

A Novel Web Application security

vulnerability scanning tool.

MSc Research Project

Industry Internship

Abhay Singh

Student ID: X21212341

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Abhay Sureshkumar Singh

Student ID:

X21212341

Programme:

Masters in Cybersecurity

Year:

2022-2023

Module:

Industry Internship

Supervisor:

Vikas Sahni

Submission Due

Date:

04-09-2023

Project Title:

A novel Web Application security vulnerability scanning tool.

Word Count:

7203 (including references) Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

04-09-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

A Novel Web Application security vulnerability
scanning tool.

Abhay Singh

X21212341

Abstract

Web Application usage has been increasing day-by-day as organizations provide variety

of services based on people’s daily life requirements. Securing these web applications and

network infrastructure has become a crucial task. There are various vulnerability scanners

available in different programming languages with multiple functionalities with an ability to

handle specific vulnerabilities, but they are unnecessarily complex in nature for developers

as well as end-users. This study aims to fill this gap by investigating the benefits, challenges,

and best practices associated with developing a Flask-based vulnerability scanner. By

utilizing Flask's light weight and flexibility, the scanner offers modularity, extension, and

easy connection with Flask-based apps.

With the Flask framework in mind, this research work presents a state-of-the-art

vulnerability scanning tool for online applications that increases threat assessment coverage

and mitigation tactics. The developed tool hides the complexity of underlying API calls by

combining open-source tools detection method and running a comprehensive rule-based

system, data format conversion, and optimized workflow. A user-friendly, non-technical

executive summary is created from the tool's output, assisting in better risk understanding

and remediation techniques.
Keywords: - Flask framework, Web Vulnerability Scanner, threats, Issues, Nessus,

Skipfish, rules, vulnerability detection

1 Introduction

1.1 Background and Rationale

The development of the internet, the World Wide Web, and web applications has a

significant influence on every aspect of professional and interpersonal human life. Because

the web application is the initial face of all enterprises worldwide, it was always expanding

quickly and becoming more sophisticated. The fact that a web application has vulnerabilities

is owing to the fact that it was created with less programming expertise and without being

tested for flaws.(Ablahd, 2023). With Broken Access Control being the first among the

OWASP top 10 vulnerabilities, is termed as a vulnerability to a web application and many

others like it.

There are nearly endless attack possibilities, even if there are many factors to consider

when assessing a vulnerability scanner by comparing the vulnerability scanning coverage,

precision, recall, and time complexities.(Tung et al., 2013) Previous studies have suggested a

variety of evaluation matrices due to the large diversity of security risks. While insufficient

procedures sometimes result in inaccurate detection by the tools, a thorough scan frequently

generates many vulnerability alarms.(Tung et al., 2013).

A web application is always based on what framework it is built upon. Considering

Python as the web application programming language and the area of research in this paper, it

offers few web development frameworks. Due to its feature like, readable syntax, minimal

2

boilerplate, high-level data structures to avoid complexity, and extensive standard library

support for file handling, networking, and many other functionalities, it supports

programmers with reduced work of logic building and design implementation making it their

best choice to opt for this language.

Framework Description

Django High-level framework for rapid development with built-in

features and an admin panel.

Flask Lightweight micro-framework offering flexibility and

essential tools for web applications. A Flask extension

framework is used to provide support for functionalities that

are not covered by the micro-framework itself.

CherryPy Object-oriented framework that maps Python objects to

HTTP requests, suitable for small apps.

Sanic Asynchronous framework inspired by Flask, designed for

efficient handling of concurrent workloads.

Table 1: Web Development frameworks for Python

While vulnerability scanners exist in the market, there is a lack of research and

development specifically tailored to the Flask framework. Many existing scanners are built

on different frameworks, making integration with Flask-based applications cumbersome and

complex. By exploring the Flask framework for vulnerability scanning, this research aims to

bridge the gap and provide insights into building a scanner that aligns seamlessly with Flask's

principles and practices.

Flask is renowned for its simplicity, flexibility, and modularity, which are highly

advantageous when developing web applications. Leveraging these qualities for vulnerability

scanning can lead to a scanner that is lightweight, customizable, and easily adaptable to

diverse projects. This research topic allows for exploration on how Flask's strengths can be

harnessed to create a specialized vulnerability scanner.

1.2 Aim

How to develop an effective web application vulnerability scanner tool?

1.3 Objectives

• Creating an effective web vulnerability scanner using Flask's minimalist architecture

and extensible features to scan networks and applications for potential vulnerabilities.

• Building a scanner to provide a flexible scanning strategy by permitting users to

dynamically load and manage vulnerability scanning rules.

• Integrate smoothly with Flask's routing, to provide a set of API endpoints, allowing

external systems or tools to interact with its capabilities.

3

Fig.1 Vulnerability Assessment Cycle.1

2 Related Work

Web vulnerability scanning involves the systematic identification and assessment of

security vulnerabilities in web applications. Various approaches have been proposed,

including static analysis, dynamic analysis, and hybrid techniques. The literature extensively

discusses the principles, challenges, and methodologies related to web vulnerability scanning.

The paper (R et al., 2023) discusses the Axiom technique used in research study to

provide a unique framework for automated web application security screening and

information collecting. By automating asset discovery, filtering targets based on parameters

like open ports, and utilizing the Axiom methodology for quicker and distributed scanning,

the framework helps find and fix vulnerabilities in web applications, helpful for bug bounties

and penetration testing. In addition to showcasing the framework's potential to improve

online application security efficiency and scalability, the research assesses its performance,

constraints, and obstacles. The study also examines the logic behind OWASP vulnerabilities

and provides a comparative review of current automated security screening solutions.

The paper (Ablahd, 2023) discusses detection of website vulnerabilities using Python

with multiple frameworks brought in focus. The author mentioned multiple frameworks like

Django, Flask, AST, CFG while using it for building a vulnerability scanner tool called

SCANSCX. The tool is divided into two sections - non-full stack micro-web framework

chosen as Flask and a full-stack web development framework selected was Django. The

paper only uses Flask framework for completion of the web application and does not make

any use of security modules provided by flask extension. It can be utilized as a part of

research in the proposed tool development completely based on Flask.

The study discussed in the article (Laksmiati, 2023) focuses on vulnerability assessment

on WordPress-based websites to find potential security holes that might be exploited by

hackers. Network-based scanning tools like Nmap and WPScan are used in the study to find

and examine website vulnerabilities. The findings point to a number of vulnerabilities that

1 https://transform-mpi.com/training-tentang-security-vulnerability-assessment/

https://transform-mpi.com/training-tentang-security-vulnerability-assessment/

4

need to be addressed and mitigated right once. To reduce the danger of cyberattacks, it is

important to regularly undertake vulnerability assessments on WordPress websites.

The research article by (Chen et al. (2020)) provides a powerful web vulnerability

scanner made to handle the security issues brought on by web applications. The scanner is

designed to collect data and check out vulnerability detection thoroughly, improving online

security assurance. The suggested scanner in this work blends information gathering with

vulnerability detection and assists in identifying typical online vulnerabilities like SQL

injection and XSS. The structure, module designs, and functionalities of the scanner are

described in the article.

The (Tang and Zhou, 2021) research presents a cutting-edge web vulnerability scanner

that makes use of an intelligent crawler strategy. This approach focuses on examining URL

characteristics that are crucial to the scanner's functionality. In light of these traits, the

scanner effectively eliminates pointless URLs using attribute tags. The research introduces a

unique four-fold bloom filter that takes into account both geographical and temporal

complexity to improve the URL deduplication process. By drastically reducing the amount of

storage space needed and the amount of time needed for URL deduplication, this method

offers substantial advantages that will encourage wider usage.

The research paper (Odion et al., 2023) introduces the "Vulnerability Scanner

(VulScan)," a system designed to identify six categories of web application attacks. It

addresses the growing challenges of web security by actively scanning components like links,

forms, and headers. The paper extensively discusses the technical workings of the scanner,

employing tools like Selenium WebDriver and requests library for vulnerability detection

modules. It emphasizes both active and passive operations for different vulnerabilities, such

as XSS, CSRF, DoS, and more. Furthermore, the reporting module is highlighted,

showcasing the importance of clear vulnerability communication. The paper presents a

comprehensive approach to web security, detailing methodologies, technical implementation,

and a wider coverage of vulnerabilities.

The study (Sagar et al., 2018) compares the effectiveness of three web vulnerability

scanners (OWASP ZAP, Skipfish, and w3af) against the top 10 web application risks listed

by OWASP. In the experiment, susceptible programs like DVWA are put to the test, and the

outputs of the scanners are examined for flaws like SQL injection, Cross-Site Scripting

(XSS), Broken Authentication, and others. The capacity to accommodate input vectors, audit

features, and vulnerability identification is compared for each scanner in the article. It offers

information on the many aspects of scanning, including as crawling, attacker modules, and

analysis tools.

The assessment of vulnerability scanners for online applications is covered in (Tung et

al., 2013) research article, with a particular emphasis on the problem of repeated

vulnerability alarms. By expanding the confusion matrix to account for genuine duplication

(TD) and false duplication (FD) of vulnerabilities, the authors provide a method for cost-

effective assessment. They provide a methodology that takes the price of checking duplicate

vulnerabilities into account and use this method to construct the Web Vulnerability Scanner

Testbed (W-VST). The paper examines the improved precision and F-measure formulae and

5

stresses the significance of taking false positives and redundancy into account when

evaluating scanners.

The (Zukran and Siraj, 2021) research investigates how well open-source automated

vulnerability scanners perform in identifying SQL Injection and Cross-Site Scripting (XSS)

flaws in web applications. The authors use a technique to assess scanner detection coverage

and accuracy rates. They test OWASP ZAP and Skipfish, two well-known open-source

scanners, on weak web apps. The importance of accuracy and coverage in vulnerability

identification is discussed in the study, which also gives conclusions based on vulnerability

categories and risk levels.

To comprehend the characteristics and efficacy of web application vulnerability scanners

(WVS), the study (Alazmi and De Leon, 2022) focuses on a systematic assessment of WVS.

It thoroughly examines 90 research publications and discovers 30 Web Application

Vulnerability Scanners (WVS), only 12 of which include quantitative evaluations of their

efficacy. In particular, SQL Injection (SQLi) and Cross-Site Scripting (XSS) are discussed as

OWASP Top Ten vulnerabilities that these scanners may identify. The results show

differences in reported detection rates between several evaluation studies. The study

emphasizes the requirement for more thorough testing and assessment of WVSs in order to

handle the changing web application security scenario.

The research (Farrell, 2022) examines how Content Management Systems (CMS) like

WordPress can automate threat assessment coverage. By developing an automated

WordPress vulnerability screening tool, it seeks to close a crucial gap in the detection and

remediation of problems. The article analyses the efficiency of current security analysis tools

(such as Black Kite, Security Scorecard, BitSight, and WPScan) in lowering costs and

broadening threat coverage. The approach uses secondary case-study analysis to examine the

capabilities, data sources, detection techniques, and degree of work needed for threat

assessment for each instrument.

The development of a web application vulnerability scanning system for the power

industry is covered in the (Wang et al., 2019) research paper. The fundamentals of the system

are covered, with a focus on web crawler-based passive and active scanning techniques. The

document explores many vulnerability types, including XSS and SQL injection, and details

how to find them. It also describes the system's essential elements, such as the web crawler

and detection modules, and emphasizes the tool's adaptable plug-in nature.

The (Jain et al., 2023) research paper introduces a web application vulnerability scanning

system for network security, emphasizing vulnerability analysis to detect hidden weaknesses.

It focuses on revealing implicit discrepancies that can harm the network, including

vulnerabilities like Cross-site scripting (XSS), Cross-site request forgery (CSRF), DDoS, and

SQL injection. It evaluates different scanners, and proposes an innovative prototype called

"JARVIS" that offers scanner agnostic capabilities. The paper concludes with results showing

how the system identifies vulnerabilities and improves website security.

The (Zhang, Hu and Huo, 2021) research paper presents a browser-based Cross Site

Request Forgery (CSRF) detection model, addressing the serious threat of CSRF attacks in

web applications. The model examines HTTP requests and web page content to spot possible

CSRF attacks, offering defense against attackers that take advantage of browser cached

6

cookies and implicit authentication. The procedure of a CSRF assault is discussed in the

article, along with server-based and client-based CSRF protection strategies, and a browser-

based detection model using Google Chrome is suggested. The model design includes a

CSRF handler module, which notifies users of suspected CSRF sites and gives them the

option of continuing or not, as well as HTTP request analysis and content analysis.

To address software vulnerabilities and highlight the necessity of security measures to

avert assaults, the (Kharat and Chawan, 2022) research study presents a Vulnerability

Management System (VMS). A vulnerability database, data processing platform, and

vulnerability scanner are all part of the suggested VMS. It describes a four-step procedure

that includes locating vulnerabilities, assessing how serious they are, implementing the

necessary fixes, and producing thorough vulnerability reports. In order to find vulnerabilities

and rank their severity, the system performs binary and source code analysis.

An integrated framework for software vulnerability identification, analysis, mitigation,

and management based on autonomous computing is proposed in (Kumar and Sharma, 2017)

research study. The framework integrates autonomic computing's self-configuration, self-

healing, self-prevention, and self-optimization features. With the goal of lowering security

risks, threats, and financial loss while improving software security, the framework's self-

managing features provide cross-cutting security improvements, automatic scanning, and

intelligent vulnerability evaluation.

The (Susanto, Rizko and Purbohadi, 2020) research paper focuses on conducting

vulnerability assessment to enhance website security, with a specific focus on WordPress-

based sites. The study detects vulnerabilities using network-based scanners like Nmap and

WPScan. WordPress websites are vulnerable to hacker attacks due of their popularity,

according to the article. The process covers requirement analysis, design, testing,

implementation, and outcome analysis. The results show open ports, older software versions,

and WordPress feature, configuration, and theme vulnerabilities. The study emphasizes

regular vulnerability assessments and proactive risk mitigation for enterprises and users.

The (Xu et al., 2022) research study develops a web vulnerability identification analyzer

for security-conscious enterprises as well as individuals. The study discusses sub-domain

scanning, application fingerprint recognition, web crawling, and vulnerability verification.

The technology detects SQL injection and XSS in target webpages using fuzzing and PoC

verification. The paper describes the analyzer's architecture, components, and workflow,

showing how it effectively finds and confirms online vulnerabilities. The proposed technique

reduces penetration testing time and improves online security by correcting vulnerabilities

quickly.

The (Verma, 2023) research paper investigates Insecure Deserialization vulnerabilities

and their exploitation across multiple programming languages. It discusses how serialization

and deserialization can be exploited by adversaries to compromise systems, delving into the

serialization and deserialization processes. This paper explains vulnerability exploitation

techniques in PHP, Java, and Python, including magic methods, POP chains, and gadgets.

The highlighted prevention techniques include input validation, allowlisting, and encryption.

The paper proposes the development of a Python-based automated vulnerability scanner for

Insecure Deserialization, delineating modules for port scanning, OS and service detection,

7

data extraction, and vulnerability verification. It stresses the significance of protecting

human-editable data, such as cookies, from exploitation.

The (Parimala, Sangeetha and AndalPriyadharsini, 2018) research paper titled "Efficient

Web Vulnerability Detection Tool for Sleeping Giant-Cross Site Request Forgery" addresses

the security threat posed by Cross-Site Request Forgery (CSRF) in web applications. It

proposes a Python-based automated utility for detecting CSRF vulnerabilities in URLs and

local host addresses. This paper examines the historical context of web vulnerabilities, CSRF

attacks, various attack methods, and the significance of automated security testing tools. It

explains session management vulnerabilities, investigates the CSRF attack mechanism, and

provides examples of CSRF attacks. The proposed system includes real-time scanning for

CSRF vulnerabilities, token analysis, and Same Origin Policy verification. The

implementation incorporates a user-friendly graphical user interface for input and output

display.

The study (Saabith, Fareez and Vinothraj, 2019) paper discusses Python's popularity,

simplicity, community, web development, and big data and machine learning applications.

Python is examined in corporate applications, software development, and language design.

Django, Web2Py, TurboGears, Pyramid, Flask, CherryPy, and other Python web

development frameworks are also introduced in the article, along with their important

features and use cases. The paper introduces Flask as a lightweight micro web framework

compatible with Google App Engine, built-in development server, and debugger. It highlights

Flask's lightweight nature and applicability for smaller projects in the Python web

development framework ecosystem.

The research paper (Ghimire, 2020) contrasts two web applications developed with the

Flask and Django frameworks. It concentrates on the Flask-based application's design

patterns, requests and routing, blueprints, infrastructure, configurations, security, deployment,

error handling, caching, and adaptability. The Flask application employs the recommended

directory structure, view decorators, automatic request context handling, blueprints for

modularity, and an ORM (Peewee) to handle database interactions. The document discusses

security measures, configuration management, Heroku deployment, error handling with

Python exceptions, and caching options. The adaptability of Flask is highlighted, as it permits

the simple incorporation of libraries and extensions for various aspects of web development,

ultimately expediting development while adhering to the MVC design pattern.

The paper (Lokhande et al., 2015) explores web development with Python and Flask

efficiently. It highlights Python's simplicity, vast libraries, and error-handling skills. The

study emphasizes Flask's micro framework role in simplifying core functionality and

facilitating plugin extension. Flask's structure, Jinja2, and Werkzeug WSGI Toolkit are

covered. Template inheritance, file organization, and Flask program implementation are

covered. The paper also discusses Jinja2 templating's sandbox execution and template

inheritance features. The focus is on fast web development, open-source collaboration, and

Python and Flask's benefits in constructing attractive and functioning web portals.

The "Web Application Intrusion Detection System for Input Validation Attack" research

paper by (Park and Park, 2008) describes a Web Application Intrusion Detection System

(WAIDS) based on an Anomaly Intrusion Detection model. This paper discusses the

8

detection of input validation assaults against web applications, including the challenges posed

by such attacks and the limitations of traditional methods such as signature-based detection.

The proposed method for detecting anomalous requests includes data collection, keyword

extraction, similarity measurement using the Needleman-Wunsch algorithm, and

filtering/reporting. Using profiles generated from standard web request data, the study

exhibits improved detection rates and reduced false positives. The experimental results

demonstrate that the WAIDS approach is effective at detecting input validation attacks.

The (Goethem et al., 2014) research paper "Large-scale Security Analysis of the Web:

Challenges and Findings" examines web security on over 22,000 websites from 28 EU

nations. It discusses web application vulnerabilities and security measures to prevent typical

attacks. The paper provides a security score system that evaluates defenses and

vulnerabilities. Security mechanisms (HTTP Strict Transport Security, Secure Cookies,

Content Security Policy, etc.), vulnerability detection (Vulnerable Remote JavaScript

Inclusion, Mixed-content Inclusion, SSL-stripping Vulnerable Form, etc.), and a Common

Weakness Scoring System-based scoring system are covered. The study stresses the

importance of external security evaluations and offers web application security tips.

Table 2: Summarized Literature Review Table

Sr

No.

Research Author

and Paper details

Advantages Disadvantages

1. (R et al., 2023) Web

Application Security

Testing Framework

using Flask

The distributed and automated

Axiom technique increases online

application security screening and

vulnerability identification.

Certain vulnerabilities or network

environments may limit the

framework's practicality.

2. (Ablahd, 2023)

Using Python to

Detect Web

application

vulnerability

Researchers designing Flask-based

security solutions can include

SCANSCX vulnerability scanning

using the paper's methods.

The paper's absence of Flask

extension security modules may

limit its Flask app security

assessment.

3. (Laksmiati, 2023)

Vulnerability

Assessment with

Network-Based

Scanner Method for

Improving Website

Security

The study finds vulnerabilities using

Nmap and WPScan and provides

insights into successful vulnerability

assessment.

The frequent usage of Nmap and

WPScan may reduce vulnerability

analysis depth by hindering other

evaluation methods. The study

does not compare scanning

methods.

4. (Chen et al. (2020))

An Automatic

Vulnerability Scanner

for Web Applications

The document describes the

scanner's structure, module designs,

and functions to enable researchers

and practitioners to use it. A

powerful web application security

scanner, it increases online security

assurance and may prevent

cyberattacks.

Scalability of the scanner in

handling large-scale online

applications is not adequately

examined, raising concerns about

its performance and efficiency in

complex systems.

5. (Tang and Zhou, The novel four-fold bloom filter for The study illustrates the benefits

9

2021) Design and

Implementation of

High-performance

Web Vulnerability

Scanner Based on

Python Intelligent

Crawler

URL deduplication considers

geographical and temporal

complexity. This solution saves

storage space and deduplication

time, enabling large-scale scanning.

of the suggested strategy, but it

may not address situations where

it may be less effective, such as

specific websites or target regions.

6. (Odion et al., 2023)

VulScan: A Web-

Based Vulnerability

Multi-Scanner for

Web Application

VulScan, a robust vulnerability

scanner that detects six web

application attacks. This wide

coverage enhances vulnerability

detection. It describes VulScan's

Selenium WebDriver and requests

library implementation.

The paper's technical complexity

may make adoption harder for less

experienced readers or

practitioners without an online

security background.

7. (Sagar et al., 2018)

STUDYING OPEN-

SOURCE

VULNERABILITY

SCANNERS FOR

VULNERABILITIES

IN WEB

APPLICATIONS

The study compares OWASP ZAP,

Skipfish, and w3af to the Top 10

web application risks. This

comparison shows pros and cons.

The study examines scanner input

vector flexibility, auditing, and

vulnerability identification.

The study's planned test scenarios

and susceptible programs may not

accurately represent internet

vulnerabilities' dynamic nature

and scanners' real-world

effectiveness.

8. (Tung et al., 2013) A

cost-effective

approach to

evaluating security

vulnerability scanner

The paper advises evaluating

repeated-warning vulnerability

scanners with an enlarged confusion

matrix. The Web Vulnerability

Scanner Testbed analyzes

vulnerability scanner proposals. This

controlled environment evaluates

scanners.

The paper's concentration on

duplicate vulnerability alarms

may limit its assessment and

overshadow scanner performance

and efficacy.

9. (Zukran and Siraj,

2021) Performance

Comparison on SQL

Injection and XSS

Detection using

Open-Source

Vulnerability

Scanners

The study tests open-source

vulnerability scanners on poor web

apps to apply the findings to real

security settings. The study

evaluates scanner detection

coverage and accuracy for SQL

Injection and XSS vulnerabilities.

The study only examines two

open-source vulnerability

scanners, OWASP ZAP and

Skipfish, which may not cover the

complete vulnerability scanner

environment.

10. (Alazmi and De

Leon, 2022) A

Systematic Literature

Review on the

Characteristics and

Effectiveness of Web

Application

Vulnerability

Scanners

To understand 30 Web Application

Vulnerability Scanners (WVS), 90

research publications were analyzed

to determine their characteristics and

efficacy. Quantitative evaluations

in 12 of 30 WVS underline the

relevance of empirical data in

measuring vulnerability scanner

performance and dependability.

The study emphasized

quantitative evaluations, although

only 12 of 30 WVS included

them, limiting its statistical

significance. Existing research

publications may bias the

assessment toward positive results

or vulnerability scanners,

lowering its comprehensiveness

and generalizability.

11. (Farrell, 2022) The study evaluates security Due to case and data selection,

10

Abstraction and

automation of

WordPress

vulnerability

scanning

analysis technologies' efficiency to

help practitioners choose threat

assessment tools based on their

capabilities, data sources, detection

methodologies, and resource needs.

secondary case-study analysis

may bias and limit research

generalizability.

12. (Wang et al., 2019)

Research on Web

Application Security

Vulnerability

Scanning Technology

Passive and active scanning,

vulnerability categories, and plug-in

adaptation are covered in the study,

showing a comprehensive web

application security methodology.

The research should evaluate the

scanning system's efficacy,

performance, and real-world

applicability.

13. (Jain et al., 2023)

Web Scanner: An

Innovative Prototype

for Checking Web

Vulnerability

Web application vulnerability

assessment finds explicit and

implicit vulnerabilities, including

advanced threats like DDoS, XSS,

CSRF, and SQL injection, according

to the research.

Adapting the system to different

network setups and sectors may

require more research and

validation than the paper provides.

14. (Zhang, Hu and

Huo, 2021) A

Browser-based Cross

Site Request Forgery

Detection Model

The study introduces a browser

based CSRF detection approach that

examines HTTP requests and web

page content to improve web

application security by addressing a

specific vulnerability.

Practical tests or case studies

showing the detection model's

efficacy and adaptability across

online apps and settings would

help the study.

15. (Kharat and

Chawan, 2022)

Vulnerability

Management System

The study proposes a Vulnerability

Management System (VMS) with a

vulnerability database, data

processing platform, and

vulnerability scanner to handle

software vulnerabilities holistically.

Real-world applications or case

studies could validate the

Vulnerability Management

System in software settings.

Integration of binary and source

code analysis may present

complexity and resource

difficulties that must be addressed

for practical usability and

efficiency.

16. (Kumar and

Sharma, 2017) An

integrated framework

for software

vulnerability

detection, analysis,

and mitigation: an

autonomic system

Self-managing features like

automatic scanning and intelligent

vulnerability evaluation can improve

vulnerability management efficiency

and save manual effort.

An integrated framework based

on autonomous computing may be

difficult to create, integrate, and

integrate with current software

environments.

17. (Susanto, Rizko and

Purbohadi, 2020)

Security Assessment

Using Nessus Tool to

Determine Security

Gaps on the

Repository Web

Application in

Educational

The paper tackles a real-world issue

by focusing on vulnerability

assessment for popular WordPress-

based websites, providing practical

insights into detecting and

addressing security vulnerabilities.

The study focuses on WordPress-

based websites, but it may benefit

from exploring and addressing a

wider range of vulnerability

assessment methodologies beyond

network-based scanners to present

a more complete picture.

11

Institutions

18. (Xu et al., 2022) Web

Vulnerability

Detection Analyzer

Based on Python:

The technology's focus on fuzzing,

PoC verification, and reduced

penetration testing time shows its

ability to swiftly uncover and fix

flaws, improving online security.

The study focuses on SQL

injection and XSS vulnerabilities,

limiting its relevance to other web

issues enterprises may encounter.

19. (Verma, 2023)

Insecure

Deserialization

Detection in Python

The study examines Insecure

Deserialization vulnerabilities in

PHP, Java, and Python, revealing

common attack methods and

preventive solutions.

Due to the intricacy of Insecure

Deserialization vulnerabilities, the

document may not cover all

exploitation scenarios or

preventative techniques.

20. (Parimala,

Sangeetha and

AndalPriyadharsini,

2018) Efficient Web

Vulnerability

Detection Tool for

Sleeping Giant-Cross

Site Request Forgery

A Python-based automated

application that efficiently detects

Cross-Site Request Forgery (CSRF)

vulnerabilities is proposed in the

paper as a realistic solution.

The research suggests an

automated utility; however it may

benefit from a comparison with

existing CSRF detection tools to

demonstrate its efficiency and

effectiveness.

21. (Saabith, Fareez

and Vinothraj,

2019) Python current

trend applications-an

overview

The article emphasises Flask as a

lightweight micro web framework to

demonstrate its interoperability,

built-in features, and applicability

for smaller applications, giving

readers practical insights into its

possibilities.

The paper offers numerous

Python web frameworks, but a

comparative examination of their

merits and disadvantages could

help readers choose one for

specific tasks.

22. (Ghimire, 2020)

Comparative study on

Python web

frameworks: Flask

and Django

The article covers Flask-based web

application development's design

patterns, security, deployment, error

handling, and adaptability, giving

readers a complete grasp.

The study compares Flask to

Django, although project

complexity and requirements may

limit its applicability. The study

may lose out on a holistic view of

both frameworks' strengths and

drawbacks.

23. (Lokhande et al.,

2015) Efficient way

of web development

using python and

flask

New web developers can benefit

from Python and Flask's simplicity,

broad libraries, fast development,

and open-source collaboration,

according to the research.

The article introduces Python and

Flask for web development,

however experienced developers

may want more technical details

or advanced subjects.

24. (Park and Park,

2008) Web

Application Intrusion

Detection System for

Input Validation

Attack

An anomaly-based intrusion

detection model and the Needleman-

Wunsch algorithm for similarity

assessment demonstrate the paper's

new approach to web application

assault detection beyond signature-

based methods.

While effective for input

validation assaults, the paper's

concentration on a single sort of

attack may limit its applicability

to other web vulnerabilities and

security concerns.

25. (Goethem et al.,

2014) Large-Scale

Security Analysis of

the Web: Challenges

The suggested security score

system, security mechanism

coverage, vulnerability detection,

and Common Weakness Scoring

The research focuses on EU

websites; hence its results and

recommendations may not apply

to non-EU websites, limiting its

12

and Findings System-based scoring provide web

developers and security

professionals with realistic direction

on web security assessment and

enhancement.

worldwide influence.

Many of the assessed research studies lack temporal relevance due to the rapid change of

technology and web security policies. Some older methods may not adequately reflect online

security or the latest vulnerabilities and mitigation solutions since technology and threats change.

This constraint proves to the necessity for current research to address web security issues. This

research's application improves current vulnerability detection and provides a variety of threat

detection to cover all conceivable web application issues.

3 Research Framework

This project develops a web application vulnerability detection system using an Iterative and
Incremental SDLC approach. Due to its versatility, the Iterative and Incremental Approach is
used to modify and improve the system through repeated planning, design/coding, testing,
and implementation cycles. A thorough Requirement Gathering and Evaluation step
establishes the project's scope, objectives, and vulnerabilities, laying the framework for
succeeding iterations. Each iteration cycles planning, design/coding, testing, and
implementation. Each cycle improves system security by fixing vulnerabilities found during
Information Gathering. This method keeps the detection system updated on new threats and
exploits. User feedback also improves system performance in subsequent generations.
Continuous testing, integration, automated security scanning, and code reviews improve the
whole solution's quality and security. This study technique uses the Iterative and Incremental
Approach, Information Gathering, and Evaluation to create a resilient and flexible web

application vulnerability detection system for emerging security concerns.
Figure 2. Iterative and Incremental Model

4 Design Specification

13

The web application executes a vulnerability scan based on the entered target URL or IP
address. The preceding section attempts to provide a summary of the web application's flow
sequence. As soon as the shell script is executed to launch the application, the start_workers()
module and the Redis server are initialized to initiate a perpetually running web server
database on the backend. The Workers module initiates the Attacker, Scanner, and Scheduler
functions. These are the three most essential features of this web application that are crucial
for detecting vulnerabilities.
The Attacker component launches attacks against specified IPs and ports based on the
configuration provided. It applies principles to scanned data and operates concurrently using
threads.

Fig.3 Flow Diagram of Proposed Scanner

The Scheduler component orchestrates the total operation. Based on the supplied
configuration, it manages the scheduling of network scans and the execution of post-
assessment actions. It ensures that the scanning and evaluation process is governed and
adheres to the predetermined frequency.
 The Scanner module conducts network searches to identify assets and open ports. It
schedules IP addresses and domains for scanning, performs scans, and maintains scan results
in Redis.
The Manager module verifies that the specified role exists. It checks for vulnerabilities and
threats based on the supplied IP address or URL by executing all types of rules specified in
the rules directory and executing all desired rules. The Scheduler retrieves IP Addresses
utilizing Python functions. This IP address is retrieved from Redis data by the Scanner
function to determine if a scan is to be performed. Using the logger module, all error
messages and successful transactions are logged, and the scanned data is then stored in the
Redis database in the form of results.

5 Implementation

5.1 Specification about added functionalities

Flask Application (Main.py) Security functionalities:

Configuration and Secret Key:

The configuration of the application is altered with certain values, including the

SESSION_COOKIE_SAMESITE setting. Moreover, a secret key is generated and assigned

14

as the application's secret key. This confidential key is essential for secure data transmission

and session management.

Security Headers:

This is an after-request hook that appends several security-related response attributes. These

identifiers help defend the application against a variety of attacks. These header values are

obtained from the config module.

Context Processors:

Context processors are pre-rendered functions that can inject variables into the template

context for all views. There are three context processors in this code:

status() provides the current status of the scanning procedure based on Redis database

information. show_ frequency() provides the configuration for the scan frequency.

show_vuln_count() returns the number of vulnerabilities that have been stored in the Redis

database.

5.2 Detection of types of Vulnerabilities

The Manager.py code defines functions for a role-based system's rule management and

loading. These functions search specific directories for Python modules (rules) and

dynamically install them. This type of dynamic rule loading is prevalent in applications that

support flexible rule systems, such as security tools and policy engines. Using mod.Rule(), a

Rule class instance is created (assuming the class already exists within the module). The

loaded rule instance is added to the loaded_rules dictionary using the module name as the

key.

This function returns the loaded_rules dictionary containing instances of loaded rules. In the

diagram above, it specifies different types of rules created based on four categories

introduced in this application that are brute force (Credentials rule), Configuration

(Misconfiguration rule), CVEs (NVD/NIST Vulnerabilities), Vulnerabilities (Known flaws),

Services (Vulnerable Ports).

5.3 Proposed Scanner

Initiation: User provides scan configurations. register.py is responsible for initiating the scan

by parsing and validating the configurations using the SchemaParser class in parser.py.

Configuration Parsing: parser.py parses and sets up the scan configurations.

Rule Management: manager.py dynamically loads the necessary rule modules based on the

specified role.

Scanning: port_scanner.py identifies open ports on the target systems. Vulnerability

detection rules are then applied based on the open ports.

Result Analysis: triage.py processes the raw scan results, identifying and classifying

vulnerabilities.

Reporting: reports.py generates scan reports in various formats like CSV, HTML, and TXT.

Utilities: Throughout the process, several utility functions from utils.py are utilized.

logging.py handles logging, ensuring that events, actions, and errors are recorded. Redis

(managed by redis.py) is used for temporarily storing scan results, managing scan tasks, or

maintaining session data.

Security: security.py manages aspects related to secure communication, data encryption, or

user authentication.

Background Processes: workers.py manages resource-intensive tasks in the background.

15

Fig.4 System Architecture of Proposed Scanner.

16

6 Evaluation

In this evaluation, an investigation of the domain-specific proficiency of a web application

scanner in comparison to other Open-Source Web Vulnerability Scanners available online was

carried out. From pinpointing vulnerabilities with accuracy to assessing its performance and

reporting prowess, some diverse capabilities were observed. This evaluation sheds light on its

potential strengths and areas for improvement, providing valuable insights for the development of

secure web applications.

6.1 Experiment / Case Study 1

Nessus Vulnerability Scanner vs Flask Vulnerability Scanner:

GUI of both the tools are shown below along with the report generated from their scanning.

Fig.5 Nessus Scanning Dashboard Displaying Vulnerabilities & other details.

The time of scan initiated and ended has been highlighted in the image above. The

vulnerabilities detected are different for both the tools since the plugins or the rules used for

detection are detection but when comparing the functionalities, it states similar results by

considering the factors like processing time, categorization of threats, and detection rate.

17

Fig.6 Report of Metasploitable detected vulnerabilities using proposed scanner.

Fig.7 Dashboard Display of Vulnerabilities Detected in Flask Vulnerability Scanner.

18

6.2 Experiment / Case Study 2

Skipfish Vulnerability Scanner vs Flask Vulnerability Scanner:

The comparison of both the tools were performed using a single known target machine as

Metasploitable VM (Installed on Oracle Virtualbox, configured with NAT Network).

Fig.8 Skipfish Result, and report display along with other details highlighted for comparison.

6.3 Discussion

The proposed scanner boasts remarkable accuracy and offers the added advantage of

minimizing scan time, rendering it exceptionally efficient for both bug bounty hunting and

organizational maintenance endeavors. While there are numerous other tools available that

excel in vulnerability scanning, what sets this scanner apart is its exclusive reliance on the

Flask framework. This unique choice underscores a commitment to streamlined simplicity

and user-friendliness.

In contrast, when assessing tools like Nessus and skipfish in the evaluation, it becomes

apparent that although they exhibit an impressive scope of threat detection, they also come

burdened with an extensive array of rules and plugins designed for this purpose. This

complexity can be daunting for individuals at the outset of their web development journey,

particularly those who lack extensive experience. In this regard, the Flask framework shines

as an approachable option, characterized by its ease of comprehension and flexibility for

users of varying skill levels. The user-friendly nature of Flask not only facilitates

understanding but also encourages customization, allowing developers to tailor solutions that

align precisely with their unique needs.

7 Conclusion and Future Work
In conclusion, the proposed scanner's focus on accuracy, efficiency, and its alignment

with the Flask framework presents a compelling case for its integration into bug bounty

19

programs and organizational maintenance routines. This strategic choice not only simplifies

vulnerability scanning but also aligns seamlessly with the needs of both novice and

experienced developers, all while contributing to the creation of sophisticated and adaptable

web applications.

7.1 Future Work

There are very few vulnerability scanners that are completely based on Flask

framework making this proposed scanner contribute among them. There is still a lot more

vulnerability list to be covered as rules can be created to handle more recent CVEs and Zero

Day issues. A better way could be to link the program source code with the NIST/NVD

database and automate this process for an AI generated report to notify the SOC team using

their communication channels like Teams, Outlook, or Slack. There are other issues like

private IP address and URLs that are not covered in this paper and can be utilized as a path to

explore different research options.

References

Ablahd, D. (2023) ‘Using Python to Detect Web application vulnerability By’, 13, pp. 1045–1058.

Alazmi, S. and De Leon, D.C. (2022) ‘A Systematic Literature Review on the Characteristics and Effectiveness

of Web Application Vulnerability Scanners’, IEEE Access, 10, pp. 33200–33219. Available at:

https://doi.org/10.1109/ACCESS.2022.3161522.

Farrell, S. (2022) Abstraction and automation of WordPress vulnerability scanning. National College of Ireland.

Available at: https://norma.ncirl.ie/id/eprint/6515.

Ghimire, D. (2020) ‘Comparative study on Python web frameworks: Flask and Django’.

Goethem, T. van et al. (2014) ‘Large-Scale Security Analysis of the Web: Challenges and Findings’, in Trust

and Trustworthy Computing. Available at: https://api.semanticscholar.org/CorpusID:14830723.

Jain, A. et al. (2023) ‘Web Scanner: An Innovative Prototype for Checking Web Vulnerability’, in R. Silhavy,

P. Silhavy, and Z. Prokopova (eds) Software Engineering Application in Systems Design. Cham: Springer

International Publishing (Lecture Notes in Networks and Systems), pp. 680–691. Available at:

https://doi.org/10.1007/978-3-031-21435-6_58.

Kharat, P. and Chawan, P. (2022) ‘Vulnerability Management System’.

Kumar, M. and Sharma, A. (2017) ‘An integrated framework for software vulnerability detection, analysis and

mitigation: an autonomic system’, Sādhanā, 42(9), pp. 1481–1493. Available at:

https://doi.org/10.1007/s12046-017-0696-7.

Lokhande, P. et al. (2015) ‘Efficient way of web development using python and flask’.

Odion, T.O. et al. (2023) ‘VulScan: A Web-Based Vulnerability Multi-Scanner for Web Application’, in 2023

International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-

SDG). 2023 International Conference on Science, Engineering and Business for Sustainable Development

Goals (SEB-SDG), Omu-Aran, Nigeria: IEEE, pp. 1–7. Available at: https://doi.org/10.1109/SEB-

SDG57117.2023.10124601.

Parimala, G., Sangeetha, M. and AndalPriyadharsini, R. (2018) ‘Efficient Web Vulnerability Detection Tool for

Sleeping Giant-Cross Site Request Forgery’, Journal of Physics: Conference Series, 1000, p. 012125. Available

at: https://doi.org/10.1088/1742-6596/1000/1/012125.

20

Park, Y. and Park, J. (2008) ‘Web Application Intrusion Detection System for Input Validation Attack’, in 2008

Third International Conference on Convergence and Hybrid Information Technology. 2008 Third International

Conference on Convergence and Hybrid Information Technology (ICCIT), Busan, Korea: IEEE, pp. 498–504.

Available at: https://doi.org/10.1109/ICCIT.2008.338.

R, R. et al. (2023) ‘Web Application Security Testing Framework using Flask’, in 2023 2nd International

Conference on Applied Artificial Intelligence and Computing (ICAAIC). 2023 2nd International Conference on

Applied Artificial Intelligence and Computing (ICAAIC), Salem, India: IEEE, pp. 1646–1652. Available at:

https://doi.org/10.1109/ICAAIC56838.2023.10140422.

Saabith, A., Fareez, M. and Vinothraj, T. (2019) ‘Python current trend applications-an overview’, International

Journal of Advance Engineering and Research Development, 6(10). Available at:

https://d1wqtxts1xzle7.cloudfront.net/61390005/IJAERDV06I108548120191201-27336-1cr1jto-

libre.pdf?1575222047=&response-content-

disposition=inline%3B+filename%3DPYTHON_CURRENT_TREND_APPLICATIONS_AN_OVE.pdf&Expir

es=1692664036&Signature=cnLHBL6vY0eM43jcx1~Wt10D-DUKOltALTWN0zt-

OSfnvVY86W6CQ6djw0kaK-cbVFQt9SX3jYEeLl9mgeZmu9VnX~eeGN4G7BZp4qAB5twoGVAwK-

ITuc3u196n1770r~HH2hXsp2osaU3D7WA4OC1cAI-

N2hVzAisvm293xOv1GGurQqQxeZxr8gAxr6GVrlgNXl6TWAHnAFrcmH5dQ1BEUcIhLuM2vioKShGIlRIL

dMNKhRfh8XOr8jsxNX~3upgYlYT-G7Yr-

QroiQfATKuWBT6qDrY8kFuPZaKBp6r9iKGig5Yf6Jj45BUx5V6FvU~WWEKS-

TxwQYaAbMCA8g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.

Sagar, D. et al. (2018) ‘STUDYING OPEN-SOURCE VULNERABILITY SCANNERS FOR

VULNERABILITIES IN WEB APPLICATIONS’, IIOAB Journal, 9, pp. 43–49.

Susanto, C.O.N., Rizko, K.N.F. and Purbohadi, D. (2020) ‘Security Assessment Using Nessus Tool to

Determine Security Gaps on the Repository Web Application in Educational Institutions’, Emerging

Information Science and Technology, 1(2). Available at: https://doi.org/10.18196/eist.128.

Tang, J. and Zhou, F. (2021) ‘Design and Implementation of High-performance Web Vulnerability Scanner

Based on Python Intelligent Crawler’, in 2021 International Conference on Computer Information Science and

Artificial Intelligence (CISAI). 2021 International Conference on Computer Information Science and Artificial

Intelligence (CISAI), Kunming, China: IEEE, pp. 765–769. Available at:

https://doi.org/10.1109/CISAI54367.2021.00155.

Tung, Y.-H. et al. (2013) ‘A cost-effective approach to evaluating security vulnerability scanner’, in, p. 3.

Verma, A. (2023) Insecure Deserialization Detection in Python. Master of Science. San Jose State University.

Available at: https://doi.org/10.31979/etd.3yzt-6hxp.

Wang, B. et al. (2019) ‘Research on Web Application Security Vulnerability Scanning Technology’, in 2019

IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 2019

IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),

Chengdu, China: IEEE, pp. 1524–1528. Available at: https://doi.org/10.1109/IAEAC47372.2019.8997964.

Xu, D. et al. (2022) ‘Web Vulnerability Detection Analyzer Based on Python’:, International Journal of Digital

Crime and Forensics, 14(2), pp. 1–17. Available at: https://doi.org/10.4018/IJDCF.302875.

Zhang, J., Hu, H. and Huo, S. (2021) ‘A Browser-based Cross Site Request Forgery Detection Model’, Journal

of Physics: Conference Series, 1738(1), p. 012073. Available at: https://doi.org/10.1088/1742-

6596/1738/1/012073.

Zukran, B. and Siraj, M.M. (2021) ‘Performance Comparison on SQL Injection and XSS Detection using Open-

Source Vulnerability Scanners’, in 2021 International Conference on Data Science and Its Applications

(ICoDSA). 2021 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia:

IEEE, pp. 61–65. Available at: https://doi.org/10.1109/ICoDSA53588.2021.9617484.

