

Enhancing Docker Container Security

MSc Research Project

MSCCYB1

YELLAMMAGARI SRIKAR PUTTA

Student ID: X21184054

School of Computing

National College of Ireland

Supervisor: EVGENIIA JAYASEKERA

 National College of Ireland

MSc Project Submission Sheet

School of Computing

 Student

Name :

YELLAMMAGARI SRIKAR PUTTA

Student ID:

X21184054……………………………………………………………………………………

Programme

:

MSCCYB1……………………………………………………

…………

Year:

2022

Module:

MSc Research Project/Internship…………………………………………

Supervisor:

EVGENIIA

JAYASEKERA……………………………………………………………………………

 Submission

Due Date :

14-Aug-2023

…….……

…

Project

Title:

Enhancing Docker Container

Security……………………………………………………

Word

Count:

……………………………………… Page

Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the rear

of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author's written

or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

YELLAMMAGARI SRIKAR PUTTA

……

……

Date:

12-Aug-2023

……

……

 PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Enhanced Docker Container Security
 YELLAMMAGARI SRIKAR PUTTA

 X21184054

Introduction:
This configuration guide is part of a Master's research project in Cyber Security. The manual's primary

goal is to demonstrate the implementation steps and procedures followed during research on enhancing

Docker container security for experimental evaluation. The guide replicates the process of setting up and

conducting experiments to evaluate Docker container security as part of the research project. It outlines

the configurations and actions taken in the lab environment to assess and improve Docker security. The

manual enables replication of the key experimental configurations and testing methods used within the

research.

Architecture Implementation:

Operating System and Hardware Requirements

Operating System: Any Debian based operating system like Kali Linux, Ubuntu should be installed as

the base OS for implementing the lab architecture.

Hardware Specifications: The hardware used should have at least 8GB RAM, 4 CPU cores, and 100GB

storage space to adequately support the virtual machines and docker containers used in the experiments.

Docker Installation Steps:

Below steps provides the necessary Docker environment with Docker Engine, containerd, and Docker

Compose capabilities to support building, running, and managing containers and services for the

experimental research.

Update APT packages on the system using:

sudo apt-get update

Install latest versions of Docker Engine, containerd, and Docker Compose using:

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

Verify Docker installation using:

docker --version

Experiment Results:

In this section, we will look into the exploitation steps of docker containers that are running with some

misconfigurations and we will also look into the mitigation results that we proposed AppArmor and

SecComp

1) The Docker Unix Socket: Unveiling Potential Hazards in Containerized Environments
Management tools like Portainer, monitoring tools like Sysdig, and build environment tools like GitLab

Runner often require communication with the Docker daemon to perform their intended functions when

running as containers. To facilitate this communication, these tools sometimes mount the Docker socket

(/var/run/docker.sock) from the host into the container where the tool is running.

While this approach provides convenience and enables the tools to interact with the Docker daemon, it

introduces potential security risks, especially if the container running the tool is vulnerable to command

injection or remote code execution attacks.

Command: docker run –d -v /var/run/docker.sock: /var/run/docker.sock <image name>

Here are some considerations regarding the risks associated with mounting the Docker socket into a

running container:

Elevated privileges: When the Docker socket is mounted into a container, it grants the container's

processes the same level of access and permissions as the Docker daemon on the host. If an attacker gains

control over the container or exploits a vulnerability within it, they could potentially abuse the elevated

privileges to manipulate the Docker environment, launch malicious containers, or access sensitive

resources on the host.

Docker daemon exposure: By mounting the Docker socket, the container gains direct access to the

Docker daemon. This means that any action performed within the container that interacts with the Docker

daemon has the potential to impact the host's Docker environment. An attacker with control over the

container could use this access to manipulate or compromise the host's Docker environment, including

running unauthorized containers or modifying critical configurations.

Attack surface expansion: Mounting the Docker socket broadens the attack surface within the container.

An attacker who successfully compromises the container and gains control over its processes can leverage

the Docker socket to extend their reach beyond the container and potentially impact the host system or

other containers running on the same host.

2) Accessing Host by running Containers in privileged mode

Running containers in privileged mode should be done with caution due to the elevated privileges and

potential security risks involved. Here are a few scenarios where running containers in privileged mode

may be necessary:

Access to host devices: Containers may require direct access to host devices, such as USB devices,

GPUs, or certain hardware peripherals. Running the container in privileged mode allows it to interact with

these devices directly.

Kernel-level operations: Some applications or processes running inside containers may need to perform

low-level operations that require elevated privileges, such as loading kernel modules or manipulating

network settings. Privileged mode allows containers to perform these operations.

Legacy or privileged software: Certain legacy applications or software may require full access to the

underlying host system, including privileged operations or interactions with specific system components.

Running them in privileged mode can provide the necessary environment.

However, running containers in privileged mode carries certain risks and implications:

Increased attack surface: Containers running in privileged mode have extensive access to the host

system, potentially exposing sensitive resources or compromising the security of the host if containerized

applications or processes are compromised.

Reduced isolation: Privileged containers have diminished isolation from the host system. Processes

running inside the container may be able to affect other containers or the host system itself, potentially

leading to unintended consequences or security vulnerabilities.

Elevated privilege escalation: If an attacker gains control of a container running in privileged mode,

they may be able to exploit vulnerabilities and escalate their privileges, potentially compromising the

entire host system.

3. Injecting Kernel Modules from Docker Containers with cap_sys_module

Linux capabilities are a feature of the Linux kernel that provides fine-grained privileges to processes,

allowing them to perform specific privileged actions without requiring full root (superuser) access.

Capabilities provide a way to divide traditional superuser privileges into distinct privileges, improving

security by reducing the scope of potential damage or abuse.

Linux capabilities are divided into three categories:

Effective (E): Determines the capabilities the process currently possesses.

Inheritable (I): Determines the capabilities that can be inherited by child processes.

Permitted (P): Determines the capabilities the process can use or add to its permitted set.

Here are some practical examples of Linux capabilities:

CAP_NET_ADMIN: This capability allows a process to perform various network-related administrative

tasks, such as configuring network interfaces, modifying firewall rules, or capturing network packets.

Example use cases include network debugging tools or network management software.

CAP_SYS_ADMIN: This capability grants broad system administration privileges, allowing a process to

perform administrative actions like mounting file systems, changing system time, or modifying kernel

parameters. It is a powerful capability often needed by system management tools or container runtimes.

CAP_SYS_MODULE: This capability allows a process to load or unload kernel modules, which are

small pieces of code that can be dynamically added or removed from the Linux kernel. This capability is

essential for managing kernel modules, and it can be useful in scenarios like device driver development or

when certain features require loading custom kernel modules.

When Docker is run with the --privileged option, it enables the container to have access to all Linux

capabilities, including CAP_SYS_MODULE. This means that a Docker container running in privileged

mode can load and unload kernel modules, giving it the ability to interact with the host system's kernel.

By running Docker with SYS_MODULE capability, containers can load kernel modules as required by

applications or services running inside the container. For example, if an application requires a specific

kernel module to support certain hardware or functionality, running Docker in privileged mode with

SYS_MODULE capability allows the container to load the required module and gain access to the

necessary host resources.

4. Abusing the host by doing process injection

5. Abusing SYS_DAC_READ_SEARCH Capability

6. Abusing DAC_OVERRIDE Capability

7) Exposing Docker Daemon TCP Socket:

8) Portainer using Weak Credentials

Mitigation Results:

Setting Up AppArmor:

To start, a sample AppArmor profile template is available on the Bane GitHub repository. This template

needs to be downloaded from https://github.com/genuinetools/bane/blob/master/sample.toml and copied

to the AppArmor configuration directory /etc/apparmor.d/ on your system.

The sample.toml template has sections that need to be customized based on your container's access

requirements:

#profile_name - Name your AppArmor profile

#exec_path - Path to the confined program/container

#read_paths - Files/directories the container can read

#write_paths - Files/directories the container can write to

Edit these paths in the template to define the access controls for your container. Once finalized, use Bane

to generate the full AppArmor profile by running:

bane generate -f /etc/apparmor.d/sample.toml

This will output the finished profile. Load the profile with:

apparmor_parser -r -W /etc/apparmor.d/sample.toml

Now your container will run with the customized AppArmor access restrictions applied. By leveraging

the template and Bane, implementing AppArmor controls becomes straightforward.

The highlighted sections call attention to areas like the profile name, path to the container executable,

files/directories that can be read or written, and other access rules. These highlighted template sections

need to be edited and tailored to the particular access requirements of your container, restricting it only to

necessary resources

Below images explains the structure of AppArmor profile. Below images will give you an idea of syntax

and how to create your own profile based on your requirements.

https://github.com/genuinetools/bane/blob/master/sample.toml

Specifically, as highlighted in the above images, you need to give the AppArmor profile a unique name to

distinguish it. Additionally, as demonstrated in the below image, you can define the executable binaries

the container is allowed to run and the Linux capabilities it requires. These areas - profile name,

executables, and capabilities - are called out in the examples as key portions of the template to customize

in order to tailor the access controls precisely for your container.

In addition to executables and capabilities, you can also customize networking controls in the AppArmor

template. As shown in the below image, you can configure whether raw packet connections should be

allowed for the container. You can also explicitly specify which network protocols the container needs

access to, like udp, tcp, icmp. Defining these network controls in the template lets you restrict the

container's networking capabilities based on the requirements. The below image highlights how enabling

raw packets and protocol access is configured in the template on a per-container basis.

Creating our own Customized AppArmor Profile:

Below is the Customized AppArmor Profile rules that we created for hardening Docker Container

Security

Limiting Capabilties:

Restricting Network Calls

 Restrict Privileged file Operations:

Restrict Executable Stack Usage:

Restricting Host File Access

Restricting spawning of bash shell

Seccomp:

SecComp or Secure Computing is a security mechanism in the Linux kernel that allows restricting the

system calls a process can make. It sets rules enforced by the kernel on which syscalls are allowed or

blocked for a process, defined using Berkeley Packet Filter syntax. This limits the amount of damage a

compromised process can do. SecComp has different modes like SECCOMP_MODE_STRICT which

only permits read, write, exit and sigreturn. When a process attempts a blocked syscall, it gets terminated

with a SIGKILL signal. SecComp is applied via the seccomp() or prctl() system calls. It is useful for

sandboxing applications like containers or privileged processes to restrict what they can access in the

system.

The first step is to download the default Docker SecComp profile from GitHub to use as a baseline. You

can find this JSON file at https://github.com/moby/moby/blob/master/profiles/seccomp/default.json .

Next, you'll need intimate knowledge of the system calls utilized by your container in order to modify

the default profile appropriately. The goal is to restrict unnecessary system calls while still permitting the

minimum required ones.

It's recommended to save custom SecComp profiles in a standardized directory, using the .json file

format. The profile defines which syscalls are allowed or blocked for processes in the container.

With an understanding of the container's syscall requirements, you can edit the default SecComp profile

to only allow necessary syscalls. Any unwanted syscalls should be blocked.

Once the custom profile is defined, you can apply it to Docker containers using the --security-opt

seccomp=<profile>.json flag. The customized profile will sandbox the container processes by filtering

syscalls for improved security.

Running the docker container using Seccomp

https://github.com/moby/moby/blob/master/profiles/seccomp/default.json

