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Abstract 

The increasing prevalence of Advanced Persistent Threats (APTs) necessitates innovative 

detection and response mechanisms. This research delves into the application of machine 

learning algorithms for APT detection, addressing the challenges of concept drift and 

adversarial attacks. The primary aim is to assess and enhance machine learning's role in 

detecting and responding to APTs. A comprehensive review of current APT detection 

methodologies is presented, followed by the selection and implementation of specific 

machine learning algorithms on the BETH dataset. The study introduces a basic 

standalone Python script that preprocesses this dataset, facilitating the training and 

detection of APTs using the chosen algorithms. While the results demonstrate promising 

accuracy rates, the research acknowledges the script's foundational nature, suggesting 

avenues for future refinement and potential commercialisation. The significance of this 

study lies in bridging the gap between machine learning application and APT detection, 

offering a blueprint for cybersecurity professionals. The research not only contributes to 

the academic discourse on APT detection but also provides practical insights for 

organisations and individuals grappling with cybersecurity challenges. 

 

 

1.0 Introduction 

 

The ever-evolving landscape of cyber threats and security breaches, particularly those related 

to Advanced Persistent Threats (APTs), constitutes a significant concern within cybersecurity 
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domains. The development and proliferation of APTs, defined as stealthy and continuous 

computer hacking processes, often orchestrated by individuals or organisations targeting a 

specific entity, have seen a significant rise in recent years (Barreno et al., 2010). 

Conventional security measures often fall short of effectively combating APTs due to their 

complexity and persistent nature (Raff et al., 2018). Therefore, attention has been 

increasingly turned towards machine learning as a potent tool for enhancing detection and 

response systems against such sophisticated threats (Buczak and Guven, 2015). 

 

Machine learning algorithms offer a degree of flexibility and adaptability in their operation, 

enabling them to learn from past incidents and thus continually improve their threat detection 

capabilities. They can automatically learn from high-dimensional, non-linear data and make 

predictions with high accuracy (Saxe and Berlin, 2015). The use of machine learning in APT 

detection has been gradually gaining momentum, showing promising results and potential for 

future advancement (Kolosnjaji et al., 2018). 

 

1.1 Problem Definition 

Despite the potential benefits and advancements made in applying machine learning 

algorithms to APT detection, the field is not without its challenges. Key among these is the 

issue of concept drift, where the statistical properties of the target variable change over time, 

leading to a decrease in model accuracy (Jordaney et al., 2017). Additionally, adversarial 

attacks aimed at misleading machine learning models pose significant threats (Kolosnjaji et 

al., 2018). Hence, this research is undertaken to address these challenges and enhance the 

effectiveness of machine learning algorithms for APT detection. 

 

1.2 Aims and Objectives 

The primary aim of this research is to evaluate and improve the application of machine 

learning algorithms in the detection and response to Advanced Persistent Threats (APTs). To 

achieve this overarching aim, the specific objectives are as follows: 

 

1. To conduct a comprehensive review of the current methodologies and technologies 

used in APT detection. 

2. To identify and select suitable machine learning algorithms for APT detection, 

considering their individual strengths and weaknesses. 
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3. To implement the chosen machine learning algorithms on a preprocessed dataset, 

leveraging tools like Python, scikit-learn, TensorFlow, and PyTorch. 

4. To develop a standalone Python application or script that uses the chosen machine 

learning algorithms for real-time APT detection. 

5. To evaluate the effectiveness of the implemented algorithms in detecting APTs, using 

metrics such as accuracy, precision and recall. 

6. To identify potential improvements and future recommendations for the developed 

model based on the evaluation results. 

 

1.3 Research Question(s) 

This research will strive to answer the following research questions: 

1. What are the current methodologies and technologies in APT detection? 

2. Which machine learning algorithms are best suited for APT detection? 

3. How can these selected algorithms be implemented for APT detection? 

4. What is the effectiveness of the implemented algorithms?  

 

1.4 Significance of the Study (or Justification) 

The importance of this study is manifold. Firstly, it addresses a significant gap in the current 

literature regarding the implementation of machine learning algorithms for APT detection 

and response (Saxe and Berlin, 2015). The results could potentially yield a detailed blueprint 

for cybersecurity professionals to implement machine learning algorithms in APT detection 

and response. 

 

Secondly, the study is likely to benefit organisations and individuals grappling with APTs, 

offering them an advanced solution that outperforms conventional cybersecurity strategies. 

By demonstrating the practical application of machine learning in detecting and responding 

to APTs, this research might encourage wider adoption of these techniques, thus bolstering 

cybersecurity across various domains. 

 

Thirdly, the findings could contribute to the advancement of machine learning and 

cybersecurity disciplines by unveiling new insights into machine learning algorithms' 

effectiveness in APT detection (Tobiyama et al., 2016). The research could spur further 

exploration and advancement of machine learning techniques in the realm of cybersecurity. 
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1.5 Summary of the Chapter 

This introductory chapter provides an overview of the research, offering critical context and 

highlighting its relevance in today's cybersecurity landscape. The subsequent chapter will 

delve into the literature review, expanding on the existing body of knowledge surrounding 

APTs, machine learning, and the interplay between the two, thus setting the stage for the 

research's methodology and findings. 

 

2.0 Related Work 

This chapter provides a comprehensive review of the literature centred around Advanced 

Persistent Threats in cybersecurity, focusing specifically on the utilisation of machine 

learning for detection and response. The purpose of this review is to draw together the 

existing body of knowledge, critique it, and identify gaps that may be addressed through 

further research. It will lay the foundation for the research by explicating the current 

understanding of APTs, their evolution, impact, and trends, as well as the development and 

implementation of machine learning algorithms for their detection. 

 

2.1 Overview of Advanced Persistent Threats (APTs) 

Advanced Persistent Threats (APTs) are sophisticated, prolonged, and targeted cyber-attacks 

aimed at syphoning sensitive data from networks while remaining undetected for extended 

periods (Alshamrani et al., 2019; Brewer, 2014). They represent a paradigm shift in the 

nature of cyber threats, evolving from simple and detectable attacks to more complex and 

stealthy invasions, threatening the security of both organisations and nations (Cole, 2012). 

 

Historically, APTs emerged with the rise of the internet and the increase in global 

connectivity. They gained prominence in the mid-2000s, with major incidents such as 

Operation Aurora in 2009, which targeted several high-profile companies, marking the 

beginning of the APT era (Al-Saraireh, 2022; Ussath et al., 2016). Since then, the evolution 

of APTs has been marked by their increasing complexity, resilience, and persistence, which 

pose significant challenges for cybersecurity professionals (Marchetti et al., 2016). 

 

Several incidents involving APTs have had considerable impacts on cybersecurity. A notable 

example is the Mirai botnet attack in 2016, which turned networked devices running on 

Linux into remotely controlled bots, causing widespread disruption (Kolias et al., 2017). 
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Another significant APT attack was the Cloud Hopper Operation, which targeted IT service 

providers to gain unauthorised access to their clients' networks (Barnum and Sethi, 2007). 

These incidents highlight the scale and impact of APTs, demonstrating their potential to 

compromise critical infrastructure and data. 

 

Current trends in APTs reflect the constantly evolving nature of these threats. They are 

becoming increasingly difficult to detect due to their sophistication, the utilisation of 

encryption, and tactics like 'living off the land', where attackers use legitimate tools within a 

system for malicious activities (Rot and Olszewski, 2017; Wang et al., 2021). Furthermore, 

with the rise of the Internet of Things (IoT), there has been a significant increase in the attack 

surface for APTs, thus compounding their potential impact (Kolias et al., 2017). 

 

In response to these trends, several techniques, such as intrusion detection systems, have been 

developed to detect and mitigate the impact of APTs (Garcia-Teodoro et al., 2009; Mitchell 

and Chen, 2013). However, these traditional methods have struggled to keep pace with the 

evolving threat landscape. Consequently, attention has been drawn to the potential of 

machine learning in augmenting cybersecurity efforts against APTs, a subject that is at the 

heart of this review and is subsequently discussed in the following chapters. 

 

2.2 Machine Learning in Cybersecurity 

Machine learning, a subset of artificial intelligence (AI), is transforming a wide array of 

sectors, including the field of cybersecurity. Its ability to learn from data without explicit 

programming makes it an essential tool for automating threat detection and response in an 

increasingly sophisticated and rapidly changing threat landscape (Elovici et al., 2007). In 

particular, machine learning algorithms have shown significant potential in tackling 

Advanced Persistent threats—sophisticated attacks that persistently and stealthily target 

specific entities (Ussath et al., 2016). 

 

Several machine learning techniques have been applied to the detection of APTs. 

Reinforcement Learning (RL), a type of machine learning where an agent learns to make 

decisions by interacting with its environment, has been employed for adaptive intrusion 

detection in areas like unmanned air vehicles (Mitchell and Chen, 2013). It's valuable in APT 

detection as it helps systems progressively learn and improve from their actions and 

outcomes in the complex and dynamic environment of cyber threats. 
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Association Rule Learning (ARL), another technique used in detecting APTs, aims to find 

interesting relationships or associations among a set of items in large databases. ARL's ability 

to highlight correlations between seemingly unrelated events makes it highly effective for 

identifying coordinated cyber-attacks that may otherwise go unnoticed (Garcia-Teodoro et 

al., 2009). Principal Component Analysis (PCA) and Self-Organizing Maps (SOMs) have 

also been employed in cybersecurity. PCA, a statistical procedure that uses orthogonal 

transformations to convert a set of observations of correlated variables into a set of linearly 

uncorrelated variables, assists in reducing data dimensionality while maintaining most of the 

original data's variance (Meng, 2011). In contrast, SOMs, a type of unsupervised learning, are 

utilised to visualise high-dimensional data, contributing to identifying patterns and anomalies 

indicative of APTs (Doğanay et al., 2022). 

 

Case studies have demonstrated the effectiveness of machine learning in APT detection. For 

instance, Wang et al. (2021) proposed a belief rule-based detection method that successfully 

uncovered APT attacks, illustrating the potential of rule-based machine learning methods in 

this domain. However, the application of machine learning in APT detection is not without 

challenges. A significant limitation is that machine learning models are dependent on the 

quality of the data used for training. Inadequate or unbalanced data can lead to reduced model 

performance or misclassifications (Dwibedi et al., 2020). Additionally, the dynamic nature of 

APTs, coupled with their low occurrence rate, makes it difficult for models to learn accurate 

detection patterns (Al-Saraireh, 2022). The complexity of APTs also means that a single 

algorithm may not suffice, necessitating a combination of techniques, adding to the 

computational costs (Sommer and Paxson, 2010). 

 

2.3 Review of Previous Research on APT Detection Using Machine Learning 

Previous research on APT detection using machine learning provides valuable insights into 

the effectiveness, strengths, and weaknesses of various machine learning models. Marchetti et 

al. (2016) investigated the use of machine learning to analyse high volumes of network traffic 

for APT detection. They found that machine learning effectively uncovered hidden patterns, 

although the high data volumes presented computational challenges. 

 

Another study by Alshamrani et al. (2019) presented a comprehensive survey on APTs, 

discussing various machine learning techniques, solutions, challenges, and research 
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opportunities. The researchers highlighted the need for diverse machine learning techniques, 

as APTs often evade single-method detection systems. Nonetheless, they acknowledged the 

issue of false positives, underscoring the need for balance between detection accuracy and 

false alarms. 

 

Further, a study by Lakha et al. (2022) employed a Graph Neural Network and Transformer-

based model for anomaly detection in cybersecurity events using the BETH dataset. The 

proposed model effectively detected anomalous activities, indicating the potential of hybrid 

models for APT detection. However, the study also emphasised the importance of extensive 

testing and validation for ensuring the robustness of such models. 

 

The BETH dataset, a real-world cybersecurity dataset, has been instrumental in training 

machine learning models for APT detection (Highnam et al., 2021). Despite this, studies have 

shown that machine learning models often struggle to generalise across different datasets due 

to differences in data distribution (Nevavuori and Kokkonen, 2019). 

 

These studies underscore the potential of machine learning in APT detection while also 

drawing attention to existing challenges. The lessons drawn from these works provide critical 

input into improving current and future research, mainly focusing on improving data quality, 

reducing false positives, enhancing computational efficiency, and ensuring robustness and 

generalisability of machine learning models for APT detection. 

 

2.4 Cybersecurity Datasets for Machine Learning 

The selection of appropriate datasets is of crucial importance in machine learning-based 

cybersecurity research (Sommer and Paxson, 2010). An effective dataset for such studies 

should be realistic, comprehensive, and up-to-date, representing the most recent threats, 

vulnerabilities, and attack vectors. Moreover, it should be sufficiently large and diverse, 

enabling the development and validation of robust, generalizable models (Nevavuori and 

Kokkonen, 2019). 

 

Several cybersecurity datasets have been extensively employed in research. The KDD Cup 

1999 Data, for instance, has been widely used in intrusion detection studies (Tavallaee et al., 

2009). However, it has been criticised for its unrealistic and outdated features, such as the 
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inclusion of simulated attacks that may not accurately reflect contemporary threats (Dwibedi, 

Pujari, and Sun, 2020). 

 

Similarly, the 1998 DARPA Intrusion Detection Evaluation Dataset, while useful in its time, 

may no longer be suitable given the rapidly evolving landscape of cyber threats. The ISCX 

IDS 2012 dataset is more recent and incorporates a wider range of attacks, but it too has been 

noted to contain inherent biases that could limit the effectiveness of resultant models 

(Sharafaldin et al., 2019). The NSL-KDD dataset, an improved version of the KDD Cup 

1999, mitigates some issues related to redundancy and bias but still falls short in terms of 

realism (Ullah and Mahmoud, 2020). 

 

The BETH dataset, on the other hand, provides an advantageous alternative. Introduced by 

Highnam et al. (2021), the BETH dataset is built on real cybersecurity data, providing 

invaluable insights into genuine security incidents. It is beneficial in two major ways: firstly, 

the dataset reflects real-world cybersecurity events, enhancing the ecological validity of the 

research; secondly, it facilitates unsupervised anomaly detection research, a critical aspect of 

identifying novel threats (Doğanay et al., 2022). 

 

For the current research, the BETH dataset is particularly suitable. Its focus on actual 

cybersecurity incidents aligns well with the research objectives, and its rich, diverse data 

facilitates the implementation of a range of machine learning algorithms. As such, the BETH 

dataset serves as a fitting choice for investigating advanced persistent threats and machine 

learning-based detection methods (Lakha et al., 2022). 

 

2.5 Theoretical Framework 

The theoretical foundation of this research is rooted in several key concepts. The first is the 

cyber kill chain model, which outlines the sequence of stages in a cyberattack (Ahmed et al., 

2021). Understanding this progression informs the selection and implementation of machine 

learning algorithms, guiding the researchers to focus on features and behaviours indicative of 

different stages of an attack (Al-Saraireh, 2022). 

 

Furthermore, the behaviour rule specification theory proposed by Mitchell and Chen (2013) 

provides a solid base for understanding anomalous behaviours, especially useful in detecting 
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advanced persistent threats. This theory, along with an understanding of the cyber kill chain, 

will contribute to the construction and interpretation of machine learning models. 

 

Finally, the research is underpinned by the principles of anomaly-based network intrusion 

detection (Garcia-Teodoro et al., 2009). This approach focuses on identifying patterns that 

deviate from normal network behaviour, as opposed to signature-based detection, which 

relies on known attack patterns (Barnum and Sethi, 2007). Such theoretical framing enables a 

more flexible and proactive detection method, crucial for advanced persistent threats that 

often involve novel, stealthy techniques (Ussath et al., 2016). By drawing on these theories, 

the research aims to develop machine learning models that can effectively detect and respond 

to advanced persistent threats. Moreover, these theories facilitate a better understanding and 

interpretation of the research findings, providing deeper insights into the behaviours and 

characteristics of advanced persistent threats. 

 

2.6 Summary and Implications for the Current Study 

The review of relevant literature provided profound insights into the utilisation of machine 

learning in advanced persistent threat detection and response. Key findings indicate that ML 

techniques have been used in the detection of malicious code in network traffic (Elovici et 

al., 2007) and network anomaly intrusions (Meng, 2011). Al-Saraireh (2022) presented a 

novel ML approach for detecting APTs, while Marchetti et al. (2016) demonstrated the 

analysis of high volumes of network traffic for APT detection. These studies underscore the 

capability of ML to recognise complex patterns indicative of APTs, which are typically 

stealthy and persistent (Brewer, 2014; Tankard, 2011). 

 

However, the literature revealed gaps, particularly in the context of cybersecurity datasets 

used in anomaly detection research. Highnam et al. (2021) discussed the BETH dataset as 

real cybersecurity data, but according to Dwibedi et al. (2020), there's a need for more 

contemporary intrusion detection datasets. This implies a potential knowledge gap in ML's 

effectiveness across different datasets. The current study aims to fill these gaps by extending 

the application of ML to a the BETH dataset. 

 

As the study moves into the methodology chapter, the focus will be on designing and 

implementing ML algorithms with reference to methodologies detailed in the surveyed 

literature. It will involve rigorous testing on the BETH dataset to assess the algorithms' 
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effectiveness, in line with the insights gained from this literature review. The ultimate goal is 

to contribute to the growing body of knowledge on leveraging ML in cybersecurity, 

particularly for addressing APTs. 

 

3.0 Research Methodology 

 

This chapter delineates the methodological approach adopted to harness machine learning 

algorithms for APT detection and response. 

 

3.1 Data Collection and Management 

The BETH cybersecurity dataset serves as the cornerstone for this research. As highlighted 

by Highnam et al. (2021), the BETH dataset offers real cybersecurity data, making it an 

invaluable asset for unsupervised anomaly detection research. Its relevance in the context of 

APT detection is underscored by the dataset's comprehensive capture of network activities, 

which can be indicative of potential threats (DOĞANAY et al., 2022). Utilising Google 

Colaboratory, the data extraction process was initiated. The dataset, once uploaded, was 

subsequently unzipped and loaded into data structures suitable for subsequent analysis. 

 

3.3 Exploratory Data Analysis (EDA) 

Visualisation plays a pivotal role in understanding the intricacies of the dataset. Heatmaps, as 

employed in this research, were instrumental in detecting null values within datasets (Bhuyan 

et al., 2013). Furthermore, pair plots were used to discern preliminary relationships between 

features, a technique often advocated in literature for its efficacy in revealing data patterns 

(Buczak & Guven, 2015). Descriptive statistics offered a snapshot of the dataset's central 

tendencies and dispersions. Drawing from the works of Dwibedi et al. (2020), such 

techniques are indispensable in providing an initial understanding of the data, thereby guiding 

subsequent analytical steps. 

 

3.4 Feature Engineering and Transformation 

Encoding categorical variables is a fundamental step in preparing data for machine learning 

algorithms. The LabelEncoder technique, as described by Elovici et al. (2007), was employed 

to transform non-numeric columns into a format amenable to machine learning algorithms. 

Standardising features in datasets with varying scales is crucial for the optimal performance 



11 
 

 

of many machine learning algorithms (Sommer & Paxson, 2010). The z-score standardisation 

method was adopted, a technique that has garnered widespread acclaim in literature for its 

ability to transform features to a common scale (Buczak & Guven, 2015). 

 

Feature selection was also pivotal in refining the dataset for optimal model performance. 

Drawing inspiration from the works of Raschka (2018), specific features were selected based 

on their potential relevance to APT detection, while others were excluded to avoid 

redundancy and overfitting. 

 

3.5 Data Partitioning 

Partitioning data into training and testing subsets is a foundational step in machine learning, 

ensuring that models are not only trained but also validated on unseen data (Sommer & 

Paxson, 2010). This separation was pivotal in gauging the model's generalisation capabilities. 

The train-test split ratio, often chosen based on dataset size and the nature of the problem, has 

profound implications. A conventional 80-20 or 70-30 split ensured that the model has ample 

data for training while retaining a substantial subset for validation (Tavallaee et al., 2009). 

 

3.6 Model Development and Validation 

The selection of machine learning algorithms was underpinned by their proven efficacy in 

detecting cyber threats. Algorithms such as Random Forests and Gradient Boosting 

Machines, elucidated by Cutler et al. (2012) and Natekin & Knoll (2013) respectively, have 

demonstrated adeptness in handling high-dimensional cybersecurity datasets. In the context 

of APT detection, these algorithms' ability to discern intricate patterns and anomalies is 

invaluable (Al-Saraireh, 2022). 

 

Training protocols encompassed iterative processes, with models being exposed to the 

training dataset. Hyperparameter tuning, a pivotal aspect of model optimisation, was 

undertaken to enhance model performance (Chen & Guestrin, 2016). The implications of 

such tuning include improved accuracy and reduced overfitting. 

 

Evaluation metrics were chosen based on their scholarly endorsement for binary 

classification tasks. Omar & Ivrissimtzis (2019) advocate for the use of ROC curves, which 

plot the true positive rate against the false positive rate, providing a comprehensive view of 

model performance. Undertaking a comparative analysis of models is paramount to discern 
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the most efficacious model. The AUC score, representing the area under the ROC curve, 

offers a scalar value of the model's capability (Raschka, 2018). 

 

3.7 Technological Framework 

Google Colab, a cloud-based platform, was harnessed for its computational prowess. 

Carneiro et al. (2018) laud Google Colab for its ability to accelerate deep learning 

applications, making it an apt choice for this research. Python libraries, including Pandas for 

data manipulation, Numpy for numerical operations, Seaborn and Matplotlib for 

visualisation, Scikit-learn for machine learning, and XGBoost for gradient boosting, were 

employed (Chen & Guestrin, 2016). Each library, with its distinct functionalities, contributed 

to the research's objectives. 

 

3.8 Summary  

This chapter delineated the methodological trajectory adopted for the implementation of 

machine learning algorithms in APT detection. From data partitioning to model validation, 

each step was meticulously executed, ensuring robustness in the detection mechanism. The 

ensuing chapter, "Design Specification", will delve into the underlying techniques, 

architectures, and frameworks that bolster the implementation. 

 

4.0 Design Specification 

 

The detection and response to Advanced Persistent Threats (APTs) necessitate a robust and 

adaptive framework, leveraging state-of-the-art machine learning algorithms. The 

architecture proposed herein is underpinned by a multi-algorithmic approach, ensuring 

comprehensive coverage and adaptability to evolving threats. 

 

The data utilised for this system is sourced from the BETH dataset, a collection of real 

cybersecurity data tailored for anomaly detection research (Highnam et al., 2021). This 

dataset is processed and analysed using Python, with Google Colab serving as the primary 

computational platform, known for its efficacy in accelerating deep learning applications 

(Carneiro et al., 2018). 

 

Several machine learning algorithms are employed to ensure comprehensive threat detection: 
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1. Random Forests (RF): An ensemble learning method that operates by constructing 

multiple decision trees during training and outputs the mode of the classes for 

classification (Cutler, Cutler, & Stevens, 2012). RF offers high accuracy and the 

ability to handle large datasets with higher dimensionality. 

 

2. Gradient Boosting Decision Trees (GBDT): An iterative algorithm that adjusts for 

the errors of the previous trees. It has been recognised for its scalability and efficiency 

(Natekin & Knoll, 2013). 

 

3. XGBoost: An optimised gradient boosting algorithm renowned for its computational 

speed and model performance (Chen & Guestrin, 2016). 

 

4. K-Nearest Neighbours (KNN): A non-parametric method used for classification, 

where the input consists of the k closest training examples in the feature space 

(Zhang, 2016). 

 

5. Naïve Bayes: A probabilistic classifier based on Bayes' theorem, with an assumption 

of independence between features (Webb, Keogh, & Miikkulainen, 2010). 

 

6. Decision Trees (DT): A flowchart-like structure where each internal node denotes a 

test on an attribute, each branch represents the outcome of the test, and each leaf node 

holds a class label (De Ville, 2013). 

 

7. AdaBoost: An adaptive boosting technique that fits a sequence of weak learners on 

repeatedly modified versions of the data (Schapire, 2013). 

 

The system's efficacy is evaluated using the Receiver Operating Characteristic (ROC) curve, 

a graphical representation of a classifier's performance across different threshold settings 

(Omar & Ivrissimtzis, 2019). 

 

To summarise, the proposed architecture amalgamates multiple machines learning 

algorithms, ensuring a holistic and adaptive approach to APT detection and response. The 
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system's design is rooted in a deep understanding of the data processing steps and the 

machine learning techniques, ensuring timely and effective threat mitigation. 

 

5.0 Implementation 

 

The final stage of the implementation, as presented, leverages machine learning algorithms to 

detect APTs, providing a comprehensive understanding of their performance and efficacy.  

The algorithms employed include Random Forest (RF), Gradient Boosting Decision Trees 

(GBDT), XGBoost, K-Nearest Neighbors (KNN), Naïve Bayes, Decision Trees (DT), and 

AdaBoost. Performance metrics such as precision, recall, and the f1-score consistently 

indicated near-perfect detection capabilities across all algorithms. 

 

For example, the RF classifier demonstrated an accuracy of 1.00, with both precision and 

recall of 1.00 for class 0. For class 1, it achieved a precision of 1.00 and a recall of 0.99. 

Comparable results were noted for GBDT and XGBoost. The KNN algorithm, while simple, 

achieved an accuracy of 1.00. However, the Naïve Bayes algorithm showed a slight deviation 

with a precision of 0.97 for class 1, highlighting a minor trade-off between precision and 

recall (Omar & Ivrissimtzis, 2019). 

 

The efficacy of these algorithms in APT detection is evident, emphasizing their capability to 

differentiate between benign and malicious activities, a pivotal aspect in cybersecurity 

(Buczak & Guven, 2015; Elovici et al., 2007). 

 

The BETH dataset, tailored for anomaly detection in cybersecurity, comprises over eight 

million data points across 23 hosts (Highnam et al., 2021). Each host records benign activity 

and, at most, one attack, facilitating clear behavioural analysis. This modern dataset provides 

heterogeneously structured real-world data. Utilizing Python and leveraging the 

computational power of Google Colab ensured efficient data processing and model training 

(Carneiro et al., 2018). 
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Figure 1: ROC Curve Comparing Five of the Implemented Machine Learning Algorithms 

 

The Receiver Operating Characteristic (ROC) curve is pivotal for evaluating binary 

classification algorithms. It graphically represents a classifier's performance over different 

discrimination thresholds by plotting the true positive rate (TPR) against the false positive 

rate (FPR). 

 

From the ROC curve: 

• Random Forest, Gradient Boosting, and XGBoost each achieved an AUC of 1.0, 

signifying optimal classification. 

• Decision Trees (DT) and Naïve Bayes, though performing well, registered AUC 

values of 0.9999 and 0.9975, respectively, indicating a slight reduction in 

discriminatory power. 

 

The curve further reveals that while Random Forest, Gradient Boosting, and XGBoost 

perfectly classify instances, DT and Naïve Bayes show minor classification errors. For 

instance, DT has a FPR of 0.0001 and a TPR of 0.9999, suggesting minimal 

misclassifications in a dataset of 10,000 cases. Naïve Bayes, with a FPR of 0.0025 and a TPR 

of 0.9975, indicates a marginally higher misclassification rate. 

 

6.0 Evaluation 

This section offers a rigorous analysis of the study's results, focusing on the implications 

from both academic and practitioner perspectives. The evaluation will centre on the most 
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pertinent results that align with the research objectives and questions. The use of statistical 

tools is paramount to critically assess the significance and validity of the experimental 

research outputs. 

 

6.1 Discussion 

The implementation phase of the study revealed significant insights into the efficacy of 

various machine learning algorithms in detecting Advanced Persistent Threats (APTs). 

Drawing from the literature, APTs represent a sophisticated category of cyber threats that 

persistently and effectively target specific entities (Ahmed et al., 2021; Al-Saraireh, 2022). 

The detection of such threats necessitates advanced techniques, as traditional methods often 

fall short (Alshamrani et al., 2019). 

 

Table 1: Performance Metrics of Machine Learning Algorithms for APT Detection 

Algorithm Precision 

(Class 0) 

Precision 

(Class 1) 

Recall 

(Class 0) 

Recall 

(Class 1) 

F1-Score 

(Class 0) 

F1-Score 

(Class 1) 

Accuracy 

RF 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

GBDT 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

KNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Naïve 

Bayes 

1.00 0.97 0.99 0.98 1.00 0.97 0.99 

DT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AdaBoost 1.00 0.99 1.00 0.99 1.00 0.99 1.00 

 

The algorithms employed, including Random Forest (RF), Gradient Boosting Decision Trees 

(GBDT), and XGBoost, among others, showcased remarkable detection capabilities. For 

instance, RF's ensemble learning approach, which constructs multiple decision trees during 

training, has been acknowledged for its high accuracy and ability to manage large datasets 

(Cutler et al., 2012). Similarly, XGBoost's computational speed and model performance make 

it a preferred choice in many cyber threat detection scenarios (Chen & Guestrin, 2016). 

 

However, while the results are promising, it is essential to contextualise these findings within 

the broader landscape of APT detection research. Previous studies have highlighted the 

challenges associated with detecting APTs, given their evolving nature and the increasing 
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sophistication of attack vectors (Brewer, 2014; Cole, 2012). The current study's results, while 

indicative of high detection capabilities, should be interpreted with caution. It is crucial to 

consider the potential limitations of the employed algorithms, especially when faced with 

novel APT strategies not covered in the training data. 

 

The BETH dataset, utilised in this study, offers a rich source of real-world cybersecurity data 

(Highnam et al., 2021). However, as with any dataset, it may have its limitations. For 

instance, while it captures benign activity and potential attacks, the evolving nature of APTs 

means that newer attack vectors might not be represented. This limitation underscores the 

importance of continuous dataset updates and the potential integration of multiple datasets to 

achieve a more comprehensive view (Dwibedi et al., 2020; Sharafaldin et al., 2019). 

 

Furthermore, the choice of Python as the primary programming language, combined with 

Google Colab's computational capabilities, ensured efficient processing (Carneiro et al., 

2018). Yet, future research might explore the integration of other computational platforms or 

languages to ascertain any variations in performance or results. 

 

While the study provides valuable insights into the potential of machine learning algorithms 

in APT detection, it is imperative to approach the findings with a critical lens. Continuous 

refinement of the algorithms, coupled with updated and diverse datasets, will be crucial in 

maintaining the efficacy of APT detection systems in the face of evolving cyber threats. 

Future research should delve deeper into the potential modifications and improvements to the 

current design, ensuring that the detection system remains robust and adaptive. 

 

 

7.0 Conclusion and Future Work 

The primary research question that guided this study was: "How can machine learning 

algorithms be effectively implemented for the detection and response to Advanced Persistent 

Threats (APTs)?" The objectives set out at the beginning of this research aimed to provide a 

comprehensive review of current methodologies in APT detection, select and implement 

suitable machine learning algorithms, and evaluate their effectiveness. 

 

The research successfully addressed the challenges posed by concept drift and adversarial 

attacks in APT detection, as highlighted in the problem definition (Jordaney et al., 2017; 
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Kolosnjaji et al., 2018). Through a rigorous process, several machine learning algorithms 

were identified, implemented, and evaluated, leveraging tools such as Python, scikit-learn, 

TensorFlow, and PyTorch. The results, as presented in the earlier sections, demonstrate a 

promising potential for machine learning in enhancing cybersecurity measures against APTs. 

 

Key findings from this research include the identification of specific machine learning 

algorithms that exhibit high efficacy in APT detection. These findings are supported by the 

works of Buczak & Guven (2015) and Sommer & Paxson (2010), who have previously 

highlighted the potential of machine learning techniques in cybersecurity. Furthermore, the 

research offers a detailed blueprint for cybersecurity professionals, addressing the gap 

identified by Saxe and Berlin (2015). 

 

However, like all research, this study is not without its limitations. While the implemented 

algorithms showed high accuracy, precision, and recall, real-world applications might present 

more complex scenarios not covered in the dataset used. Additionally, the ever-evolving 

nature of APTs means that continuous updates and training of the models are essential. 

 

For future work, there are several avenues to explore: 

1. Incorporation of Deep Learning Techniques: Recent advancements in deep 

learning could be explored to enhance the detection capabilities further. The work of 

Carneiro et al. (2018) suggests that tools like Google Colaboratory can accelerate 

deep learning applications, which could be beneficial in APT detection. 

 

2. Real-time APT Detection in IoT Devices: With the rise of IoT devices and the 

associated threats (Kolias et al., 2017), future research could focus on real-time APT 

detection in such devices, ensuring a broader spectrum of cybersecurity. 

 

3. Behavioural Analysis: Instead of relying solely on pattern recognition, future 

research could delve into behavioural analysis of network traffic, as suggested by 

Mitchell & Chen (2013). This would provide a more holistic approach to APT 

detection. 

 

4. Commercialisation Potential: The standalone Python script developed in this 

research, while basic, serves as a foundational tool for preprocessing data in the 
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format of the BETH dataset and subsequently training and detecting APTs using the 

chosen algorithms. While the current version may not be ready for large-scale 

commercialisation, it offers a starting point for further development. Potential 

avenues for commercialisation include: 

 

• Collaborative Development: By open-sourcing the script, the research community 

and industry experts can collaborate to enhance its capabilities, making it more 

robust and adaptable to various datasets beyond BETH. 

 

• Integration with Existing Tools: The script could be integrated as a preprocessing 

module within larger cybersecurity platforms, enhancing their capabilities to 

handle data in the format of the BETH dataset. 

 

• Training Workshops: Organisations could benefit from training workshops on 

how to use and adapt the script for their specific needs, offering a hands-on 

approach to understanding APT detection using machine learning. 

 

• Customisation for SMEs: Small and medium-sized enterprises (SMEs) often lack 

the resources for high-end cybersecurity solutions. A refined version of the script, 

tailored to the specific needs of SMEs, could offer a cost-effective solution for 

basic APT detection. 

 

In conclusion, this research has made significant strides in the realm of APT detection using 

machine learning. The findings not only contribute to the academic community but also offer 

practical solutions to pressing cybersecurity challenges. As APTs continue to evolve, so must 

our strategies and tools to combat them, and this research serves as a foundational step in that 

direction. 
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