

Enhancing Docker Container Security

MSc Research Project

MSCCYB1

YELLAMMAGARI SRIKAR PUTTA

Student ID: X21184054

School of Computing

National College of Ireland

Supervisor: EVGENIIA JAYASEKERA

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

YELLAMMAGARI SRIKAR PUTTA

Student ID:

X21184054……………………………………………………………………………………

Programme:

MSCCYB1………………………………………………………………

Year:

2022

Module:

MSc Research Project/Internship…………………………………………

Supervisor:

EVGENIIA JAYASEKERA……………………………………………………………………………
Submission Due

Date:

14-Aug-2023

…….………

Project Title:

Enhancing Docker Container Security……………………………………………………

Word Count:

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

YELLAMMAGARI SRIKAR PUTTA
……

Date:

12-Aug-2023

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Enhancing Docker Container Security

YELLAMMAGARI SRIKAR PUTTA

X21184054

 Abstract

With the widespread adoption of Docker for deploying applications comes novel

security challenges that attackers are actively exploiting. Common attack vectors include

container escapes, image tampering, and privilege escalation. This research conducts an

in-depth investigation into Docker container vulnerabilities, attack methods, and security

strategies. As developers increasingly utilize Docker often with misconfigured images,

attackers can compromise containers and gain unauthorized host access. This work

demonstrates experimental attacks exploiting container misconfigurations to breach the

underlying host system. It proposes concrete mitigation techniques focused on restricting

privileges, limiting dangerous system calls, and reducing Linux capabilities granted to

containers. These hardening techniques prevent attackers from reaching the host even in

the event of container compromise. The analysis provides developers and devops teams

actionable guidance on building more secure Docker images to avoid handing attackers

the keys to the host system. By identifying risks, attack vectors, and tailored mitigations,

this research enables organizations to benefit from the efficiencies of Docker while

protecting against emerging security threats in this landscape. The insights equip

developers with the knowledge to strengthen Docker container security as adoption

continues to accelerate.

1 Introduction

Docker containers have become very popular as a virtualization technology to deploy applications on

different platforms. Docker containers encapsulate the software code along with the necessary runtime

environment, making the applications portable so they can run independently of the host environment.

Docker, which is built on top of the Linux operating system, uses core features of Linux to achieve

containerization. Although Docker containers offer many benefits, such as efficient use of resources

and quick deployment, they also introduce security issues, especially when they are not configured

properly.

2

Figure 1: Docker Container

Developers run Docker containers with some misconfigurations like granting elevated privileges to

accomplish their application development or to achieve some functions in their deployment process.

But they are unaware of how serious the security implications could be. They don't realize how these

misconfigurations can assist attackers in gaining access to the host system. There are multiple Docker

architecture vulnerabilities that compromises the host system. The Docker daemon acts as an important

intermediary between Docker clients and the containers they manage. Users typically interact through

the Docker client rather than direct access to the daemon, which operates with root privileges. Only

trusted users should be allowed control of the daemon due to this level of access.

Docker enables directory sharing between the host and containers without imposing file access

limitations on containers. However, a major security concern arises - a container can be created where

its /host directory corresponds to the root / directory of the host itself. This grants the container

unrestricted access to modify the host filesystem. This vulnerability poses severe risks. For example,

an attacker could exploit it to create arbitrary containers on a Docker host running a web server. By

manipulating parameters, they could gain unauthorized access to manipulate or disrupt the host

filesystem and critical resources Chelladhurai, Chelliah and Kumar, 2016.

Linux relies on a binary separation of root and non-root access. But for containers, this can introduce

risks. Traditionally, a process like a web server binding to a port requires root privileges. This exposes

the whole system if the web server is compromised. Linux capabilities provide more granular access

control that transforms the rigid root/non-root model. Capabilities mitigate the need for full root

container privileges, except for the daemon/manager. Containers can be assigned specific capabilities

matching their required tasks. The 38 capabilities cover diverse functions, enabling containers to

operate with restricted privileges for improved security. For example, a web server container can have

the CAP_NET_BIND_SERVICE capability, allowing it to bind to ports without full root access. If the

web server is exploited, this capability confines the attacker’s access to just port binding rather than

everything. Additionally, capabilities play a key role in protecting the host from container threats.

Containers with inadvertent elevated capabilities could enable an attacker to breach the host system,

directly jeopardizing host security. By assigning capabilities to processes, administrators can achieve a

balance between security and functionality, ensuring that processes only have the necessary privileges

to carry out their intended tasks. However, misconfigurations in the privileges assigned to Docker

containers can expose serious security risks. Administrators may inadvertently assign excessive

privileges to containers, granting them capabilities beyond what is required for their intended functions.

Running Docker containers with elevated privileges, such as assigning more Linux capabilities than

necessary, can potentially lead to privilege escalation, unauthorized access to the host system, and

compromise of critical resources.

In this research, we will thoroughly examine the interplay between Docker containerization, Linux

capabilities, and security vulnerabilities. We will explore real-world scenarios where Docker containers,

due to misconfigurations or elevated privileges, can become entry points for attackers to improperly

3

gain unauthorized access to the underlying host system. By performing real-world experimental

analysis, we aim to demonstrate the significant dangers of running Docker containers with unnecessary

privileges and highlight the specific methods through which attackers exploit these misconfigurations.

This research will serve as a reference for small startups and IT companies who don't have a proper

security team. Our study will go beyond theoretical considerations by simulating practical attack

scenarios and evaluating their impact. We will also propose effective mitigation techniques to prevent

unauthorized access and privilege escalation. By scrutinizing the risks associated with the improper

management of Docker container privileges, we intend to provide practical insights that will help

administrators, developers, and security experts implement secure containerization practices.

Through this research, we aim to strongly emphasize the importance of properly configuring and

managing Docker container privileges to ensure the overall security and integrity of host systems. As a

result, our work will contribute to improving the understanding of Docker security best practices and

offer actionable recommendations for reducing the risks posed by granting containers elevated Linux

capabilities and misconfigured containers.

Research Questions:
How the dockers running with misconfigurations helps the attacker to get access to host system?

What are the defensive mechanisms that we should enforce using AppArmor, Seccomp and other

techniques to protect the underlying docker host even the docker container is compromised?

Objectives:

The research aims to thoroughly understand cyberattacks on Docker containers in order to explore the

techniques attackers use to gain access to the Docker host and improve defensive approaches by

analyzing these techniques. Additionally, the study seeks to empower developers and small IT teams

without dedicated security teams to enhance Docker container security using accessible and effective

tools. Addressing runtime vulnerabilities and enforcing organization-specific compliance policies are

critical goals to ensure Docker systems stay robust and meet stringent security standards. The research

further strives to safeguard data integrity and confidentiality in real-time, contributing to the broader

advancement of Docker security best practices.

2 Related Work

This literature review explores attack tactics targeting Docker images and containers as well as

vulnerabilities in the Docker architecture itself, particularly related to cgroups and containerd.

Additionally, various security strategies recommended by different authors for hardening Docker are

evaluated. The review looks at attacker techniques to compromise Docker environments and

components as well as inherent weaknesses that can be exploited. Proposed defensive measures from

multiple sources are also examined to identify effective ways to secure Docker deployments. The goal

is to synthesize knowledge on Docker threats, vulnerabilities, and recommended safeguards based on

current literature.

Static and Dynamic Code Analysis on Docker Containers:

The author discusses a follow-up analysis conducted after six months, using tools like Clair, Trivy, and

Snyk to assess changes in container image vulnerabilities. Notably, some images, particularly those

related to stable operating systems, remained relatively unchanged. However, the Log4j incident

prompted patching in official images, resulting in decreased vulnerabilities. Snyk detected more low-

severity vulnerabilities, while Clair detected fewer vulnerabilities overall, except for the "Unknown"

and "None" categories. Trivy showed an increase in "Unknown" and "Critical" vulnerabilities. The

author also highlights dynamic exploitation experiments on Raspberry Pi and Kubernetes environments,

employing Proof-of-Concept codes for known vulnerabilities Haq, Tosun and Korkmaz, 2022.

4

The author outlines Docker-sec's methodology for creating container security profiles. Initial static

analysis of configurations provides baseline rules. Dynamic testing by monitoring live container actions

and extracting required privileges. The combined static and dynamic approaches restrict unauthorized

access while permitting normal behavior. Iterative tuning during runtime builds accurate, secure profiles

safeguarding containers Alyas et al., 2022.

The author outlines techniques to secure container images - minimizing attack surfaces, signing for

integrity, scanning for vulnerabilities, using trusted repositories, and regular patching. A multi-layered

approach compensates for limitations in individual practices. Combined, these strategies harden

containers despite persisting challenges Wong et al., 2021.

The author performed an analysis focused on evaluating the security of Docker containers using static

code analysis techniques. The core goal was to identify vulnerabilities in container implementations

and understand their potential impacts. Through the use of regression testing, robustness testing, and
other behavioral software analysis methods, the author was able to detect security flaws in Docker

container code. A key finding highlighted in the paper is the existence of specific Common

Vulnerabilities and Exposures (CVEs) that can significantly affect container environments, as detailed
in the below table. This table outlined the effects, causes, and consequences of known CVE

vulnerabilities with regards to container security. By uncovering container vulnerabilities through static

and behavioral analysis, quantifying their impacts, and applying security upgrades to address them, the

author provides crucial insights for hardening Docker containers against risks. This study emphasizes

the importance of analyzing container code for vulnerabilities, determining their implications, and

remediating them through security fixes to enable more secure container adoption Duarte and Antunes,

2018.

How CVE-2020-15257 allowed attackers to exploit containerd unix socket
The author highlights a serious container security vulnerability caused by lack of access controls on a

critical runtime component situated on the host system. If compromised by an attacker, this pivotal

component, which lacked proper access restrictions, could enable unauthorized access and container

creation privileges. As an example, the author cites CVE-2020-15257 which allowed attackers to

exploit the containerd abstract UNIX socket. This socket enabled communication between containers

and containerd but failed to impose stringent access controls. By connecting to this vulnerable socket,

an attacker could leverage the containerd API to dispatch commands for spinning up new containers

within the host namespace that inherited host privileges.Equipped with an unrestricted root container,

the attacker could gain complete access to the host system, sidestepping the container isolation

boundaries. This example underscores the critical need for access controls on intrinsic container runtime

components to prevent compromise enabling unauthorized container creation and host system access

s3-us-west-2.amazonaws.com, n.d.

How elevated user permissions cause Privilege Escalation Attacks:
The author emphasizes the important role of user permissions, specifically the Linux user ID (UID), in

governing access to containers. The kernel oversees UIDs which determine a user's privileges to interact

with containers through key system calls. Users can be granted customized container access by creating

them within designated groups. However, the author stresses the need to promptly remove any

unnecessary permissions associated with users. This guards against security risks like escalation attacks

and unauthorized container access arising from excessive privileges. Proactively trimming unneeded

permissions is advocated to reduce potential attack surface. In summary, the author highlights vigilantly

managing user IDs and pruning unnecessary authorizations as critical to reinforcing container security

defenses. Effectively controlling user permissions via the kernel-managed Linux UID is vital for

securing container environments Shameem Ahamed, Zavarsky and Swar, 2021.

The author advises avoiding insecure secret passing in containers through environment variables prone

to leaks. Instead, secrets should be passed securely via protected volumes. Read-only filesystems and

avoiding unnecessary privileges also help safeguard sensitive data. These techniques limit secret

5

exposure across debug sessions and processes, harden containers, and mitigate risks Shetty, Jyoti.

(2017).

Docker Architecture Vulnerabilities

The author focuses on vulnerabilities discovered in Docker and libcontainer pertaining to file-system

isolation, a critical security aspect. Various concerns are highlighted including chroot escapes, path

traversals, unauthorized filesystem access, container escalation, and privilege escalation. Importantly,

patches have addressed these, with Docker 1.6.1 being a milestone. Later versions like 1.11.0 and 1.12.3

continue hardening efforts. The core issue is container processes breaching boundaries and executing

as PID 0 wield substantial control over the host filesystem, enabling overwriting of binaries, code

execution, and ultimately root privilege acquisition. Beyond fundamental namespaces and cgroups, the

author examines Mandatory Access Control (MAC) mechanisms like the Apparmor "docker-default"

policy. This whitelist-based profile restricts processes to authorized resources. However, existing

policies seem to grant containers extensive access including to networks and filesystems, acting more

as blacklists with limited deny rules Martin et al., 2018.

The author highlights CGroups, essential Linux features that manage and restrict resource usage for

containers. Unlike namespaces, which control visibility, CGroups limit resource consumption,

preventing containers from monopolizing resources. They safeguard against DoS attacks among

containers and shield the host from container-induced DoS risks. CGroups also enable resource

accounting, supporting usage quotas vital for emerging cloud computing models like CaaS. In essence,

CGroups ensure equitable resource allocation, enhancing both inter-container protection and host

security. The authors' experiments reveal limitations in using Control Groups (CGroups) for memory

denial of service mitigation, as CGroups struggle to constrain malicious applications designed to

intensively consume memory within allocated limits Sultan, Ahmad and Dimitriou, 2019.

The author demonstrates attack tactics in Docker clusters involving privilege escalation and deception.

By hijacking the cluster leader role, the attacker gains control of communications. Leveraging this, they

deploy malicious WebShell containers on each host, achieving root access. Deception techniques

conceal the malicious containers and activities. The maneuvers highlight risks of privilege

manipulation, stealthy persistence, and host compromise in Docker clusters through multi-stage attacks

exploiting leadership roles Farshteindiker, Adi & Puzis, Rami. (2021).

Summary:
The authors reviewed explain various attack tactics exploiting Docker, along with static and dynamic

analysis tools to secure containers. Some highlight how misconfigured cgroups can enable denial-of-

service attacks. However, much prior research is theoretical, making it difficult to grasp for those less

familiar with Docker internals and Linux concepts. Brady et al. (2020) explain the limitations of static

vulnerability analysis and compare different add-on dynamic security scanning tools. They demonstrate

the capabilities by testing tools like Anchore Engine and Clair on AWS infrastructure. The researchers

describe the full CI/CD process to identify Docker security issues across the software development
lifecycle (SDLC). Rangnau et al. (2020) present a Docker security framework that can scan images for

static vulnerabilities. They develop a malicious threat prediction module using machine learning to

predict and mitigate unknown threats. Clair, a static vulnerability scanning tool, serves as the

foundation.

There are some drawbacks to the proposed approach, notably the reliance on static testing over dynamic

analysis. Our research aims to provide more accessible insights through experimental attack

simulations. Some of the researchers explained about container escapes by using the old attacker

techniques and it was very theoretical. The proposed mitigation techniques by the researchers are not

very efficient. By demonstrating scenarios hands-on, the concepts and tactics become more tangible.

This benefits developers and smaller IT teams lacking security expertise in particular. The simulations

offer practical exposure to attack techniques and key security principles to apply when building and

running Docker images. Rather than just theoretical discussion, this research provides first-hand

6

experience with container vulnerabilities. The experiential approach makes the Docker and Linux

internals concepts more understandable

3 Research Methodology

Containers provide efficient resource isolation similar to VMs, but do not automatically secure the

applications running within them. Poor container configuration and hardening during development can

easily introduce security risks that persist into production, like retaining debug shells. Running

containers with overly privileged access is also dangerous, as a compromise of that container could

exploit its privileges to access the underlying host. A common pitfall is developers adding

vulnerabilities like interactive shells to help debug apps, which become glaring risks when deployed.

While containers enable portability and scalability, they also expand the potential attack surface through

additional components like the Docker daemon. Containers still require rigorous security practices like

proper configuration, scanning, and hardening - they do not provide inherent application security out of

the box. Special care must be taken when transitioning containerized workloads from development to

production to remove unneeded vulnerabilities. Overall, containers provide major benefits but also risks

if not properly secured across the entire lifecycle.

The research assumes an attacker has already compromised a Docker container through an insecure

service. To analyze how misconfigurations enable further compromise of the Docker host, test

environments will be created with containers exhibiting common misconfigs like privileged access,

mounting unix sockets, running containers in host network mode and abusing the capabilities that the

docker is running with. Custom exploits will be developed to target each misconfiguration for container

escape and host access. Detailed evidence will be gathered on exploit outcomes. Once attack vectors

for each misconfig are proven, mitigation techniques will be proposed using security tools like

AppArmor, seccomp to restrict container actions and access. Additional system hardening methods like

read-only containers, whitelisting, and runtime user mappings will be evaluated to further impede

attacks from within misconfigured containers. Monitoring controls will also be assessed to detect early

signs of compromise. The goal is to rigorously validate the risk posed by real-world Docker

misconfigurations and demonstrate more robust technical controls to protect hosts from container

escape, even in the presence of vulnerabilities. The research will provide evidence-based

recommendations for securing both containers as well as the host systems on which they run.

Setting Up the Test Environment

• A dedicated Docker host will be created on a physical machine or VM(Kali linux or Ubuntu)

to serve as the platform for testing.

• Docker container images will be built using Dockerfiles and configured with the necessary

packages to create a Docker network.

Injecting Vulnerabilities

• Well-understood Docker vulnerabilities will be intentionally introduced into components like

mounting unix socket, exposing docker daemon tcp socket on to the internet, abusing linux

capabilities

• This mimics real-world misconfigurations and flaws that lead to unauthorized access, privilege

escalation, and denial of service.

Executing Vulnerable Containers

• The vulnerable container images will be deployed and executed on the Docker host using

Docker tools.

7

• Exploits will be developed to take advantage of the injected flaws and compromise the host

system from within containers.

Security Mitigations

• Mitigation techniques using Seccomp, AppArmor, read-only containers, Linux capabilities and

system calls restrictions etc. will be implemented to secure the vulnerabilities.

4 Design Specification

In this research we will be working on below two attack models

Attacker Model - I

• Container Escape

The attacker has already gained access to run code inside a container. From this position, the

 attacker will attempt to "escape" the isolation provided by the container and gain access to

 the underlying host system. Some common techniques include exploiting kernel

 vulnerabilities, misconfigurations, or abusing container orchestration features.

Attacker Model - II

• Docker Architecture Attacks

The attacker has unprivileged access to the host system that is running Docker containers.

 Since they cannot directly execute commands on the host, they target the Docker daemon

 process. By compromising the Docker daemon, they can manipulate containers and

access resources on the host. This often involves exploiting vulnerabilities or misconfigurations of

 the Docker daemon itself.

5 Implementation

We set up a virtual machine and installed Kali Linux, followed by the installation of Docker. By pulling

images from DockerHub, we intentionally introduced misconfigurations and deployed these images.

This hands-on approach allows us to understand how attackers uses such misconfigurations to gain

unauthorized access to the host system. We will be proposing mitigation techniques using AppArmor

and Seccomp. We will be following below two attack models for exploiting docker and getting access

to the host.

Attacker Model 1 (Container Escape):

• Mounting Docker sockets into containers provides access to the Docker API and ability to

manipulate other containers/hosts.

• Running containers in privileged mode grants almost full host access. Could be abused to access

files, processes, network, kernels, etc.

• Abusing SYS_MODULE capability allows loading arbitrary kernel modules. Can be used to

disable security modules.

• Process injection techniques allow escaping into the host PID namespace to access processes.

Attacker Model 2 (Docker Daemon Attack):

• Abusing SYS_DAC_READ_SEARCH capability could allow container to read/write arbitrary

files on host.

• DAC_OVERRIDE capability can be used to bypass discretionary access control checks.

• Exposing Docker daemon TCP socket allows remote access to control Docker engine.

• Targeting Portainer interfaces - often run with weak credentials or vulnerable versions.

Mitigations:

• AppArmor profiles are developed to restrict container capabilities and block specific exploits

like socket mounts.

• Seccomp policies whitelist only approved syscalls, blocking things like module loading.

• Privilege dropping done by starting containers as non-root and limiting capabilities.

8

• Read-only volumes and filesystems used to prevent privilege escalation within containers.

• Docker daemon configured to only listen on localhost, secured with TLS auth.

6 Evaluation

In this part, we will evaluate the two attacker attacker models we discussed by running the docker

container with the misconfigurations and we analyse how attackers take advantage of this

misconfiguration to get access to the host and we will evaluate the mitigations by creating our own

customized rules.

6.1 Experiment / Case Study 1

The Docker Unix Socket: Unveiling Potential Hazards in Containerized Environments
The Unix socket, for Docker, which can be found at /var/run/docker.sock acts as a communication link

between Docker containers and the Docker daemon. This daemon manages operations related to Docker

on the host system. The socket allows containers to send commands to the daemon and perform actions

such as creating, starting, stopping and managing containers and images. Tools like Portainer, Sysdig

or GitLab Runner often mount the Docker socket from the host into their containers when they run

inside them. This setup enables these tools to seamlessly interact with the Docker daemon and carry out

their intended functions.

However there are security considerations associated with this convenience. If a container that houses

one of these tools becomes compromised due to vulnerabilities like command injection or remote code

execution an attacker could exploit the fact that the Docker socket is mounted. By gaining access to this

socket they would have control over the host system. They could execute Docker commands that

directly impact both the Docker daemon and the resources of the host.

In terms an attacker with access, to the Docker socket could launch malicious containers, manipulating

existing ones to expose sensitive directories on the host system or even tamper with its network settings.

For example an attacker could potentially run a command like the one you shared to attach a containers

volume to the file system of the host;

Command:

If the container's filesystem is connected to the host's root filesystem, then a potential attacker would

gain direct entry to the host's files and could possibly enhance their privileges.

6.2 Experiment / Case Study 2

Security Risks and Escapes in Privileged Docker Containers

Why do Developers run Docker Containers in Privileged mode:

Running Docker containers in privileged mode is every now and then necessary for specific use cases

in software development, but it should be approached cautiously because of its ability security dangers.

In certain eventualities, developers might require elevated privileges to get right of entry to host devices,

manage kernel settings, or perform low-stage machine operations inside the field. This is probably

critical for debugging, diagnosing hardware-precise issues, or checking out positive packages that

depend on direct hardware interaction. For instance, a developer working on a network tracking device

would possibly need privileged mode to get entry to community interfaces for packet shooting

Investigation:

In the context of Docker containerization operating in privileged mode, a higher level of vigilance

becomes essential due to the increased potential for security vulnerabilities. This mode grants extensive

operational privileges to the container, effectively giving it quasi-root access to the host system's kernel.

9

We focus on a specific scenario where the container is equipped with the cap_sys_admin capability,

enabling it to perform partition mounting activities.

The following is the command to run the docker in previleged mode

Command: sudo docker run –privileged –device=/dev/sda:/dev/sda -it ubuntu

I tested a container granted the cap_sys_admin capability, permitting partition mounting on the host.

First, I assessed the container's capabilities, revealing the host's /dev/sda partition. I then formulated the

precise mount command needed to leverage cap_sys_admin to mount /dev/sda onto a directory within

the container.Successfully executing this mount command demonstrated the power granted by

privileged capabilities to directly access and manipulate host resources.To further test the breakout

potential, I gained an expanded environment by using chroot to switch the container's root directory to

the mounted host partition.This firsthand privileged container breakout simulation provided tangible

evidence of how capabilities like cap_sys_admin can be abused to escape isolation.

6.3 Experiment / Case Study 3

Injecting Kernel Modules from Docker Containers with cap_sys_module

Why Do Developers run Docker Containers with SYS_MODULE Capability?

The sys module capability enables Docker containers to directly interact with the host system's kernel,

allowing the integration of custom kernel modules and access to low-level settings. This grants

containers greater control for scenarios like testing new drivers, fine-tuning performance, and advanced

debugging of software issues. For example, developers can leverage the capability to seamlessly

incorporate and validate kernel modules for filesystems or networking without disrupting the host. They

can also tweak kernel parameters like resource allocation and memory management to optimize

application performance. Additionally, deep kernel access facilitates diagnosing complex bugs using

system-level tracing and debugging tools within the isolated container. While these use cases highlight

the advantages, running containers with sys module capability also introduces security risks from

exposing privileged kernel-level functionality.

Investigation:

In this, we will see how break container isolation and access the Docker host system by exploiting the

SYS_MODULE capability. My strategy involved several stages. First, I reviewed the container's

enabled capabilities and identified SYS_MODULE, permitting kernel module insertion on the host.

Next, I obtained the container's IP address for further interaction. I then developed a program to leverage

the usermode helper API and open a reverse shell back to my server. This reverse shell program was

compiled into a kernel module and loaded onto the Docker host using SYS_MODULE, establishing the

connect-back shell. This provided me with a bash session on the host machine, from which I could

access processes and directories, effectively escaping the container. In summary, by abusing the

SYS_MODULE capability I was able to load an exploitative kernel module that allowed me to bypass

container isolation controls and gain full access on the Docker host. This exercise demonstrated the

considerable security risks introduced by SYS_MODULE against which access controls and kernel

hardening is critical. It highlighted the importance of securing both the container itself as well as the

underlying host kernel, since container escape depends on the integrity of kernel protections.

6.4 Experiment / Case Study 4

Process Injection:

10

I have been exploring the fascinating concept of process injection. This allows injecting code into the

memory space of another running process to execute arbitrary shellcode using that process's context. It

enables transcending traditional process boundaries in intriguing but potentially concerning ways.

In my investigation so far, I have identified two key prerequisites for successful process injection. First,

the injecting process must have root privileges. Additionally, it requires the CAP_SYS_PTRACE

capability to trace and debug other processes, which enables accessing their memory. I spent some time

examining the PID namespace mapping between the container and the host. I found the container's PID

namespace aligns closely with the host's, allowing visibility into both container and host processes. A

key test case I explored was a container running with the cap_sys_ptrace capability enabled. This

granted any process in that container the ability to trace other processes and read/write their memory -

a very intriguing capability from a security perspective. I took care to choose stable target processes

like Python and Nginx to avoid disrupting critical services during my tests. I then obtained an exploit

and compatible shellcode, compiled them, and injected the shellcode into the target process. This

opened up a bind shell on a chosen port, providing me access to container and host files by connecting

through the host IP. Overall, this process injection journey has shown me how it is possible to break

intended process boundaries through memory manipulation.

6.5 Experiment / Case Study 5

In this we can see how CAP_DAC_READ_SEARCH capability is used, to escape from a Docker

container and access files on the host system that I was not supposed to. These capabilities let me bypass

the normal permissions and security checks that prevent me from reading and writing files outside the

container.

The first thing I did was to look for files in the container that had links to files on the host system. I

found three such files and chose one of them, the “/etc/hostname” file, to test if I could change the name

of the host system. However, I ran into a problem: the container did not have the “/.dockerinit” file that

the exploit code needed. I solved this problem by changing the code so that it could take any file path

as an argument (argv[1]) and use it as the target file. This way, I could try different files without having

to change and recompile the code every time.

I executed the exploit with the command “./shocker /etc/shadow” and saw something amazing: I could

see the password hash of the root user on the host system. I used a tool called “john the ripper ” with a

wordlist called “ rockyou.txt” to crack the password and get the root user’s login credentials. This meant

that I could log in as the root user on the host system and do anything I wanted.

Suppose if ssh service is running on the host system, we can use the stolen credentials to log in as the

root user via SSH. This was the final step of my exploit, showing how powerful and dangerous these

capabilities were if they were not properly secured.

6.6 Experiment / Case Study 6

Exploiting Docker Daemon TCP Misconfiguration

In this, I am assumming attacker got access docker host, and he doesn’t has root privileges. I began

my exploration by carefully enumerating all open TCP ports using netstat, looking for potential points

of entry. I soon identified port 2375 with the telltale Docker daemon listening behind it, wide open

and unprotected. After confirming direct access to the daemon through this exposed socket, I

meticulously configured the Docker client to communicate over this port by pointing its environment

to tcp://<public-ip>:2375. With the vector now open, I validated the vulnerability's impact by

11

querying the local Docker images using my altered client, verifying unfettered container access on the

host. Not yet satisfied, I further escalated my attack by launching an Ubuntu container and mounting

the entire host root file system to a directory inside it. Navigating this directory exposed the host's

most sensitive files now accessible from within the container. Finally, I demonstrated total

compromise by chrooting into the mounted host, granting me root privilege to manipulate any file on

the system from the container shell. Through careful examination, exploitation, and escalation, I

systematically uncovered a severe vulnerability arising from Docker's unprotected daemon socket

exposure.

6.7 Experiment / Case Study 7

What is Portainer?

Portainer serves as a user-friendly management platform designed to streamline and simplify container

operations across diverse environments. Its standout feature is a centralized, intuitive dashboard that

provides users a single pane of glass for creating, deploying, and managing containers. This unified

control panel enables seamless container administration while abstracting away the underlying

complexity of container orchestration and infrastructure. By handling these details behind the scenes,

Portainer offers administrators important visibility into containers and infrastructure without the burden

of directly interfacing with intricate container platforms and APIs.

Accessing host by using Portainer:

In this, I am assumming attacker got access docker host, and he doesn’t has root privileges and found

that Portainer which was running inside the container using weak credentials. Lets assume somehow he

is able to crack the Portainer weak credentials. From there, Examining the user interface of portainer,

it revealed Portainer's ability to deploy new containers with custom mounts. I decided to exploit this by

deploying my own privileged container and mounting the host root file system to a directory within it.

This bridged access from the container to the host OS. To maximize exposure, I selected privileged

mode to permit filesystem read/write operations. After deploying the container, I accessed its shell

terminal which allowed full interaction with the bound host root directory. This successfully

demonstrated escalated privileges, reading/modifying any host file from within the container. My

phased and thorough research methodology identified a major Portainer vulnerability - weak credentials

allowed container creation that, when combined with strategic mounts, permitted complete host system

access, privilege escalation, and unconstrained remote control. These findings spotlight the urgent need

to implement strong Portainer authentication and carefully configure container deployments to avoid

exposing risks that can lead to container escape and total host compromise.

6.8 Experiment / Case Study 8

Running Docker containers with an unprivileged user

12

To enhance container security, it is best practice to avoid running as the root user which can maximize

damage if compromised. Docker defaults to root inside containers, allowing privilege escalation

exploits. A better approach is launching containers with an unprivileged user, which reduces blast radius

from vulnerabilities. First, create a non-root user on the Docker host that will be utilized inside

containers. When defining containers, use the docker run -u option to specify this user rather than root.

Additionally, set the USER instruction in the Dockerfile to the unprivileged account. Running as a non-

root user inside containers restricts the impact of potential privilege escalation attacks if an attacker

gains control. Avoiding root privileges shrinks the attack surface and limits possible damage from

vulnerabilities. Specifying a least privilege unprivileged user within containers is a key technique to

minimize risks and follow the principle of least privilege.

Command: sudo useradd -m <myuser>

Add the user to the "docker" group:

To enable the non-root user to communicate with the Docker daemon and run containers, add the user

to the "docker" group. This grants the required permissions to execute Docker commands and manage

containers without needing full root privileges. Adding unprivileged users to the docker group allows

interacting with the Docker API and runtime in a restricted manner according to least privilege

principles.

 Command: sudo usermod -aG docker <myuser>

Create a Docker image with a non-root user:

If you're building your Docker image, you should create it with a non-root user inside the container.

This user should have minimal privileges required for the application to run.

In your Dockerfile, add the following lines to create and switch to the non-root user:

Ensure the application runs without requiring root privileges:

When configuring the application, ensure it does not require root privileges to function. The application

should be designed to operate within the limited permissions available to the non-root user defined for

the container. Following least privilege principles for applications is key.

There are a few different ways you can prevent the root user from being used in your Dockerfile

Preventing Privilege Escalation Attacks

To mitigate privilege escalation risks from attackers misusing SETUID binaries, use the --security-

opt=no-new-privileges flag when starting Docker containers. This prevents processes inside the

13

container from gaining more privileges than the container itself has been granted. The no-new-

privileges option protects against exploits targeting SETUID binaries that could otherwise enable

unauthorized privilege gains beyond the container's intended scope. It confines processes to the

container's predefined privileges, limiting the blast radius from potential escalation attacks leveraging

SETUID weaknesses.

Here's how you can use the flag when running a container:

The --security-opt=no-new-privileges flag explicitly disables processes in the container from acquiring

privileges beyond the container's predefined scope, confining them even if the host allows privilege

escalation. However, this may impact applications requiring dynamic privileges at runtime, so

containers should be thoroughly tested with this flag to evaluate impacts on functionality.

Limiting Docker container kernel capabilities:

Restricting kernel capabilities in Docker containers is crucial to prevent unnecessary privileges and

potential exploits. By default, containers inherit some host kernel capabilities. To enhance security,

explicitly specify required capabilities rather than relying on defaults. Carefully managing kernel

capabilities limits container access and minimizes attack surface from privilege escalation

vulnerabilities.

Here are the steps to drop and add kernel capabilities in Docker containers:

Drop all kernel capabilities:

Use the --cap-drop all option when starting a container to remove all kernel capabilities, making it more

secure. This prevents the container from inheriting any privileged host capabilities. However, it may

limit functionality needing elevated privileges. Explicitly dropping all capabilities enhances security by

eliminating unchecked kernel access inherited from the host. But capabilities required for legitimate

functionality must then be granted selectively.

If the application in a container needs specific capabilities, use --cap-add <CAPABILITY> to grant only those
required while still dropping all others for security. For example, add NET_ADMIN or SYS_PTRACE as needed by
the application. --cap-add allows selectively enabling individual capabilities instead of blanket inheriting from
the host. Only essential capabilities should be added to adhere to least privilege principles. Explicitly specifying
required capabilities hardens containers while still permitting necessary functionality.

Explicitly controlling kernel capabilities in Docker containers minimizes attack surface and reduces

privilege escalation risks. Assessing the application's required capabilities and finding the right balance

between security and functionality is key when configuring capability options. Enabling only essential

capabilities provides security while permitting needed functions. Carefully managing capabilities rather

than relying on defaults allows securing containers against potential exploits targeting excessive

privileges

Launch a Docker container configured with a file system that is read-only instead of read-

write.

Use the --read-only option when starting a container to make the filesystem read-only at runtime. This

prevents any modifications to the container's files and folders. Enabling read-only protects the container

14

from malicious or unintended changes during execution. It is useful for situations where ensuring the

immutable state of the container's files is critical.

Keep in mind that using a read-only file system may restrict certain functionalities that require write

access, so make sure your application is compatible with this mode.

Specify a temporary file system for your container:

In certain situations your containerized software application might require a temporary file system for

storing transient data like caches or other writable content that does not need persisting across container

runs. You can configure a temporary file system utilizing the --tmpfs option followed by the mount

point and maximum size settings for the temporary file system.The --tmpfs option allows mounting a

temporary, memory-based file system inside a container. It can be useful for things such as caches or

temp files that do not require persistence between runs.

In this provided example, the /tmp directory inside the container will be a temporary file system, which

means it can be utilized for storing temporary files, however any changes made will not persist between

runs of that container. By employing these options, you can determine whether your Docker

containers can store data persistently or temporarily and prevent unintentional modifications to the

file system that may result in security issues. Always take into account your application's requirements

and security needs when configuring file system permissions and access for Docker containers.

Disabling inter-container communication

It is a useful technique to isolate Docker containers from each other, enhancing security and preventing

unintended interactions. By default, Docker allows containers to communicate freely within the same

network. Here's how you can disable inter- container communication:

 Create a new Docker network with ICC (Inter-Container Communication) disabled:

To create a new network with ICC disabled, use the --driver bridge option along with the - o

"com.docker.network.bridge.enable_icc"="false " option. Replace <NETWORK-NAME> with any

desired name for the new network.

Run containers on the isolated network:

Now that you have the isolated network, you can run containers on it by using the --network flag.

Containers running on this network will not be able to communicate with other containers on different

networks or the default bridge network.

By specifying the <NETWORK-NAME> with the --network flag, you ensure that the container is part

of the isolated network with inter-container communication disabled.

15

This approach provides a higher level of isolation and security between Docker containers, ensuring

that they cannot directly communicate with each other unless explicitly allowed through other means.

It is particularly useful when you want to create a more isolated environment for specific containers in

your Docker ecosystem.

Strengthening Docker Container Security using AppArmor

AppArmor is a Linux security module that provides mandatory access control (MAC) enforcing path-

based policies on programs. Unlike the standard discretionary access control (DAC) model which uses

permissions, AppArmor confines programs according to defined profiles specifying file paths the

program can access. For example, an AppArmor policy may specify the Python interpreter can only

read/write files under /usr/bin/ and /tmp/. AppArmor profiles are configured per program and if a

program does not have a profile, it runs unconfined with standard DAC permissions.

I have developed a customized AppArmor profile with finely tuned access control rules. The first set of

rules I created deny read and write access to critical host filesystem directories like /tmp and /var/tmp.

This prevents containers from accessing or modifying sensitive temporary files that may contain

credentials or other artifacts. I also defined network restriction rules that forbid containers from using

low-level network operations like raw sockets or crafting packets. This limits the ability to make

unauthorized network connections or exfiltrate data. Additionally, I restricted a number of dangerous

system capabilities like sys_module, sys_ptrace, sys_admin, and sys_chroot. By denying these

capabilities, I can reduce the vectors for privilege escalation from within a container. For securing

container resources, themselves, I allow read-only access to container data and config directories, while

permitting controlled write access to designated log directories. This prevents tampering of container

assets while still enabling logging. To guard against potential memory exploitation, I blocked the ability

for containers to use executable stacks. This enhances protection against stack overflow or stack

smashing attacks. I also wanted to limit the ability to tamper with privileged system directories, so I

denied write access to locations like /sys and /proc/sys. This prevents changing host configurations.

Finally, I implemented confinement rules on Docker binaries like dockerd and docker-runc to operate

with minimal filesystem permissions. This reduces their exposure to potential attacks. Together these

granular rules restrict filesystem, network, capability, and access abuses to limit post-compromise

impacts.

 The following command will run the container with the AppArmor profile enforcing the access

controls and restrictions defined in your policy. The container's processes will now be confined by

AppArmor according to the customized rules, limiting the container's access to only necessary resources

and functions. The --security-opt parameter is key to linking your AppArmor profile to a particular

container so the access limitations are put into effect

Command: docker run –security-opt appararmor=<profile-name> <docker-image>

16

As intended, the container running with the attached AppArmor profile is not permitted to spawn shells.

In the above images, we can see there are many command that helps the attcker in getting access to the

host are prohibited. Even though the Docker container was launched with the sys_module capability, a

custom AppArmor profile was defined to deny access to that capability. As seen in the output, the

sys_module capability was disabled within the container due to the restrictive AppArmor profile,

despite being granted at launch. This demonstrates how a tightened AppArmor policy can override and

restrict capabilities that may be imprudently granted to a container. This demonstrates how an

AppArmor policy can be applied to a Docker container using the --security-opt flag to restrict access.

The customized profile was configured during template editing to control the allowed executables like

restricting shell. Additionally, Linux capabilities were tuned in the template to only enable what the

container requires. Now with the profile attached, the container is confined to the defined rules,

exemplifying how App Armor can selectively limit binaries run and capabilities used. Overall, this

shows how --security-opt connects the customized AppArmor profile to enforce the access controls

specified in the template, disallowing unneeded actions like arbitrary shells while still permitting the

authorized executables and capabilities.

Restricting Docker Container System Calls using seccomp

SecComp or Secure Computing is a security mechanism in the Linux kernel that allows restricting the

system calls a process can make. It sets rules enforced by the kernel on which syscalls are allowed or

blocked for a process, defined using Berkeley Packet Filter syntax. This limits the amount of damage a

compromised process can do.

I developed a customized Seccomp profile to limit access to potentially dangerous system calls.

17

First, I denied specific syscalls like execve, ptrace and kill. This prevents processes in the container

from executing arbitrary programs, tracing other processes, or sending kill signals. It hinders an attacker

from manipulating processes if they compromise a container. Additionally, I restricted network-related

syscalls including socket, bind, listen and accept. This reduces a container's ability to make

unauthorized network connections or expose ports. It limits the avenues for network-based attacks. I

also wanted to contain processes within their intended namespaces and environments. So I blocked

syscalls like unshare and setns that allow manipulating namespaces. This prevents escalating privileges

through namespace escapes.

Furthermore, I isolated powerful syscalls that could potentially enable container breakouts, like chroot,

mount and pivot_root. By denying these, I make it harder for attackers to change filesystem roots and

escape the container's filesystem controls. Finally, I prevented write access to sensitive directories like

/etc which contain critical system configuration files. This avoids malicious modification of host

configurations from within containers. Together these rules reduce the Docker attack surface by

selectively denying access to system calls that could enable privilege escalation, network exploits, and

unauthorized access.

mkdir and chroot were likely blocked because the SecComp profile does not permit those syscalls either.

seeing "Operation not permitted" errors when trying to use syscalls that were prohibited in the profile

verifies that our SecComp configuration is active and effective at restricting those calls. In the above

images, we can see how SecComp profile blocks risky syscalls like mkdir, chmod, mouny, unshare,

chown, chroot that could allow privilege escalation or host tampering if abused by a malicious container.

In the above image we can see apt utility which is a package manager that install the packages and

binaries is getting restricted. When a container process attempts a syscall, the kernel checks if it is

allowed by the active SecComp profile. If a syscall is prohibited, the kernel terminates the process with

an "Operation not permitted" error before executing the call. This filtering of system calls essentially

firewalls containers from making potentially compromising calls. Custom SecComp profiles can further

lock down containers by denying additional syscalls specific to an application. This proactive blocking

of dangerous syscalls is essential for Docker to sandbox and isolate containers.

18

6.9 Discussion
The experiment evaluations in this research demonstrates how attacker takes advantage of docker

container and docker daemon that are running with misconfiguration inorder to get access to the host.

This research demonstrates how we can limit the access permissions, how we can restrict the read, write

permissions of sensitive files, how we can restrict system calls, network calls and binaries that helps

attacker to get access to the host. We also demonstrated how to run the docker as non root user. In my

view, attackers are finding new ways and techniques to exploit and dockers are mainly used for

deployment. Deployment process involves many steps, like pulling images from the dockerhub,

creating our own docker images with the necessary packages and libraries that are required for web

application development. There might be a chance of having vulnerabilities in every step. Attacker

make use of every chance that he got to take advantage and compromise the docker container and docker

host. This research won’t solve every tactic that attacker uses but it helps to serve as reference for secure

development and running of docker containers. This research act as reference for hardening their

container security.

7 Conclusion and Future Work

In my view, developers should adopt the security mind in their every step of development. They always

focus to achieve the functionalities of product they are developing. But they should realize security is

also important to access their application by users seamlessly without any interruption. Through this

real world scenarios, we have seen how attackers take advantage of misconfigured containers to get

access to the host. This research demonstrates mitigation techniques that hardens the container security.

As I said before, there are many vulnerabilities in each and every step of the deployment. So for the

future work, one can investigate, how attackers are inserting malicious layers while constructing image,

and we can also investigate runc and containerd vulnerabilities and we can work how attackers are

bypassing restrictions put by cgroups to consume all the resources of docker host and one can also how

attackers are namespace isolations.

References

Chelladhurai, J., Chelliah, P.R. and Kumar, S.A. (2016). Securing Docker Containers from

Denial of Service (DoS) Attacks. 2016 IEEE International Conference on Services Computing

(SCC). doi:https://doi.org/10.1109/scc.2016.123.

Duarte, A. and Antunes, N. (2018). An Empirical Study of Docker Vulnerabilities and of Static

Code Analysis Applicability. [online] IEEE Xplore.

doi:https://doi.org/10.1109/LADC.2018.00013.

s3-us-west-2.amazonaws.com. (n.d.). IEEE Xplore - Temporarily Unavailable. [online]

Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9031195.

Shameem Ahamed, W.S., Zavarsky, P. and Swar, B. (2021). Security Audit of Docker

Container Images in Cloud Architecture. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICSCCC51823.2021.9478100.

Martin, A., Raponi, S., Combe, T. and Di Pietro, R. (2018). Docker ecosystem – Vulnerability Analysis.

Computer Communications, 122, pp.30–43. doi:https://doi.org/10.1016/j.comcom.2018.03.011.

Haq, M.S., Tosun, A.Ş. and Korkmaz, T. (2022). Security Analysis of Docker Containers for
ARM Architecture. [online] IEEE Xplore. doi:https://doi.org/10.1109/SEC54971.2022.00025.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9031195

19

Sultan, S., Ahmad, I. and Dimitriou, T. (2019). Container Security: Issues, Challenges, and the Road

Ahead. IEEE Access, 7, pp.52976–52996. doi:https://doi.org/10.1109/access.2019.2911732.

Farshteindiker, Adi & Puzis, Rami. (2021). Leadership Hijacking in Docker Swarm and Its

Consequences. Entropy (Basel, Switzerland). 23. 10.3390/e23070914.

Alyas, T., Ali, S., Khan, H.U., Samad, A., Alissa, K. and Saleem, M.A. (2022). Container Performance

and Vulnerability Management for Container Security Using Docker Engine. Security and
Communication Networks, 2022, pp.1–11. doi:https://doi.org/10.1155/2022/6819002.

Shetty, Jyoti. (2017). A State-of-Art Review of Docker Container Security Issues and Solutions.

American International Journal of Research in Science, Technology, Engineering & Mathematics.

Wong, A.Y., Chekole, E.G., Ochoa, M. and Zhou, J. (2021). Threat Modeling and Security Analysis of
Containers: A Survey. [online] arXiv.org. doi:https://doi.org/10.48550/arXiv.2111.11475.

	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Design Specification
	5 Implementation
	6 Evaluation
	6.1 Experiment / Case Study 1
	6.2 Experiment / Case Study 2
	6.3 Experiment / Case Study 3
	6.4 Experiment / Case Study 4
	6.5 Experiment / Case Study 5
	6.6 Experiment / Case Study 6
	6.7 Experiment / Case Study 7
	6.8 Experiment / Case Study 8
	6.9 Discussion

	7 Conclusion and Future Work
	References

