1 0 tcp private SO [0 4} 0 0 0 4] 1] 1] 0
2 0 fcp hitp SF 232 8153 0 0 0 0 1] 1 0 0
3 0 tcp http SF 193 420 0 0 0 0 4] 1 0 0
4 1] tcp private REJ 0 0 0 0 0 0 0 0 0 0

Separation of data into training and test sets for classification
x_train, x test, y train, y test = train test split(x, y, test size=0.2, random state=42)

Figure 6 : Dataset Processing

8 Model Analysis

Now the models will run and display the evaluation parameters, followed by the ensemble
parameter calculations:

In [17]: kernal evals = dict()
def evaluate classification(model, name, X train, X test, y train, y test):
train_accuracy = metrics.accuracy_score(y_train, model.predict(X train))
test_accuracy = metrics.accuracy_score(y test, model.predict(X_test))

train_precision = metrics.precision_score(y_train, model.predict(X_train))
test_precision = metrics.precision_score(y_test, model.predict(X_test))

train_recall = metrics.recall score(y_train, model.predict(x_train))
test_recall = metrics.recall score(y_test, model.predict(X test))

train_fiscore = metrics.f1_score(y_train, model.predict(X_train))
test_flscore = metrics.fl _score(y_test, model.predict(X test))

kernal_evals[str(name)] = [train_accuracy, test accuracy, train_fiscore, test fiscore, train_precision, test precision, trair
print("Training Accuracy for " + str(name) + " is {:.2f} and Test Accuracy for ".format(train_accuracy*1ee) + str(name) + " i
.format(test_accuracy*1e0))
print("Training F1 score for " + str(name) +
.format(test flscore*100))
print("Training Precision for " + str(name) +
.format(test_precision*10@))
print("Training Recall for " + str(name) + '
.format(test_recall*1ee))

is {:.2f} and Test F1 Score for ".format(train_filscore*1e@) + str(name) + " it

is {:.2f} and Test Precision for ".format(train_precision*10@) + str(name) +

is {:.2f} and Test Recall for ".format(train_recall*1ee) + str(name) + " is {:.:Z

actual = y_test

predicted = model.predict(X_test)

confusion _matrix = metrics.confusion_matrix(actual, predicted)

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = ['normal®, ‘'attack'])

fig, ax = plt.subplots(figsize=(5,5))

ax.grid(False)
cm_display.plot(ax=ax)

Figure 7 : Code for analysis

In [18]: gnb = GaussianMB().fit(x train, y train)
evaluate classification(gnb, "Gaussian Naive Bayes", x train, x test, y train, y test)
Training Accuracy for Gaussian Naive Bayes is 91.88 and Test Accuracy for Gaussian Naive Bayes is 91.61
Training F1 score for Gaussian MNaive Bayes is 91.03 and Test F1 Score for Gaussian Naive Bayes is 90.89

Training Precision for Gaussian Maive Bayes is 92.63 and Test Precision for Gaussian Naive Bayes is 92.53
Training Recall for Gaussian Naive Bayes is 89.48 and Test Recall for Gaussian Naive Bayes is 89.30

12000

10000
normal 4

8000

True label

6000

attack
4000

T 2000
normal attack

Predicted label

Figure 8 : Naive Bayes

In [19]: knn = KNeighborsClassifier(n neighbors=38).fit(x train, y train)
evaluate_classification(knn, "K Mearest Neighbours", x_ train, x_test, y_train, y_test)

Training Accuracy for K Mearest Neighbours is 98.86 and Test Accuracy for K Nearest Neighbours is 98.82
Training F1 score for K Nearest Neighbours is 98.77 and Test F1 Score for K Mearest Neighbours is 98.73
Training Precision for K Nearest Meighbours is 99.86 and Test Precision for K MNearest Neighbours is 99.e4
Training Recall for K Nearest Meighbours is 98.49 and Test Recall for K Mearest Neighbours is 98.43

12000

10000
normal -

8000

True label

6000

attack 4000

2000

normal attack
Predicted label

Figure 9 : KNN

In [20]:

Ir = LogisticRegression().fit(x_train, y_train)
evaluate_classitication(lr, "Logistic Regression”, x_train, x_test, y_train, y test)

Training Accuracy for Logistic Regression is 88.0@ and Test Accuracy for Logistic Regression is 87.66
Training F1 score for Logistic Regression is 87.67 and Test F1 Score for Logistic Regression is 87.43
Training Precision for Logistic Regression is 83.89 and Test Precision for Logistic Regression is 83.66
Training Recall for Logistic Regression is 91.81 and Test Recall for Logistic Regression is 91.56

10000

normal 8000

6000

True label

attack 4000

T 2000
normal attack

Predicted label

Figure 10 : LR

The final parameters for the ensemble are as follows:
Training Accuracy = 92.89

Testing Accuracy = 92.69

Training F1 score = 92.49

Testing F1 score = 92.35

Training Precision = 91.86

Testing Precision = 91.74

Training Recall = 93.26

Testing Recall = 93.10

Figure 11 : Ensemble

