‘_‘ h
\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Cybersecurity

Pradeep Prakash
Student ID: X21215413

School of Computing
National College of Ireland

Supervisor: Evgeniia Jayasekera

Student Name:

Student ID:
Programme:
Module:
Lecturer:

Submission
Due Date:

Project Title:

Word Count:1625

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Pradeep Prakash
21215413
MSc in Cybersecurity Year: 2022-2023

MSc Research Project

Evgeniia Jayasekera

14-Aug-2023

Enhanced Security for Insecure Systems within Zero trust
Architecture

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Pradeep Prakash

14-08-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Pradeep Prakash
Student ID: 21215413

1 Introduction

This Configuration Manual consists of the fundamental environment setup requirements, and
which also consists of python modules that are required to carryout this project. The main
agenda is to create a kind of Zero trust security framework with the help of docker and intend
to introduce the trained models into this simulated environment and observe their efficiency
in detecting anomalies in real-time. This would also allow to test the robustness of these
models in a controlled but realistic network environment.

2 Hardware Requirements

Operating System: Windows 11, Kali Linux OS
RAM: 16GB

Processor: Intel Core i5

Storage: 512GB SSD

System Type: 64-bit operating system

3 Software Requirements

Anaconda Navigator

Jupyter Notebook or Google Colab

Python 3.6.3 version

GNS3

Python libraries like: keras, scikit learn and tensorflow

Python programming was used in this research for implementation of the ML model and also
Jupyter notebook was used for this research. Many python libraries were utilized in order to
accomplish this research work and its analysis will be explained in the subsequent section of
this report.

Anaconda navigator is also used which has the Jupyter package within it. As it is useful for
executing and debugging the python code. | have used Anaconda Navigator 64-bit version on
my windows 11 system. Anaconda navigator has been downloaded from the link mentioned
below. (Anaconda Navigator , no date)

https://docs.anaconda.com/free/navigator/install/

https://docs.anaconda.com/free/navigator/install/

4 List of Python Libraries Installed

The following python libraries were used and installed in the research implementation
environment with the help of python standard command called pip.

Keras: It is a python-based deep learning API that runs on top of the machine learning
platform called TensorFlow. (Keras Library, no date)

TensorFlow: An open-source software library for efficient numerical computation is called
TensorFlow. Because of its flexible design, computation may be quickly deployed among a
range of platforms (CPUs, GPUs, and TPUs), from desktop machines to server clusters to
mobile and peripheral devices. (Tensorflow Library, no date)

Scikit-learn: Based on SciPy, the Python machine learning package scikit-learn has been
made available under the 3-Clause BSD license. (Scikit Library, no date)

5 Dataset Description

In this research project CICIDS2017 Dataset has been used to train the machine learning
model and this dataset consists of large network flows that was captured for span of
10days.The selected dataset has variety of traffic which includes benign traffic also it has
wide range of different attacks, and those attacks can be classified into the following
categories:

Denial of Service
Intrusions attacks
Malware
Botnets
Web Attacks

6. Zero-day attacks
Selected dataset is huge and widespread which makes the representation of real-world traffic
in a superior manner. The dataset which has been selected for carrying out the
implementation of research work has helped to test the proposed ML model on a wide range
of scenarios.
Link for the dataset is as follows:
https://www.kaggle.com/datasets/devendra416/ddos-datasets

okrwn PR

Snapshot of different attack scenarios that was performed in this research implementation is
as follows:

1. Denial of Service:

As per the need of the project, this is mentionable that the hping3 has been utilised in order to
perform the tasks associated with the DDOS attack. In that aspect, the hping3 is very much
useful in terms of the fact that this can perform the flooding attack and can transmit an
unusual amount of TCP packets at a time.

https://www.kaggle.com/datasets/devendra416/ddos-datasets

[sudo] password for kali:
Jhome/kali
1 Mg - 15088 - 28 - 64 -p 88 flo rce 192.168.6.
HPING 192.168.6.1 (eth® 192.168.6. : 5 set, 40 headers + 120 data byt

hown

Figure 1: DOS attack

The TCP syn flooding that has been done in the previous step. As per the figure, this can be
seen that the red colour is responsible for showcasing the result related to the attack and
unusual TCP attacks.

*ethQ

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

EREM@ @ ¢« >0 «>BEE oo oB

Source Destlnatlon Protocol Length E
il 192.163 6.

.801030332 128.145.29.105
.801042492 72.3.172.87
.801090420 139.175.105.86
801103834 __81.51.190.254
2491.. 11.801158097 192.168.6.13

+ Frame 1: 174 byt on wire
+ Ethernet II, Src: VMwa

+ Internet Protocol VPI_.lﬂI] 4, Src:

[l Transmission Control Protocol, Src Purt

o d g ois

Figure 2: Wireshark capturing TCP unusual data packets.
2. Intrusion Attacks:

Nmap has been utilised with the need to check the open ports. Before starting the attack, this
is important to check the open ports. Hydra tool has been utilised with the goal of performing
a Brute force attack. This is an attack that is capable to break the password of the target
machine.

Jusr/share/wordlists/metasploit
-L unix_users.txt -P unix_passwords.txt sshy

Hydra v9.5 (c) 2 by van Hauser/ avi iej "y OT SEcCTe ervice organizations, or for illegal
purposes (this is non-binding, th i

thc-hydra) start ;
LOGINIL FILE] [-p PASSHP FILE]] 10 1 [-M FILE [-T T 11 [-w TIME] [-W TI
o c TIME] [-ISOuvVd4e c erver[:PORTI[/OPT]]

Options:
-1 LOGIN

number of
module u

Figure 3: Brute Force Attack.

Brute force has been accomplished and it has made 15 login tries and finally has cracked the
password and the user id of the targeted machine.

/usr/share/wordlists/metasploit
unix_passwords.txt ftp:

tions, or for il

try per task

Figure 4: Accomplishment of Brute force attack.
3. Malware

The Lynis tool has been utilised to perform malware checking. In that aspect, the above
command has been written in the kali Linux platform.

Boot and ser s

FOUND]

1
DONE]
DONE]
oK]

MEDIUM]
EXPOSED]

1
EXPOSED]

PROTECT

MEDIUM

Figure 5: Identification of Unsafe Programs.

ontrols texts (https
pload to upload d. C

Lynis security scan details:

H 7
: 265

ode:
rmal [V] Forensics [] Integration [] Pentest []

: /var/log/lynis.log
: /var/log/lynis-report.dat

Figure 6: Final Report.
4. Botnet

Rkhunter has been utilised to perform botnet checking. Once the anomalies get detected it
provides the warning.

/mstat

Figure 7: Warnings Provided by RKhunter.
5. Web Based Attacks:

1) Backdoors
2) DOS
3) Worms
4) Exploits
5) Fuzzers
Shell SQL Injection was performed on the application running in docker. SQLmap has been

utilised in order to perform the vulnerability checking depending on the need of the project.

4b, @

] [INFO] the back-end DBMS is MySQL
erver operating system: Linux Ubuntu
b application technology: Nginx 1.19.8, PHP

products

users

1 fetched data lonoged tn text files under

o

b om—— |

=]

bo———

—_ =k O

mediumtext

Figure 9: Available Columns.

Depending on the need, the dumping has been done where the dumping has been done inside

a CSV file.

[] [INFO] the back-end DBMS is MySQL

veb server operating system: Linux Ubuntu

veb application technology: Nginx 1.19.0, PHP 5.6.40

>ack-end DBMS: MySQL = 5.0.12

[] [INFO] fetching entries of column(s) ' ne ' r 'u rs' in database
Jatabase: acuart

fable: users

‘1 entry]

] table 'acuart.users' dumped to CSV file '/root/.local/
] fetched data logged to text files under '/root/.local
G] your sglmap version is outdated

“*] ending @ 00:58:05 /2023-07-28/

Figure 10: Output of dumping data.

'acuart’

tput/testphp
tput/testphp

Creation of Deep Learning Layer:

The whole deep learning layer is built using tensorflow and Keras library which are available
in python language. Below is snap of the code which is used in google colab to perform the
implementation of the ML model. And remaining model which we are going to use in this
implementation will be imported using SKlearn.

[1 !pip install

!pip install k
!pip install h5p

Figure 11: Deep Learning dependencies

Data importing, Cleaning and Preprocessing:

In this step around one lakh data is being imported from the dataset which are belonging to
only class DOS and beningn and at the same time we are skipping the unwanted rows from
the dataset and a final dataset is created with the selected target variables. Below snapshot
shows the final dataset along with some attributes like Src IP, Dst IP and many more.

- —
. Tot Tot Totlen Totlen
Sn Dst . Flo Pt Pkt Fud Pkt Fwd Pkt Pkt Pkt Bud Pkt Bwd Pkt Flow IAT
Dst IP Protocol Tinestamp . Fud Bad R Bad) .. Floa Byts/s Flow Pkts/s
Port Port Duration) len len LenMean lenStd len len LenMean Len Sid Mean
Pkts Pkts Pkts Phts . .
Kax Min Max Min

Innamed:
ol m wem

Figure 12: Final combined selected dataset.

Count Plot:
In this step we are checking whether the final dataset is balanced with same number of
selected target variable entries. The output of this step is shown below:

Target Variable

0.175
0.150
0.125 &

0.100

Frequency [%6]
<]
ount (in million:

0075 3
0.050
10

0.025

0.000

Benign

Figure 13: Count Plot.

Feature Importance:

The feature Importance represents which features have more impact on the selected target
variables. Below graph shows the top 20 features and its impact level.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Fwd Seg Size Min

Feature importances

2 B = T B E £ W ;m E E B = % = = =
= =2 35 5 E 2 £ g5 = E E £ ¥ 5 % E E ¥
cC o g £ C g =& FpC S0 82 s £ 0= =
T2 57 &2 5L =5 FogEs5 Tk ow
EE&DquﬁgjqﬁgﬁgBE;E
=z x T = u = S 2 T g -
= o w S Eoa g BF w2
n o< e =S 0 g 32 gt g ®

I = = = = E

i=] @ @ 5 o

Figure 14: Feature Importance Graph.

6 Training and testing Summary of ML models

» Training and testing:
In this step the dataset is split into training and testing categories in which 60% of data is

being used for training and remaining 40% is being used for testing purpose.

[1 X =df _final.drop(['La

y=df_final[

y.replace({

"1 1, "Benign”: 8}, inplace=)

X_train, X_test, y train, y test =train_test_split(X, y ,

Figure 15: Training and testing.

» Random forest Classifier:
Accuracy of this model and classification report is as follows:

_estimators=2, crite

nfusion_matrix(
[8,1]
plt.subplots()
range(len({class_names
,_names)
names)

print(classificat

Score: ©.9421901474741136

.91
e.

accuracy
macro avg
eighted avg

Figure 17: Classification report.

» XGBOOST Classifier:
Accuracy of this model and classification report is as follows:

XGBClassifier(max_depth-1, n_estimato
1
L train)
xg.predict(X_test)

matrix =confusion_matrix(
-[8,1]
plt.subplots()
arange(len(class_names
_)]
(tick marks, cl _names)
atmap(pd.DataFrame(matri annot=
xis.set label position(
-tight_lay

print(classification_report test, y_pred))

Accuracy Score: ©.9578881706934421

Figure 18: Accuracy of XGBOOST.

fl-score support

accuracy
macro avg
weighted avg

Figure 19: Classification Report.

» CNN model:
Accuracy of this model, Classification and both accuracy, loss report Training and
Validation is as follows:

y_pred = model.predict(X_test)
y_pred = np.argmax(y_pred,axis=1)

print ("CNN:Accuracy : ", accuracy score(y test new,y pred)*10¢

2490/24908 [= ==] - 4s 2ms/step
CNN: Accuracy :

Figure 20: Accuracy of CNN model.

Training and Validation accurarcy Training and Validation loss
088 : :’a‘?\ig::i:?cucﬁrgcy 050 : l;i;‘;:il‘:is
0.86
045
0:84
082
0.40
0.80
078 035
0.76
0.30
0.0 05 10 15 20 25 30 a5 40 00 05 1.0 15 20 25 30 35 40
Figure 21: Training and Validation accuracy. Figure 22: Training and Validation loss.

Classification Report :
precision recall fl-score support

39632

48043

Yes
No

@@

(=l
o oea

=]
43

79675
79675
79675

accuracy
macro avg
weighted avg

D@ ®
(=]
[=<J =]

Figure 23: Classification report.

» LSTM model:
Accuracy of this model, Classification and both accuracy, loss report Training and
Validation is as follows:

y_pred =
y_pred = 3)
print ("LSTM:Accurac) » accuracy_score(y_test_new,y_pred)*18e)

2490/2490 [=== 1 - 7s 3ms/step
LSTM:Accuracy : 9 2

Figure 24: Accuracy of LSTM model.

10

Training and Validation loss

Training and Validation accurarcy

095

—— Training accurarcy —— Training loss

—— Validation accurarcy 055 — Validation loss
050
0.90
045
0.85 040
035
0.80 030
025
0.75
020
00 05 10 15 20 25 30 35 40 0.0 05 10 15 20 25 30 35 40
Figure 25: Training and Validation accuracy. Figure 26: Training and Validation loss.
Classification Report :
precision recall fl-score support

Yes 8.98 .88 8.93 39632
No 8.89 .98 8.94 48043

accuracy 8.93 79675
macro avg -9 8.932 79675
weighted avg -9 0.93 79675

Figure 27: Classification report.

» BILSTM Model:
Accuracy of this model, Classification and both accuracy, loss report Training and
Validation is as follows:

print (8 ' acy_score(y_test_new,y pred)*18e

2490/2498 [== ====] - 11s 4ms/step
BILSTM:Accuracy)5.828520866

Figure 28: Accuracy of BILSTM model.

Training and Validation accurarcy Training and Validation loss
096 -_ Trainin_g loss
040 — Validation loss
0.94
035
092
030
090
025
088
020
086
0.15
—— Training accurarcy
084 — Vvalidation accurarcy
010
00 05 10 15 20 25 3.0 35 40 0.0 05 10 15 20 25 30 35 40
Figure 29: Training and Validation accuracy. Figure 30: Training and Validation loss.

11

Classification Report :
precision

8.97
.95

Yes
[[]

accuracy
macro avg
weighted avg

recall

.95
.97

fl-score support

8.96
8.96

39632

48843

8.96
8.96
8.96

79675
79675
79675

Figure 31: Classification Report.

» BILSTM with Attention Mechanism:

Accuracy of this model, Classification and both accuracy, loss report Training and

Validation is as follows:

model . predict(X_testl)
np.argmax(y_pre

y_pred
y_pred
print ("B

2498/2498 [=
BILSTM with A

, accuracy_score(y_test_new,y pred)¥*188)

1 - 11s 4ms/step

5608148729212

Figure 32: Accuracy of the BILSTM attention mechanism.

Training and Validation accurarcy
098
0.96
094
0.92
—— Training accurarcy
— Validation accurarcy
00 05 10 15 20 25 30 35 40

Figure 33: Training and Validation accuracy.

Classification Report :

precision recall
1.e8
6.99

Yes 9.99

No

accuracy
macro avg
weighted avg

Training and Validation loss
0225
—— Training loss

— Vvalidation loss
0.200

0175

0.150

0125
0.100
0.075

0.050
0.025
0.0

05 10 15 20 25 30 35 40

Figure 34: Training and Validation loss.

fl-score support
39632

20043

79675
79675
79675

Figure 35: Classification report.

12

References

Anaconda Navigator (no date). Available at: https://docs.anaconda.com/free/navigator/index.html (Accessed:
1 August 2023).

Keras Library (no date). Available at: https://pypi.org/project/keras/ (Accessed: 1 August 2023).
Scikit Library (no date). Available at: https://pypi.org/project/scikit-learn/ (Accessed: 1 August 2023).

Tensorflow Library (no date). Available at: https://pypi.org/project/tensorflow/ (Accessed: 1 August 2023).

13

