

Automatic Intrusion Detection System Using Deep Re-Enforcement Learning With Q-network Algorithm (DQN)

MSc Research Project Cyber Security

Ugochukwu Nwokedi Student ID: X21235287

School of Computing National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	UGOCHUKWU NWOKEDI
Student ID:	X21235287
Programm	CYBERSECURITY
e:	······ : ·····
Module:	ACADEMIC INTERNSHIP
Superviso r: Submissio	MICHAEL PRIOR
	14/08/2023
Project Title:	AUTOMATIC INTRUSION DETECTION SYSTEM USING DEEP REINFORCEMENT LEARNING WITH Q NETWORK ALGORITHM
Word Count:	 Page Count

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature	UGOCHUKWU
:	NWOKEDI
Date:	12/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	

You must ensure that you retain a HARD COPY of the project,	
both for your own reference and in case a project is lost or mislaid. It is	
not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only

Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

1 Introduction

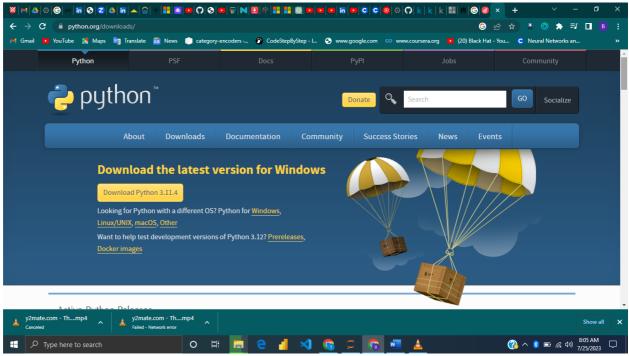
The steps and process taken in the development of this project for an Intrusion Detection System for networks is presented in this Configuration Manual. It describes all necessary settings and software tools needed to replicate the experimental setup for the project.

2 System Specification

The system configuration used in the project are:

- Operating System: Windows 10
- Processor: Intel Core i5 10 Gen
- Hard Drive: 500GB
- RAM: 8GB

3 Software Tools


Some of the software tools used to implement this project are:

- Python
- Google Colab

3.1 Software Installation

This presents the processes taken in installing the tools used.

 Download and Installation of Python 3.11.4. The download link is <u>https://www.python.org/downloads/</u>

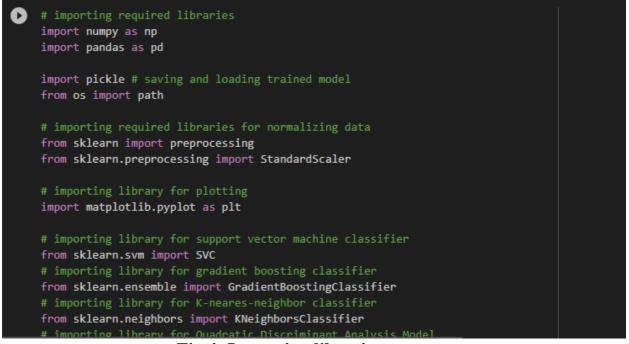
Fig 1: Python Download

ail 💽	🛛 YouTube 🔀 Maps 🏽 Translate	e 📴 News 🧊 category	-encoders 🧊 CodeS	tepByStep - I 🕤	www.google.com 📿	www.coursera.org 🕨 (20)) Black Hat - You	C Neu	ıral Networks an	
	Version	Operating	g System Descripti	on	MD5 Sum		File Size	GPG	Sigstore	
	Gzipped source tarball	Python 3.11.4 (6	id-hit) Setun		hfcartofofohfa	- X	26526163	SIG	.sigstore	
	XZ compressed source tarball	a Tyunon on the	and the second second				19954828	SIG	.sigstore	
	macOS 64-bit universal2 installer			-	10n 3.11.4		43120982	SIG	.sigstore	
	Windows embeddable package (3	32-bit)		ade Now to keep y isable features.	our current settings	, or choose Customize to	9596761	SIG	.sigstore	
	Windows embeddable package (64-bit)	🔍 🔍 Upgra	de Now			10591509	SIG	.sigstore	
	Windows embeddable package (A	ARM64)	C:\Usen	s\USER\AppData\Loc	al\Programs\Python\Py		9965162	SIG	.sigstore	
	Windows installer (32 -bit)			s your existing install Sustomize to review c	ation without changing urrent options.	settings.	24238000	SIG	.sigstore	
	Windows installer (64-bit)						25426160	SIG	.sigstore	
	Windows installer (ARM64)		→ Custo	omize installation	ı		24714240	SIG	.sigstore	
			Choose	e location and feature	5					
		python				Cancel				
		window	S			Cancer				
	About Dov	wnloads	Documentation	Comm	nunity	Success Stories	News			
	Applications All	releases	Docs	Divers	ity	Arts	Pythor	n News		
	Quotes Sou	urce code	Audio/Visual Talks	Mailin	g Lists	Business	PSF Ne	wsletter		

Fig 2: Python Installation

This is because I already python 3.11.3 installed on my laptop.

4 Implementation


The libraries from python used in implementing this project:

- Sckit-Learn
- Keras

- Pandas
- Numpy
- Matplotlib

∕ Im	 #Import dataset from google.colab import files files.upload()
	Choose Files KDD.csv KDD.csv KDD.csv(text/csv) - 18366234 bytes, last modified; 6/4/2023 - 100% done
	Saving KDD.csv to KDD.csv
	<pre>voices : b',duration,protocol_type,service,flag,src_bytes,dst_bytes,land,wrong_fragment,urgent,hot,num_failed_logins,logged_in,num_compromised,root_shell,su_attempted,logins,logged_in,num_compromised,root_shell,su_attempted,logins,logged_in,num_compromised,root_shell,su_attempted,logins,logged_in,num_compromised,root_shell,su_attempted,logins,logged_in,num_compromised,root_shell,su_attempted,logins,logins,logged_in,num_compromised,root_shell,su_attempted,logins,</pre>

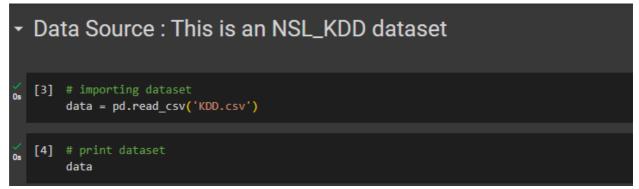

Fig 3: Mounting local file in google colab

Fig 4: Importing libraries

1 Data preparation

In this chapter, data preparation steps are taken before passing it ro the model training and testing. These steps includes: Data scaling/ Normalization One-hot encoding Label categorization Label encoding Data spliting

Fig 5: Data Preparation

2.1 Data cleaning

This chapters contain the data cleaning code. We go through the process of removing the the feature that has 0 value it dataset to avoid noise in the model training.

		0		
[]	#To	get all the columns		
	data	.info()		
	<cla< td=""><td>ss 'pandas.core.frame.DataFra</td><td>me'></td><td></td></cla<>	ss 'pandas.core.frame.DataFra	me'>	
	Rang	eIndex: 125973 entries, 0 to	125972	
	Data	columns (total 44 columns):		
	#	Column	Non-Null Count	Dtype
		Unnamed: 0	125973 non-null	
	1	duration	125973 non-null	
	2	protocol_type	125973 non-null	
		service	125973 non-null	
	4	flag	125973 non-null	
	5	src_bytes	125973 non-null	
		dst_bytes	125973 non-null	
	7	land	125973 non-null	
	8	wrong_fragment	125973 non-null	
	9	urgent	125973 non-null	
	10	hot	125973 non-null	
	11	<pre>num_failed_logins</pre>	125973 non-null	
		logged_in	125973 non-null	
	13	num_compromised	125973 non-null	
	14	root_shell	125973 non-null	
	15	su_attempted	125973 non-null	
	16	num_root	125973 non-null	
	17	num_file_creations	125973 non-null	int64

Fig 6: Data preparation

1.1 Data Scaling

This cells contain the code for scaling the data into adequate size for ML algorithm.

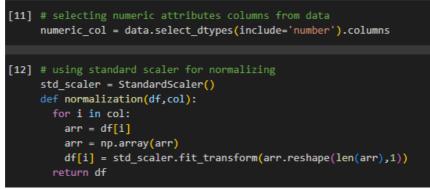


Fig 7: Data Scaling

[14]		<pre># calling the normalization() function data = normalization(data.copy(),numeric_col)</pre>										
0	<pre># data after normalization data.head()</pre>											
C→		Unnamed: 0	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	urgent	
	0	-1.732037	-0.110249	tcp	ftp_data	SF	-0.007679	-0.004919	-0.014089	-0.089486	-0.007736	
	1	-1.732010	-0.110249	udp	other	SF	-0.007737	-0.004919	-0.014089	-0.089486	-0.007736	
	2	-1.731982	-0.110249	tcp	private	S0	-0.007762	-0.004919	-0.014089	-0.089486	-0.007736	
	3	-1.731955	-0.110249	tcp	http	SF	-0.007723	-0.002891	-0.014089	-0.089486	-0.007736	
	4	-1.731927	-0.110249	tcp	http	SF	-0.007728	-0.004814	-0.014089	-0.089486	-0.007736	
	5 rc	ws × 42 colu	imns									

Fig 8: Data Scaling

2 One Hot Encoding

This cells contains code for converting our categorical feature into numeric to be easily be used for model training.

[16]	<pre>l6] # selecting categorical data attributes cat_col = ['protocol_type','service','flag']</pre>									
O	# creating a dataframe with only categorical attributes categorical = data[cat_col]									
	_	prical.head()		J						
C⇒	pr	otocol_type	service	flag	7 II.					
	0	tcp	ftp_data	SF						
	1	udp	other	SF						
	2	tcp	private	S 0						
	3	tcp	http	SF						
	4	tcp	http	SF						

Fig 9: One Hot Encoding

0	<pre># one-hot-encoding categorical attributes using pandas.get_dummies() function categorical = pd.get_dummies(categorical,columns=cat_col) categorical.head()</pre>										
C⇒	protoco]	l_type_icmp	protocol_type_tcp	protocol_type_udp	service_IRC	service_X11	service_Z39_50	service_aol			
	0	0			0			0			
	1	0	0	1	0	0		0			
	2	0			0			0			
	3	0	1	0	0	0		0			
	4							0			
	5 rows × 84 c	olumns									

Fig 10: One Hot Encoding

3 Label Categorization

This cells code categorize the label attacks into classes (Normal, Dos, R2L, U2R, Probe) and for easy visualization of the attack label.

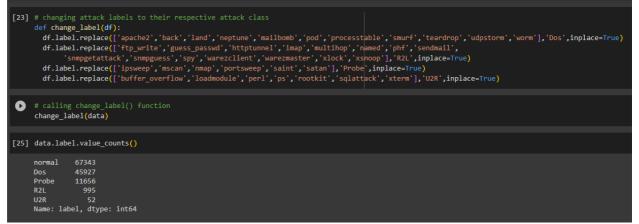


Fig 11: Label Categorization

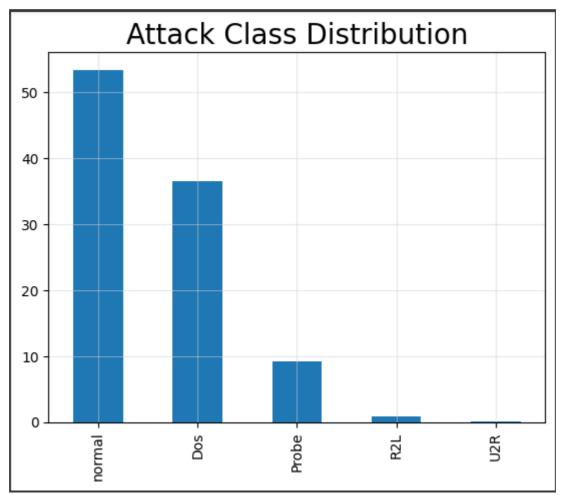


Fig 12: Attack visualization

4 Label Encoding

Label encoding is done on the label column that has categorical values to turn them into numerical values by replacing the data categories by integers starting with 0.

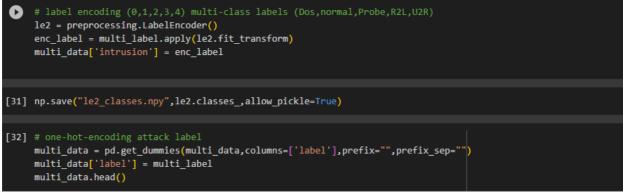


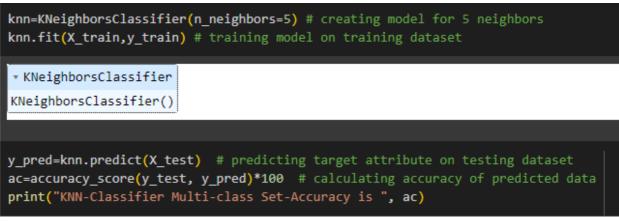
Fig 13: Label Encoding

5 Data Splitting

Final step to data preparation is splitting the data into training and testing sets. For this there already exists sklearn function that does all the splitting for us. This step is important so we can have data for evaluating our model and both trainand test samples should contain similar data variance.

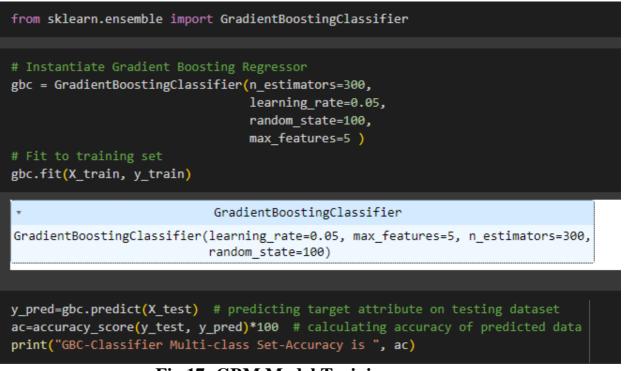


Fig 14: Data splitting


6 Model Training

6.1 Support Vector Machine

qsvm=SVC(kernel='poly',gamma='auto') # using kernal as polynomial for quadratic qsvm.fit(X_train,y_train) # training model on training dataset v SVC SVC(gamma='auto', kernel='poly') y_pred=qsvm.predict(X_test) # predicting target attribute on testing dataset ac=accuracy_score(y_test, y_pred)*100 # calculating accuracy of predicted data print("QSVM-Classifier Binary Set-Accuracy is ", ac)


Fig 15: SVM Model Training

6.2 K-Nearest Neighbor Classfier

Fig 16: KNN Model Training

6.3 Gradient Boosting Machine Classifier

Fig 17: GBM Model Training 6.4 Quadratic Discriminant Analysis

```
qda = QuadraticDiscriminantAnalysis()
qda.fit(X_train, y_train) # training model on training dataset
/usr/local/lib/python3.10/dist-packages/sklearn/discriminant_analysis.py:926: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
* QuadraticDiscriminantAnalysis
QuadraticDiscriminantAnalysis()

y_pred = qda.predict(X_test) # predicting target attribute on testing dataset
ac=accuracy_score(y_test, y_pred)*100 # calculating accuracy of predicted data
print("QDA-Classifier Multi-class Set-Accuracy is ", ac)
```

Fig 18: QDA Model Training

6.5 Random Forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
import itertools
#Sckit-learn
rfc = RandomForestClassifier()
create the RFE model and select 10 attributes
rfe = RFE(rfc, n_features_to_select=10)
rfe = rfe.fit(X_train, y_train)

y_pred = rfe.predict(X_test) # predicting target attribute on testing dataset ac=accuracy_score(y_test, y_pred)*100 # calculating accuracy of predicted data print("QDA-Classifier Multi-class Set-Accuracy is ", ac)

Fig 19: Random Forest Model Training 6.6 Multi Layer Perceptron

Model definition

mlp = Sequential() # creating model
adding input layer and first layer with 50 neurons
ReLu = Rectify linear Unit
Unit =
mlp.add(Dense(units=50, input_dim=X_train.shape[1], activation='relu'))
output layer with sigmoid activation
mlp.add(Dense(units=5,activation='softmax'))

Fig 20: MLP

Optimization and metrics

defining loss function, optimizer, metrics and then compiling model
mlp.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

predicting target attribute on testing dataset
test_results = mlp.evaluate(X_test, y_test, verbose=1)
print(f'Test results - Loss: {test_results[0]} - Accuracy: {test_results[1]*100}')

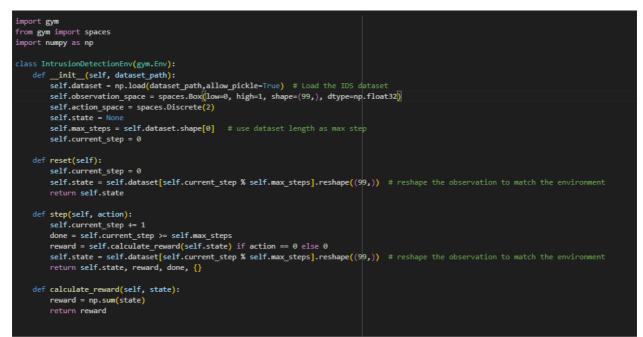
Fig 21: MLP

Results and Evaluation

Algorithm	Accuracy	Precision	Recall	F1 Score
SVM	93.00	92.00	93.00	92.00
KNN	98.00	98.00	98.00	98.00
GBM	97.00	97.00	97.00	97.00
QDA	47.00	73.00	47.00	53.00
Random Forest	97.45	97.00	97.00	97.00

ILP 96.83	97.02	96.61	96.81	
-----------	-------	-------	-------	--

7. Reinforcement Learning


Reinforcement learning offers a promising approach to enhance Intrusion detection system capabilities by allowing systems to learn and adapt based on feedback from their environment.

The aim of this projects is to develop an IDS using DQN algorithm to detect and classify network intrusion accurately. The IDS should be capable of learning from historical network data and making informed decisions on whether network traffic represents normal or malicious behaviors (Probe, DOS, R2L, U2R).

1.1 Terms used in Reinforcement Learning

- **Agent():** An entity that can perceive/explore the environment and act upon it.
- Environment(): A situation in which an agent is present or surrounded by. In RL, we assume the stochastic environment, which means it is random in nature.
- Action(): Actions are the moves taken by an agent within the environment.
- State(): State is a situation returned by the environment after each action taken by the agent.
- **Reward():** A feedback returned to the agent from the environment to evaluate the action of the agent.
- **Policy():** Policy is a strategy applied by the agent for the next action based on the current state.
- **Value():** It is expected long-term retuned with the discount factor and opposite to the short-term reward.

7.1 Building the Environment

Fig 22: Reinforcement Learning Environment

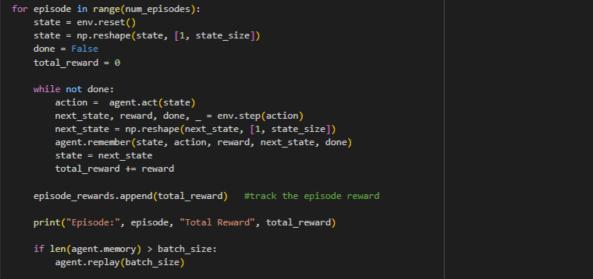
This cell code defines the reinforcement learning environment for the network intrusion detection and defining all the necessary component of the environment.

7.2 Building the Agent

```
from keras.optimizers import Adam
from collections import deque
import random
class DQNAgent:
   def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95 # discount factor
        self.epsilon = 1.0 # exploration rate
        self.epsilon_decay = 0.995
        self. epsilon_min = 0.001
        self.model = self.build_model()
   def build_model(self):
       model = Sequential()
       model.add(Dense(24, input_shape=(self.state_size,), activation = 'relu'))
       model.add(Dense(24, activation='relu'))
        model.add(Dense(self.action_size, activation= 'linear'))
        model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
        return model
   def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))
   def act(self, state):
        if np.random.rand() <= self.epsilon:</pre>
           return random.randrange(self.action_size)
        act_values = self.model.predict(state)
        return np.argmax(act_values[0])
  def replay(self, batch_size):
      minibatch = random.sample(self.memory, batch_size)
      for state, action, reward, next_state, done in minibatch:
          target = reward
          if not done:
               target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
          target_f = self.model.predict(state)
          target_f[0][action] = target
          self.model.fit(state, target_f, epochs=1, verbose=0)
      if self.epsilon > self.epsilon_min:
         self.epsilon *= self.epsilon_decay
```

Fig 23: Reinforcement Learning Agent

This cell codes defines the agent that will perform some certain actions and explore the environment.


7.3 Implementing the data

```
# create the environment
dataset_path = '/content/data.npy'
env = IntrusionDetectionEnv(dataset_path)
# set the state and action sizes
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
```

```
# create the DQN agent
agent = DQNAgent(state_size, action_size)
# training loop
num_episodes = 10
batch_size = 320
episode_rewards = [] # track rewards per episode
```

Fig 24: data implementation

7.5 Tracking the process of the training

Fig 25: Tracking with Episodes

This code cells tracking the training process by looping through the episodes.

7.6 Plotting the Learning Curve

```
# plotting the learning curve
plt.plot(episode_rewards)
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.title('Learning Curve')
plt.show()
```

Fig 25: Learning Curve

This cell code measures the evaluation of the performance of the implemented DQN algorithm and monitoring the convergence of the agent's total rewards