

Configuration Manual

Academic Internship MSc Cybersecurity

Shalini Srinivasan Student ID: x21208000

School of Computing National College of Ireland

Supervisor: Mr Vikas Sahni

National College of Ireland

National College Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Shalini Srinivasan						
Student ID:	x21208000						
Programme:	MSc in Cybersecurity Year: 202						
Module:	Academic Internship						
Supervisor: Submission Due	Mr Vikas Sahni						
Date:	15 th August 2023						
Project Title:	Botnet detection using Multi D Convolution	al Neura	l Network				

Word Count: 654

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Shalini Srinivasan

Date: 10/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Shalini Srinivasan Student ID: x21208000

1 Introduction

The configuration manual presents information about the hardware requirements, the packages that must be installed, and the process necessary for effectively completing this project. Deep learning techniques are used in this research to detect botnets. The primary IDE required is anaconda navigator.

2 System Specification

The main specification of the system is:

- Apple M1 GPU
- CPU with 8 cores; 4 for performance and 4 efficiency cores.
- Storage: 256 GB SSD
- 8Gb memory with LPDDR4X
- Operating System: MacOS
- Python version: 3.11.3

(Apple Macbook Air (M1, 2020): Full Specs, Tests and User Reviews, n.d.)

3 Software tools

The tools used for this research project are:

- Anaconda Navigator v23.5.0
- Python 3.11.4
- PyArrow
- Keras
- Sklearn
- Imageio
- Pandas
- Numpy
- Matplotlib
- Seaborn
- Label encoding
- Cv

3.1 Installation of the tools

The tools were installed using anaconda navigator. The steps below show how the project can be run on your local device.

Step 1: Install anaconda through the link <u>https://docs.anaconda.com/free/anaconda/install/mac-os/</u>.

Step 2: Once anaconda has been set up, Open jupyter notebook.

Figure 1: Jupyter Notebook

Step 3: Select and open the folder containing the code. When you open it, the file appears in green.

💭 jupyter		Quit	Logo	ut
Files Running Clusters				
Select items to perform actions on them.		Upload	New +	\$
🗋 0 💌 🖿 / Desktop / thesis code	Name 🗸	Last Modified	File siz	29
۵.		seconds ago		
Pata_preprocessing_CTU_updated.ipynb	Runn	ning 3 days ago	59.4	мө
B Multi_CNN_Test (1).ipynb	Runn	ning 3 days ago	26	kВ
Multi_CNN_Train.jpynb	Runn	ning 7 days ago	37.8	kB
🗌 🥔 Prediction.lpynb	Runn	ning 7 days ago	9.05	kВ

Figure 2: Folder on Jupyter

Step 4: First, we install python and check the version. The version used for the project was 3.11.4. And then, Install keras through the command line.

[(base) shalini@pc-4-145 ~ % python --version
Python 3.11.3
[(base) shalini@pc-4-145 ~ % pip install keras
Requirement already satisfied: keras in ./anaconda3/lib/python3.11/site-packages
(2.13.1)

Figure 3: Installing Keras

If the installation does not take place, check for a upgrade, and upgrade pip using the command,

pip3 install --upgrade pip

(How to Install Keras on MacOS? - GeeksforGeeks, n.d.)

Step 5: The data processing notebook is created, and all the packages are imported. As we are using a parquet file to read the dataset faster, Pyarrow must first be installed. Because I've already installed it, it indicates that the requirements has been met.

In [1]: pip install pyarrow
Requirement already satisfied: pyarrow in /Users/shalini/anaconda3/lib/python3.11/site-packages (11.0.0)

Figure 4: Installing PyArrow

Step 6: Import the remaining packages for the execution of the code.

Tp (21)	import pandas as pd
TH [2]:	Import pandas as put
	from sklearn.preprocessing import MinMaxScaler
	import numby as no
	import scalorn as sn
	import matplotlib.pyplot as pl
	import seaborn as sn
	import matplotlib.pyplot as py
	import cv2
	import os
	import imageio as im
	from PIL import Image
	import tensorflow as tf
	from os import listdir
	from tensorflow.keras.models import Sequential
	from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, concatenate
	<pre>from tensorflow.keras.layers import Conv2D, MaxPooling2D,BatchNormalization</pre>
	<pre>from sklearn.model_selection import train_test_split</pre>
	<pre>from tensorflow.keras.utils import to_categorical</pre>
	from tensorflow.keras.optimizers import RMSprop
	from tensorflow.keras.models import load_model
	<pre>from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping</pre>

Figure 5: Import Packages

Step 7: As we use a specific method to categorise the botnet traffic, two functions should be executed which categorises the traffic based on the protocol. The detect_traffic() and detect_http_traffic() is used.

Figure 6: Function Detect Traffic

```
def detect http traffic(updated df):
    detected = []
for index, row in updated_df.iterrows():
         if 'http' in row['label'].lower() and 'botnet' in row['label'].lower()
               # Additional logic for HTTP traffic with 'botnet' label and
              # Additional Togle To
'http' in the label
range1 = (0, 500)
range2 = (501, 1000)
range3 = (1001, 1500)
               src_bytes = row['src_bytes']
               dest_bytes = row['dst_bytes']
              if rangel[0] <= src_bytes <= rangel[1] and rangel[0] <=
dest_bytes <= rangel[1]:</pre>
                    detected.append('Malicious traffic - Range 1')
              elif range1[0] <= src_bytes <= range1[1] and (range2[0] <=
dest_bytes <= range2[1] or range3[0] <= dest_bytes <= range3[1]):</pre>
                    detected.append('Legitimate traffic - Range 1')
               else:
                    detected.append(row['Detection']) # Preserve the existing
                    value
          else:
              detected.append(row['Detection']) # Preserve the existing value
    updated_df['Detection'] = detected
     return updated_df
```

Figure 7: Function detect http traffic

Step 8: After removing the null values and categorising the data, label encoding is used to ensure that the data is ready for processing.

	<pre>label_encoder = LabelEncoder() df2('dir'] = label_encoder.fit_transform(df2('dir']) df2('proto'] = label_encoder.fit_transform(df2('proto']) df2('state'] = label_encoder.fit_transform(df2('tate']) df2('label'] = label_encoder.fit_transform(df2('label']) df2('Detection'] = label_encoder.fit_transform(df2('betection'])</pre>										
In [29]:	df2										
Out[29]:		dur	proto	dir	state	tot_pkts	tot_bytes	src_bytes	label	dst_bytes	Detection
	0	1.026539	0	0	381	4	276	156	3	120	1
	1	1.009595	0	0	381	4	276	156	3	120	1
	2	3.056586	0	0	363	3	182	122	4	60	1
	3	3.111769	0	0	363	3	182	122	4	60	1
	4	3.083411	0	0	363	3	182	122	4	60	1
	10598766	0.025135	0	0	136	44	38456	1264	3	37192	0
	10598767	0.000336	1	3	21	2	231	74	1362	157	0
	10598768	0.000325	1	3	21	2	211	74	1362	137	0
	10598769	0.000466	1	3	21	2	263	85	1362	178	0
	10598770	0.077026	0	0	305	10	3641	431	5	3210	0
	10428885	rows × 10	colum	ins							

Figure 8: Label Encoding

Step 9: Divide the dataframe evenly to ensure that the data has been correctly categorised for train, test, and further prediction.

	1											
In [32]:	<pre># Step 1: Grouping the DataFrame based on the 'Detection' column grouped = df2.groupby('Detection')</pre>											
	<pre># Step 2: Calculate the desired number of rows for each group to achieve equal split desired_rows_per_group = 150000 # Change this value as per your requirement</pre>											
	# Step 3: Reduce the number of rows for each group to match the desired number of rows reduced_df = grouped.apply(lambda x: x.sample(n=min(desired_rows_per_group, len(x)), replace=False))											
							DataFram inplace		ove t	he group	ed index	
		<i>laying</i> y(reduc			ed Da	ataFrame	2					
		dur	proto	dir	state	tot_pkts	tot_bytes	src_bytes	label	dst_bytes	Detection	
	0	0.175393	1	3	21	2	135	75	7	60	0	
	1	0.012563	1	3	21	2	180	90	8	90	0	
	2	0.135676	0	0	136	38	30631	913	5	29718	0	
	3	0.231470	0	0	136	38	29512	1029	5	28483	0	
	4	0.000997	1	3	21	2	570	78	7	492	0	
	449995	0.240429	1	3	21	3	2834	60	7	2774	2	
	449996	0.007343	1	3	21	4	3028	60	7	2968	2	
	449997	0.000366	1	3	21	2	313	64	7	249	2	
	449998	0.000460	1	3	21	2	207	66	1362	141	2	
	449999	0.344751	1	3	21	4	2996	60	7	2936	2	
	450000	rows × 10	colum	ns								

Figure 9: Divide dataframe equally

Step 10: Reduce the dataset to create images. A function is run, which generates the folder IMG1 and three sets of test and train photos.

In [44]:	import imageio as im
	<pre>def dist_0_imp(ry,type_d_stat): lsm_of_row = x.shape(0) fer i is range(0,lem_cf_row): temp = np_stry(r.1)e(1) filmeme = 'ISG(''vype_of_data''/'str(y.1)e(1))*'/img_'str(i)*'.jpg' os.nabe(:roo,path.dirmemo(ilement), orist_ok=True) deta_to_jmp(Linte, y_true, 'temp(1)) deta_to_jmp(Linte, y_true, 'temp(1))</pre>
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g.
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g. Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g.
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g. Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	Lossy conversion from floate4 to uints, kange [0, 1]. Convert image to uints prior to saving to suppress this warnin q.
	y. Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g.
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g. Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	avesy conversion item itemitiated to minte, while [0, 1]. Convert image to minte prior to saving to suppress this wanted
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin
	g.
	Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warnin

Figure 10: Image creation

Step 11: Once the images are generated, the training of the model is performed. To train the model, in a separate notebook, import the packages mentioned below.

os import listdir numpy as np
t tensorflow as tf
cv2
ensorflow.keras.models import Sequential
ensorflow.keras.layers import Dense, Dropout, Activation, Flatten, concatenate
ensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
sklearn.model selection import train test split
ensorflow.keras.utils import to categorical
ensorflow.keras.optimizers import RMSprop
ensorflow.keras.models import load model
ensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
Ansorriow.xeras.curibacks import Modereneckpoint, Europping

Figure 11: Packages in Train Notebook

Step 12: Load images and create two CNN models which can be combined later.

In [11]:	model1 = Sequential()
	<pre>model1.add(Conv2D(32,(3,3), input_shape=(50,50,1), activation='relu')) model1.add(MaxPooling2D(pool_size=(2, 2)))</pre>
	model:add(hropout(0.5))
	moder: add (Diopode(0.5))
	model1.add(Conv2D(filters=32, kernel_size=(3, 3)))
	<pre>modell.add(Activation('relu'))</pre>
	model1.add(MaxPooling2D(pool_size=(2, 2)))
	model1.add(BatchNormalization())
	model1.add(Conv2D(filters=64, kernel size=(3, 3)))
	model1.add(Activation('relu'))
	model1.add(MaxPooling2D(pool size=(2,2)))
	modell.add(BatchNormalization())
	modell.add(Dropout(0.1))
	modell.add(Conv2D(filters=128, kernel size=(3, 3)))
	model: add(Activation('redu'))
	model1.add(MaxPooling2D(pool size=(2, 2)))
	model1.add(BatchNormalization())
	model1.add(Flatten())
	modell.compile(loss='categorical crossentropy', optimizer='adam', metrics = ['accuracy'])
	modell.complie(loss='categorical_crossentropy', optimizer='adam', metrics = ['accuracy'])
	<pre>#modell.summary()</pre>
In [12]:	model2 = Sequential()
	<pre>model2.add(Conv2D(32,(3,3), input_shape=(50,50,1), activation='relu')) model2.add(MaxPooling2D(pool size=(2, 2)))</pre>
	model2.add(MaxFooling2D(pool_Size=(2, 2))) model2.add(Dropout(0.5))
	model2.add(bropouc(0.5))
	model2.add(Conv2D(filters=32, kernel size=(3, 3)))
	model2.add(Activation('relu'))
	<pre>model2.add(MaxPooling2D(pool_size=(2, 2)))</pre>
	model2.add(BatchNormalization())
	<pre>model2.add(Conv2D(filters=64, kernel size=(3, 3)))</pre>
	model:add(Activation('relu'))
	model2.add(MaxPooling2D(pool size=(2, 2)))
	model2.add(BatchNormalization())
	model2.add(Dropout(0.1))
	model2.add(Flatten())
	<pre>model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics = ['accuracy'])</pre>
	#model2.summarv()

Figure 12: Two CNN models used

n [13]:	<pre>model0 = concatenate([model1.output, model2.output])</pre>
	<pre>x = Dense(512, activation='relu')(model0)</pre>
	x = Dropout(0.4) (x)
	<pre>x = Dense(256, activation='relu')(x)</pre>
	x = Dropout(0.4) (x)
	x = Dense(128, activation='relu')(x)
	x = Dropout(0.4) (x)
	output = Dense(3,activation='softmax')(x)
	<pre>final_model = tf.keras.Model(inputs=[modell.input, model2.input], outputs=[output])</pre>
	<pre>rm = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.8)</pre>
	<pre>rm2 = RMSprop(learning_rate=0.001, rho=0.9)</pre>
	<pre>rm3 = tf.keras.optimizers.Adagrad(learning_rate=0.01)</pre>
	<pre>rm4 = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)</pre>

Figure 13: Concatenation of the two models

Step 13: Create a model with a specified batch size and epoch value. Draw a graph to check the accuracy after using matplotlib.

In [10]:	<pre>final_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = final_model.fit([X_train,X_train], y_train, epochs=5, batch_size=200, verbose=2) final_model.save('model_3.6.h.S')</pre>
	Epoch 1/5 1800/1800 - 313s - loss: 0.6174 - accuracy: 0.7159 - 313s/epoch - 174ms/step 1800/1800 - 324 - loss: 0.5669 - accuracy: 0.7362 - 324s/epoch - 180ms/step Epoch 3/5 1800/1800 - 327s - loss: 0.5595 - accuracy: 0.7396 - 327s/epoch - 182ms/step Epoch 4/5 1800/1800 - 323s - loss: 0.5563 - accuracy: 0.7427 - 323s/epoch - 180ms/step Epoch 5/5 1800/1800 - 316s - loss: 0.55532 - accuracy: 0.7447 - 316s/epoch - 176ms/step

In [11]:	import matplotlib.pyplot as plt													
	<pre>%matplotlib inline</pre>													
	<pre>plt.figure(1, figsize = (15,8))</pre>													
	plt.subplot(221)													
	<pre>plt.plot(history.history['accuracy']) plt.title('model accuracy')</pre>													
	plt.ylabel('accuracy')													
	<pre>plt.xlabel('epoch')</pre>													
	plt.subplot(222)													
	<pre>plt.plot(history.history['loss']) plt.title('model loss')</pre>													
	plt.ylabel('loss')													
	<pre>plt.xlabel('epoch')</pre>													
	plt.show()													
	model accuracy	model loss												
	0.745 -	0.62												
	0.740 -	0.61 -												
	0.735 -	0.60 -												
	à	0.59 -												
	0.730 -	2 0.58 -												
	0.725 -													
	0.720 -	0.57 -												
	0.720	0.56 -												
	0.715	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0												
	epoch	epoch												

Figure 14: Train model with graph

Step 14: Create a new notebook to test the model, load the images and use the same model created in the train to test the model. The accuracy obtained was 73.5%.

In [15]:	<pre>model= load_model('model_3.6L.h5') #model.summary()</pre>												
In [16]:	<pre>pred = model.predict([X_test, X_test])</pre>												
	7500/7500	[===				66s 9ms/s	tep						
In [17]:	from sklea	arn.m	etrics impor	t accura	cy_score								
	print(accu	iracy	_score(y_tes	t,pred.r	ound()))								
	0.73517083		13333										
In [18]:			etrics impor .cation_repor				cation_report						
			precision	recall	f1-score	support							
		0	0.76	0.35	0.48	80095							
		1	0.70	0.94	0.80	79650							
		2	0.76	0.91	0.83	80255							
	micro a		0.74	0.74	0.74	240000							
	macro a		0.74	0.74	0.71	240000							
	weighted a		0.74	0.74	0.71	240000							
	samples a	avg	0.74	0.74	0.74	240000							

Figure 15: Test Model

Step 15: Similarly, a prediction notebook is created with the model that is previously trained. A separate dataset with the images that can be provided as an input to the model for prediction.

	<pre>path = "IMG1/Pred/" predimgs = loadImages(path)</pre>														
	predimg	s = loadIn	tages ((path)											
		np.array(p													
	data =	data.resha	sbe([-	-1,50,	50,1])										
	Y pred	- data/255													
		pred.shap													
	(200000	, 50, 50,	1)												
In []:															
In [12]:		load_model													
		np.argmax(.pred	lict([X_	pred, X	pred]),	axis-	1)						
		ection']		Detec	tion'].	replace	(k)								
	<pre>df['Detection'] = df['Detection'].replace(k)</pre>														
	6250/6250 [] - 50s 8ms/step														
	6250/62	50 [1 - 505	8H5/5	cep						
In [13]:		50 [1 - 502	ons/s	rep						
In [13]: Dut[13]:															
	df	dur	proto	state	tot_pkts	tot_bytes	src_bytes	label	dst_bytes	Detection					
	df 7960182	dur 0.169702	proto 1	state 21	tot.pkts 2	tot_bytes 514	src_bytes 454	label 7	dst_bytes 60	Malicious traffic					
	df 7960182 6084324	dur 0.169702 3391.819824	proto 1	state 21 21	tot_pkts 2 4	tot_bytes 514 1856	src_bytes 454 471	label 7 7	dst_bytes 60 1385	Malicious traffic Malicious traffic					
	df 7960182 6084324 612710	dur 0.169702 3391.819824 2428.668945	proto 1 1	state 21 21 21	tot_pkts 2 4 14	tot_bytes 514 1856 2278	src_bytes 454 471 1382	label 7 7 7 7	dst_bytes 60 1385 896	Malicious traffic Malicious traffic Suspicious traffic					
	dif 7960182 6084324 612710 8300545	dur 0.169702 3391.819824 2428.668945 0.003416	proto 1 1 1 0	state 21 21 21 21 21 35	tot_pkts 2 4 14 10	tot.bytes 514 1856 2278 1430	src_bytes 454 471 1382 955	label 7 7 7 5	dst_bytes 60 1385 896 475	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic					
	df 7960182 6084324 612710 8300545 4852672	dur 0.169702 3391.819824 2428.668945 0.003416 0.337290	proto 1 1 1 0 1	state 21 21 136 21	tot.pkts 2 4 14 10 2	tot_byles 514 1856 2278 1430 135	src_bytes 454 471 1382 955 75	label 7 7 7 5 3	dst_bytes 60 1385 896 475 60	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic					
	df 7960182 6084324 612710 8300545 4852672	dur 0.169702 3391.819824 2428.668945 0.003416 0.337290	proto 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	state 21 21 136 21 	tot, pkts 2 4 14 10 2	tot, bytes 514 1856 2278 1430 135	src_bytes 454 471 1382 955 75 	label 7 7 5 3	dst_bytes 60 1385 896 475 60	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic					
	df 7960182 6084324 612710 8300545 4852672 5516910	dur 0.169702 3391.819824 2428.668945 0.003416 0.337290 561.315430	proto 1 1 1 1 1 1 1 0 1 1 0	state 21 21 136 21 136	tot_pkts 2 4 14 10 2 117	tot_byles 514 1856 2278 1430 135 7496	src_bytes 454 471 1382 955 75 3173	1abel 7 7 5 3 	dst_bytes 60 1385 896 475 60 	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic Legitimate traffic					
	df 7960182 6084324 612710 8300545 4852672 5516910 14356	dur 0.169702 3391.819824 2428.668945 0.003416 0.337290 561.315430 0.157974	proto 1 1 1 0 1 0 1	state 21 21 136 21 136 21 	tot.pkts 2 4 14 10 2 117 2	tot_bytes 514 1856 2278 1430 135 7496 240	src_bytes 454 471 1382 955 75 3173 85	label 7 7 5 3 5 1362	dst_byles 60 1385 896 475 60 	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic Legitimate traffic Malicious traffic					
	df 7960182 6084324 612710 8300545 4852672 5516910 14356 2568838	dur 0.169702 3391.819824 2428.666945 0.005416 0.337290 	proto 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1	state 21 21 136 21 136 21 21 21	tot.pkts 2 4 14 10 2 117 2 2 2	tot.bytes 514 1856 2278 1430 135 	src_bytes 454 471 1382 955 75 3173 85 83	label 7 7 5 3 	dst.bytes 60 1385 896 475 60 4323 155 139	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic Legitimate traffic Malicious traffic Malicious traffic					
	df 7960182 6084324 612710 8300545 4852672 5516910 14356	dur 0.169702 3391.819824 2428.668945 0.003416 0.337290 561.315430 0.157974	proto 1 1 1 0 1 0 1	state 21 21 136 21 136 21 	tot.pkts 2 4 14 10 2 117 2	tot_bytes 514 1856 2278 1430 135 7496 240	src_bytes 454 471 1382 955 75 3173 85	label 7 7 5 3 5 1362	dst_bytes 60 1385 896 475 60 4323 155 139 62	Malicious traffic Malicious traffic Suspicious traffic Legitimate traffic Suspicious traffic Legitimate traffic Malicious traffic					

Figure 16: Prediction

References

Apple Macbook Air (M1, 2020): full specs, tests and user reviews. (n.d.). Retrieved August 8, 2023, from https://nanoreview.net/en/laptop/apple-macbook-air-m1-2020
Handradd Kanagan MacOS2

How to Install Keras on MacOS? - GeeksforGeeks. (n.d.). Retrieved August 8, 2023, from https://www.geeksforgeeks.org/how-to-install-keras-on-macos/