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Abstract 

 

IDS is an important part of the cybersecurity and IT space. Network intrusions are most times 

very hard to detect and group into their right network patterns. Due to the complexity of 

network intrusion detection, new age machine learning models that could eliminate some 

problems that an IDS places on a machine learning model e.g. poorly constructed, non-uniform 

datasets have to be discovered. Reinforcement learning has been applied to varying successful 

degrees in automation, gaming etc., and this report shows that it can be successfully applied to 

the field of network intrusion detection as well. Our proposed model uses the algorithm of a 

Q-network to operate in a reinforcement learning environment. The approach will be evaluated 

using a reward against episodes learning curve and will be further compared to more traditional 

machine learning models that use accuracy, recall and precision as evaluation metrics. 

 

 

 

1 Introduction 
 

In today's fast-changing cybersecurity world, safeguarding computer networks and systems 

from unauthorized access is extremely important. Intrusion Detection Systems (IDS) are 

crucial tools for finding and reacting to potential security breaches. These systems do this by 

watching and studying network activity or host behaviour to find and address possible breaches 

or security problems (Bajtoš, Sokol and Mézešová, 2019).  

IDS can be mainly divided into two key types: network-based IDS (NIDS) and host-

based IDS (HIDS) (Suroso and Prastya, 2020). NIDS observe network activity at key spots, 

such as network entry points or switches, checking data for dubious patterns or familiar attack 

indicators. In contrast, HIDS focus on individual systems, observing system records, file 

integrity, and user actions to find potential intrusions. Consequently, merging NIDS and HIDS 

provides a more complete and layered approach to finding intrusions, allowing groups to find 

and address dangers on various levels. Although IDS have shown their value in cybersecurity, 

they still have methods that have many natural issues and restrictions. For example, signature-

based detection, often used by IDS, depends on known attack patterns (Alarqan, Zaaba and 

Almomani, 2019). This method is, therefore, inadequate against new and unknown exploits, 

which may lack recognizable patterns. Furthermore, rule-based detection is inflexible and 

needs constant updates to remain current with evolving attack tactics (Gupta and Agrawal, 
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2020). Anomaly detection methods frequently result in many false alarms, making it hard to 

differentiate between legal and harmful actions (Sadikin, van Deursen and Kumar, 2020). 

These restrictions emphasize the need for improvements in IDS solutions. 

1.1 Research Problem 

The research problem in this study revolves around the advancement of Intrusion Detection 

Systems (IDS) by comparing the effectiveness of reinforcement learning and supervised 

machine learning algorithms. The aim is to explore the potential of machine learning 

techniques for improving the accuracy, adaptability, and efficiency of intrusion detection. As 

cyber-attacks become increasingly sophisticated and dynamic, traditional IDS approaches face 

challenges in effectively identifying and responding to evolving intrusion techniques (Hossain 

et al., 2020). Furthermore, the research problem is highly relevant in the current cybersecurity 

landscape, where organizations and individuals face constant threats of data breaches, malware 

infections, and unauthorized access attempts. The findings of this study can provide valuable 

insights into the effectiveness of current machine learning techniques for intrusion detection, 

enabling practitioners and researchers to make informed decisions regarding the selection and 

implementation of IDS techniques. 

1.2 Research Aim and Objectives 

The aim of this project is to create an Intrusion Detection System (IDS) using the DQN 

algorithm. This IDS aims to accurately identify and categorize network intrusions. It should 

have the ability to learn from past network data and make educated judgments about whether 

network activity is typical or harmful. This includes identifying different types of malicious 

behaviour such as Probing, Denial-of-Service (DOS) attacks, Unauthorized Access (R2L), and 

User-to-Root (U2R) attacks. 

1.3 Research Questions 

This study will explore the following research questions:  

1. How effectively can the Multi-Layer Perceptron model, a range of supervised 

machine learning algorithms, including random forests, support vector 

machines (SVM), K-nearest neighbor (KNN), and Gradient Boosting Machines 

(GBM), perform multi-class classification of network intrusion attacks, with a 

specific emphasis on accurately categorizing attack types into DoS, Probe, U2R, 

and R2L groups? 

2. What is the comparative effectiveness of machine learning models and deep 

learning model, assessed using accuracy, precision, recall, and F1-score 

evaluation metrics, in classifying network intrusion attacks? 

3. How can an IDS be developed using DQN algorithm for accurately classifying 

various network intrusions by learning from historical data and distinguishing 

between normal and malicious behaviours, encompassing Probing, DOS, R2L, 

and U2R attacks? 
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1.4 Contribution of the Research 

This study explores how reinforcement learning and supervised machine learning algorithms 

work, giving useful insights into their strengths, weaknesses, and usefulness for making 

intrusion detection more accurate and efficient. The research also explores a deep learning 

application and compares the different techniques to find ways to identify intrusions better. 

Using reinforcement learning algorithms, the research checks if IDS can learn and change their 

ways of finding problems as new attacks happen. The findings of the study can help make IDS 

solutions that are good at handling new threats and attacks.  

1.5 Structure of the Study 

This report contains the introductory section which introduces the research problem, its 

significance, and objectives. The related works section reviews existing literature on intrusion 

detection systems, highlighting current knowledge and research gaps. The methodology 

section includes the general implementation methodology, data collection and experimental 

setup. The design specification section identifies techniques, architecture, and requirements 

forming the implementation's foundation. The implementation section covers executing the 

proposed solution, describing outputs like transformed data and models, along with tools used. 

The evaluation section analyses findings, considering academic and practical perspectives, and 

focusing on key results. The conclusion and future work section summarizes the research, 

highlighting key findings, answering objectives, and suggesting future studies. 

 

 

2 Related Work 
 

IDS have undergone significant transformation as a result of technological advances in 

artificial intelligence and machine learning techniques. Nevertheless, using reinforcement 

learning and supervised machine learning algorithms, two well-known IDS techniques, are 

explored and contrasted in this research review. 

  

2.1 Intrusion Detection Systems (IDS) 

 

The increasing advancements in computer networks and technologies have led to growing 

concerns about security. Cyber-attacks targeting networks have become a common occurrence, 

making it crucial to find effective solutions to protect against these threats (Papanikolaou et 

al., 2023). Using Intrusion Detection Systems (IDS) and other instruments to identify and stop 

hostile activity in networks is one viable strategy (Talaei Khoei and Kaabouch, 2023). 

According to Azizan et al. (2021) an intrusion detection system (IDS) is designed to analyse 

internet traffic and stop illegal or harmful activity. When suspicious or malicious activity is 

discovered, certain IDSs have the ability to take action, such as restricting traffic from suspect 

IP addresses. Network assaults have significantly increased in frequency and severity over the 

past few years and have become more intricate with time. In recent years, there has been a 

significant increase in the number and severity of network attacks, which have become more 

complex over time (Qiu et al., 2020). As a result, there has been extensive research on various 
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security techniques to defend against these cyber-attacks and computer viruses over the past 

decade. Furthermore, IDS continuously monitors the network and identifies any suspicious or 

policy-violating behavior. This is especially important in systems like smart grids, where IDS 

can prevent unauthorized access and exploitation of vulnerabilities.  

The three primary categories of intrusion detection systems (IDS) are signature-based, 

specification-based, and anomaly-based (Ahmad et al., 2020). Cyberattacks are discovered by 

signature-based IDS by examining patterns of harmful behaviour. IDS that is based on 

specifications notifies users when activity deviates from expected behavior. Statistical 

techniques are used by anomaly-based IDS to discriminate between malicious and legitimate 

behaviour. IDS plays a key role in distinguishing between system intrusions and malfunctions 

by examining data gathered from the system and detecting any modifications that take place 

after an attempted attack (Heidari and Jabraeil Jamali, 2022). The choice of algorithm used in 

IDS is a significant factor that impacts its performance, and determining the best-performing 

algorithm requires further investigation (Alzahrani and Alenazi, 2021). Nevertheless, given the 

adaptability of networks, ensuring their security has become crucial. Attackers are capable of 

controlling the computer system using strong adaptive techniques while interfering with 

network traffic. In order to prevent network breaches and identify the type of intrusion that has 

been attempted, it is crucial to do so. 

2.2 Machine Learning and Deep Learning 

 

Machine Learning describes computer-based techniques that simulate human learning 

processes to autonomously acquire knowledge. This encompasses a wide range of disciplines, 

such as psychology, neuroscience, computer science, and statistics, that are combined to 

explore and study different aspects (Xu et al., 2021). In recent times, learning algorithms have 

made significant advancements, largely due to the increased processing power of computers 

and the availability of big data. According to Shin et al. (2019), machine learning is usually 

split into three groups of algorithms: supervised learning , unsupervised learning, and 

reinforcement learning. Supervised learning algorithms involve training models by mapping 

true output labels to learn the relationship with corresponding feature values (Katole, Sherekar 

and Thakare, 2018). In contrast, unsupervised learning algorithms learn from the entire training 

dataset without knowing the output for each input. They do not rely on labeled data. An 

example of an unsupervised learning algorithm is K-means clustering (Ravipati and 

Abualkibash, 2019). Further, Reinforcement learning (RL) algorithms focus on learning from 

the environment by placing an agent within it (Géron, 2019). The agent learns from actions 

within the environment, experiencing both successes and failures.  

Furthermore, in supervised machine learning, a learning algorithm is used to optimize 

predictions by tuning various parameters based on a dataset of recorded samples (Lopez-

Martin, Carro and Sanchez-Esguevillas, 2020). These samples consist of feature vectors and 

corresponding pre-assigned labels. The algorithm's goal is to accurately predict the labels for 

new feature vectors. In comparison, there are two essential elements in a conventional Deep 

Reinforcement Learning (DRL) framework: a representative as well as a setting (Hu, Beuran, 

and Tan, 2020). The agent makes decisions based on observations of the surroundings. As a 

consequence of certain actions, the environment undergoes changes, leading to a new state and 
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a reward that represents the effectiveness of the action. In a conventional reinforcement 

learning framework, there is no predefined dataset available that pairs examples with their 

respective actions. Rather, the framework learns the connection between states and actions by 

means of a reward function (Kim et al., 2017). Learning is not based on immediate information 

about the best actions, but on a series of rewards that indicate the value of intermediate actions, 

with the aim of maximizing the total rewards obtained. Machine Learning-based Intrusion 

Detection Systems (IDS) offer an autonomous learning solution and demonstrate improved 

performance compared to conventional IDS (Sethi et al., 2019). Due to the conflicting criteria 

in predicting IDS performance, the algorithms used are becoming increasingly intricate and 

thus, less transparent. 

Reinforcement learning stands apart from supervised and unsupervised learning as it 

revolves around the concept of sequential decision-making. This approach involves the 

interaction between an agent and an environment across discrete time steps. The agent, driven 

by goals, functions as a learning algorithm (Subramanian, Chitlangia and Baths, 2022). The 

environment encompasses everything beyond the agent's control, and it is not necessarily 

limited to physical boundaries, such as those between a robot and its surroundings. In fact, the 

agent can even be a component within a larger control system. Typically, the agent possesses 

limited knowledge regarding the environment and aims to acquire the optimal behavioural 

strategy through learning. First off, the RL's objective is to maximize reward rather than 

forecast the output data Y based on the input data X. Second, the learner's goal is to select the 

values of X; there is no set distribution D(x) from each point X (Barto and Dietterich, 2004). 

Below is a diagram illustrating the main steps of reinforcement learning.  

2.3 Review of Related Studies 

 

The growing prevalence of big data has led to widespread adoption of machine learning 

techniques in intrusion detection systems. Some studies have utilized traditional machine 

learning algorithms or their improved versions for this purpose. Qureshi et al., (2020) 

introduced a unique adversarial intrusion detection system called RNN-ADV, which is based 

on random neural networks. However, the effectiveness of this model is significantly impacted 

by the perturbation environment. When the JSMA algorithm is utilized, RNN-ADV surpasses 

deep neural networks in terms of accuracy and F1-score. Verma and Ranga, (2019) conducted 

a study on classifier ensembles, evaluating multiple models on three datasets: CIDDS-001, 

UNSW-NB15, and NSL-KDD. They performed 10-fold cross-validation and found that the 

Classification and Regression Trees algorithm achieved the highest average accuracy of 

96.74% by creating decision trees. However, XGBoost achieved a very close accuracy of 

96.73% and achieved the best average True Positive Rate (TPR) of 97.31%.  

In a study conducted by Azizan et al. in 2021, the main objective was to determine the 

classification algorithm that offers optimal detection performance for intrusion in IDSs. The 

study provides an evaluation of three commonly used classification algorithms, namely random 

forest (RF), decision jungle (DJ), and support vector machine (SVM), in the context of 

intrusion detection systems (IDS).  The Intrusion Detection Evaluation Dataset (CIC-IDS2017) 

and Knowledge Discovery in Databases approach are used to implement and test the ML-based 

NIDS model. SVM achieves 98.18% accuracy on average, followed by RF at 96.76% and DJ 
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at 96.50%, according to the data. SVM's, RF's, and DJ's average precisions are 98.74, 97.96, 

and 97.82 respectively. SVM scores 95.63, RF scores 97.62, and DJ scores 95.77 for average 

recall.. Based on these results, SVM demonstrates the best overall performance for detecting 

intrusions in IDSs. Furthermore, Chen et al.(2023) proposed FGS-RFRAS, a feature grouping 

and selection strategy that incorporates a robust fuzzy rough approximation space and graph 

theory. The effectiveness of this approach was demonstrated through evaluations on 21 

datasets, highlighting its ability to improve the model's robustness. Feature selection techniques 

fall into three categories, namely filtering, embedding, and wrapper. Among these techniques, 

the wrapper method RFE is deemed more appropriate for IDS datasets that contain extensive 

data and numerous features because it iteratively selects subsets of features.  

In their study, Chowdhury, Ferens, and Ferens (2016) proposed a hybrid approach that 

combines two machine learning algorithms to classify abnormal behavior in network traffic. 

The performance of their model was assessed using metrics such as false positive rate, false 

negative rate, and the time required for intrusion detection. The experimental findings 

showcased a high detection rate and accuracy of 98.76%, along with a low false-positive rate 

of 0.09% and false-negative rate of 1.15%. In comparison, the conventional SVM-based 

scheme achieved a detection accuracy of 88.03%, a false-positive rate of 4.2%, and a false-

negative rate of 7.77%.  

In their study, Mohamed, Hefny, and Alsawy (2018) proposed a methodology for 

classifying network activities as normal or abnormal using machine learning algorithms such 

as Random Forest (RF), Multi-Layer Perceptron (MLP), and Library for Support Vector 

Machine (LIBSVM). They conducted experiments on the NSL-KDD dataset and employed the 

Correlation Feature Selection (CFS) technique to eliminate irrelevant attributes. The results 

revealed that the multilayer perceptron classifier achieved an accuracy of 95.7%. On the other 

hand, the Random Forest algorithm exhibited an accuracy of 99.6%, while the LIBSVM 

classifier achieved 94.8% accuracy. The CFS feature selection approach showed a lower 

accuracy of 91.7%. However, the overall accuracy improved to 97.2% when incorporating 

LIBSVM into the methodology.  

Biswas (2018) proposed an intrusion detection approach that incorporates machine 

learning and other feature selection techniques to identify important features from the original 

dataset. By analysing various classifiers and selection methods, they aimed to improve the 

accuracy of intrusion detection. The performance of the approach was evaluated using a five-

fold cross-validation technique on the "NSL-KDD" dataset. The experimental results showed 

two main findings: (1) the "K-NN" classifier outperformed other methods in terms of 

performance and efficiency, and (2) the feature selection method based on information gain 

ratio yielded better results. 

 

 

3 Research Methodology 
 

The research methodology presented here describes the process of conducting multi-class 

classification for network intrusion using the NSL_dataset. This project was implemented with 

Google Colaboratory, a cloud platform that is built on Jupyter Notebooks (Carneiro et al., 

2018). It offers a runtime that is completely set up for machine learning and deep learning with 
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free access to a powerful GPU. The programming language adopted for this study is the Python 

language. Python is a sturdy programming language that is easy grasp. Its object-oriented 

programming technique is simple but efficient, and contains sets of high-level data structures 

(Raschka, Patterson and Nolet, 2020).  

3.1 General Classification Approach 

Classification is a widely used technique that involves predicting the class of new samples 

based on a model derived from training data. The general approach is shown in Figure 3.1 

below. According to Han, Pei and Tong (2022), the classification process consists of two steps. 

The first step involves constructing a classification model from a given dataset, referred to as 

the training set. The second step involves using the model to predict or test the class labels for 

new, unseen data, which is known as the testing set.  

 
Figure 3.1: General classification approach 

Source: (Alghamdi and Javaid, 2022) is a widely 

 

3.1.1 Data Preprocessing 

Data preprocessing is an essential initial step where the data is transformed or encoded to 

enable efficient parsing by the machine (Ramírez-Gallego et al., 2017). This prepares the data 

for analysis by the model algorithm, allowing for quick and effective interpretation of its 

features. Preprocessing is done to transform raw data into a format that can be used by artificial 

intelligence. A data scientist can achieve more accurate results by using structured and clean 

data. It is possible to use various techniques to complete each step required to achieve accurate 

automatic prediction. Above in Figure is a schematic that shows the preprocessing steps.  

3.1.2 Data Cleaning  

Data cleaning is the process of identifying inaccurate or noisy data and either fixing them or 

eliminating them from the dataset. It primarily focuses on locating and replacing records and 

data that are erroneous, irrelevant, incomplete, or otherwise noise-related (Ridzuan and Wan 

Zainon, 2019). The initial step in data cleansing involves analyzing the data to identify errors 

and inconsistencies present in the dataset.  
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3.1.3 Data Transformation 

The transformation process involves modifying and combining data to create structured 

configurations that are suitable for knowledge discovery (Maingi, 2015). Data transformation 

can also be utilized to convert categorical variables into numerical ones, which is advantageous 

for the development of prediction models (Fan et al., 2021). The widely adopted approach for 

this transformation is the one-hot encoding method. This method generates a matrix with L − 

1 columns for a categorical variable containing L levels (Fan et al., 2019). However, a potential 

drawback of this approach is that it can lead to high-dimensional data if the categorical 

variables have numerous levels. To address this issue, deep learning algorithms can be 

employed. These algorithms represent categorical variables using dense representations, 

proving especially useful for text data where individual words are represented as vectors for 

further analysis (Goodfellow, Bengio and Courville, 2016). According to Han, Pei and Tong, 

(2022), the transformation process achieves its objectives through several sub-processes: 

smoothing, aggregation, generalisation, data normalisation and feature construction. Some of 

these processes are used, described in subsequent sections. 

3.1.4 Data Integration 

Data integration involves combining data from different sources into a unified dataset. With 

the increase in data volume and complexity, data integration becomes a challenging and 

iterative process (Nargesian, Asudeh and Jagadish, 2022). This process includes addressing 

heterogeneity and maintaining data standards across various sources.  

3.1.5 Data Reduction 

Data reduction is a technique that addresses these issues by reducing the size or dimensionality 

of a dataset (Ramírez‐Gallego et al., 2015). This helps enhance the efficiency of the model's 

learning process and improves performance by preventing overfitting and addressing skewed 

data distribution. Large amounts of data in a data warehouse or dataset can create challenges 

for storage and processing. However, not every model requires a vast amount of data for 

training purposes. The data may contain numerous attributes, some of which may be irrelevant 

or interconnected (Ares, Morán-Fernández and Bolón-Canedo, 2022). The data reduction 

process aims to obtain a smaller representation of the dataset while preserving the integrity of 

the original data.  

3.2 Evaluation metrics 

To evaluate the efficiency of our classification models, the following performance metrics are 

employed. 

 

Precision: Precision is a measure of how accurately the classifier made accurate predictions. 

It displays the percentage of accurately identified positive occurrences (also known as true 

positives) in comparison to all positive predictions, including both true and false positives. The 

formula for calculating precision is TP/(TP + FP). 
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Recall (Sensitivity): Recall, also referred to as sensitivity or the true positive rate, measures 

how well a model can pick out positive events from all real positive instances. Where TP stands 

for true positives and FN for false negatives, the calculation is TP / (TP + FN). 

F1-score: The F1-score, which aims to establish a balance between the two measures, is a 

harmonic mean of precision and recall. It offers a solitary indicator of how well the model 

performs overall in accurately identifying situations. As 2 * (Precision*Recall) / 

(Precision+Recall), the F1- score is determined. 

 

 

 

4 Design Specification 
 

This section will discuss the framework of the different machine algorithms used for the model 

training which include, random forests, support vector machines (SVM), K-nearest neighbor 

(KNN), Gradient Boosting Machines (GBM), neural networks and reinforcement learning. 

4.1 Random Forests 

In order to effectively analyze and leverage the vast amount of data available today, it is 

essential to utilize learning algorithms that can scale with the size of the dataset while 

maintaining statistical efficiency. Random forests, introduced by L. Breiman in the early 2000s, 

have emerged as one of the most effective methods for handling large data sets (Esteve et al., 

2023). Random Forest (RF) is an ensemble learning technique that involves constructing 

multiple decision trees during the training phase and combining their outputs to make final 

predictions, such as the mean value in regression problems (Breiman, 2001). The training 

process of RF incorporates a dual randomization approach: random sampling of data through 

bootstrapping and random selection of predictors (Lorenzen, Igel and Seldin, 2019). Although 

RF is widely used in practice, its theoretical understanding remains limited (Arlot and Genuer, 

2014; Denil, Matheson and Freitas, 2014). This is mainly due to the complexity of analyzing 

the dependencies between the induced partitions of the input space and the predictions within 

those partitions (Arlot and Genuer, 2014). To address this issue, a variation called purely 

random forests was introduced by Breiman (2002). Purely random forests avoid dependencies 

by creating random partitions that are independent of the training data, achieved through 

random selection of features and splits. 

 

4.2 Support Vector Machines 

Support Vector Machines (SVMs), initially proposed by Vladimir Vapnik in the field of 

statistical learning theory and structural risk minimization, have been widely successful in 

various classification and forecasting tasks (Vapnik, 1998). SVMs have found applications in 

pattern recognition, regression estimation, dependency estimation, forecasting, and the 

development of intelligent machines. One key advantage of SVMs is their ability to handle 

high-dimensional feature spaces, thanks to the generalization principle rooted in the Structural 

Risk Minimization Theory (Ekici, 2012). This principle ensures that the algorithm is grounded 

in robust statistical learning theory, providing guaranteed bounds on the risk associated with 
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the learning process (Nayak, Naik and Behera, 2015). Support Vector Machines (SVM) were 

initially developed for classification tasks but have been extended to solve regression problems 

as well (Roy and Chakraborty, 2023). The regression version of SVM, known as Support 

Vector Regression (SVR), has demonstrated superior performance by addressing the 

overfitting issue commonly encountered in regression tasks and improving the accuracy of 

response approximation. 

4.3 K-nearest Neighbour 

The K-Nearest Neighbors (KNN) algorithm is a non-parametric classification approach that 

does not make any assumptions about the underlying dataset. It is well-known for its simplicity 

and effectiveness in solving classification problems (Taunk et al., 2019). The development of 

K-nearest neighbour classification stemmed from the necessity to perform discriminant 

analysis in situations where accurate parametric estimations of probability densities are either 

unknown or challenging to determine (Peterson, 2009). KNN is a supervised learning algorithm 

that requires a labelled training dataset, where data points are assigned to different classes. 

Using this training data, KNN predicts the class of unlabelled data points. The classification is 

determined based on various characteristics of the data. KNN is commonly used as a classifier, 

classifying data by identifying the nearest or closest training examples in a given region (Suyal 

and Goyal, 2022). This approach is preferred due to its simplicity and computational efficiency. 

For continuous data, KNN utilizes the Euclidean distance metric to calculate the proximity to 

its nearest neighbours. 

4.4 Gradient Boosting Machines 

The Gradient Boosting Machine (GBM) is a highly effective supervised learning algorithm that 

combines multiple weak learners to create an ensemble model with exceptional predictive 

performance (Lu and Mazumder, 2018). It demonstrates impressive results in various 

prediction tasks such as spam filtering, online advertising, fraud and anomaly detection, 

computational physics (e.g., the discovery of the Higgs Boson), and more. GBM is often ranked 

as a top algorithm in competitions like Kaggle and the KDD Cup. One notable feature of GBM 

is its ability to handle heterogeneous datasets, including highly correlated data, missing data, 

and unnormalized data. GBM produces interpretable models by constructing an additive model. 

The goal of gradient boosting is to repair mistakes caused by previous decision trees by learning 

a new decision tree at each level (Klug et al., 2019). When higher-order relationships are 

present in the data, the non-linear method naturally outperforms linear models (Hong, 

Haimovich and Taylor, 2018). However, in a variety of data problems, gradient boosting has 

outperformed other machine learning techniques (Eloudi et al., 2023).  

4.5 Neural Networks 

Over the years, there have been various popularity peaks for neural network (NN) models. The 

first one got underway with the invention of the perceptron (Rosenblatt 1958) and its training 

algorithm for classification in linearly separable situations. By the beginning of the 1970s, 

limitations highlighted by Minsky and Papert (1969) dampened interest in these models. The 

subsequent phase of success was accompanied by the appearance of findings that presented 

NNs as universal approximators (Cybenko 1989). By the early 2000s, however, new paradigms 
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like support vector machines and technical difficulties had virtually reached a deadlock. Neural 

networks offer a powerful learning framework that is highly suitable for natural language tasks 

(Gallego and Insua, 2021). A crucial component in language-related neural networks is the 

utilization of an embedding layer, which converts discrete symbols, like words, into continuous 

vectors within a lower-dimensional space (Goldberg, 2017). They go from being isolated 

symbols to manipulable mathematical entities when words are inserted. This enables the 

comparison of vectors, thereby simplifying the generalization process from one word to 

another. The network learns this representation of words as vectors during the training process. 

Moreover, as the network progresses, it also learns how to combine these word vectors 

effectively for prediction purposes. This capability helps address the challenges posed by data 

sparsity and discreteness to a certain extent. 

 

5 Implementation 
 

This section will discuss the stages and steps taken to implement the various machine learning 

models. The goal of the research is to improve the security protocols for computer networks 

by classifying network intrusion attempts into multiple categories. The main data source used 

is the NSL_KDD dataset, which has 44 features. The major goal is to organize the attack types 

into four categories—DoS, Probe, U2R, and R2L—to provide an effective method for 

recognizing and minimizing potential threats. 

5.1 Data Preprocessing 

The Google Collaboratory was used to carry out this project. Python and other programming 

languages are available through Google Colab, a web-based cloud service. For this study, 

python was the programming language of choice. Data preprocessing is the first step is the 

implementation of the data. It is the process of changing raw data into information that the 

machine learning model can work with. It is the primary and most crucial step when carrying 

out the development of a new model. The data set is loaded and will enable the preprocessing 

steps to be carried out. 

5.2 Data Cleaning 

Data cleaning is the procedure used to locate and fix mistakes in the data warehouse. As data 

is gathered from numerous origins into a data warehouse, guaranteeing quality and consistency 

across that data becomes a substantial and difficult undertaking. Data cleaning provides 

essential services for cleaning data, including attribute selection, token construction, algorithm 

selection for grouping, function selection for similarity, function selection for removal, 

function selection for merging, etc (Ridzuan and Wan Zainon, 2019). Further, specific data 

cleaning activities are carried out to guarantee data quality and consistency. Columns with zero 

values, like "difficulty level" and "num_outbound_cmds," are removed from the dataset 

because they don't add valuable data. By doing this, the dataset's integrity is guaranteed, and it 

is also ready for further preparation.  
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5.3 Data Identification 

Data labeling is the process of detecting unlabeled raw data (such as pictures, text files, videos, 

etc.) and adding one or more useful labels to give it context so that a machine learning model 

may learn from it (Li et al., 2021). The dataset's label column has been identified as the assault 

column. The column shows the many network intrusion assault types that must be anticipated 

throughout the classification process.  

 

5.4 Descriptive statistics on dataset 

A data set's features are summarized by making use of descriptive statistics. Descriptive 

statistics entails three crucial measures which are variability, frequency distribution and central 

tendency (Cooksey, 2020). Descriptive statistics helps to provide the data engineer with a brief 

overview of the dataset being studied without drawing unnecessary conclusions. One variable 

can be described using descriptive statistics (univariate analysis) or multiple variables can be 

described using descriptive statistics (bivariate/multivariate analysis) (Kaliyadan and Kulkarni, 

2019). When too many variables exist from the set, using descriptive statistic tools like scatter 

plots could help illustrate the correlation between those variables.  

5.5 Data Normalization 

Machine learning uses data normalization to reduce the sensitivity of model training to feature 

scale (Izonin et al., 2022). This enables the algorithm we use to converge to better weights, 

which produces a more accurate model. The characteristics are more uniform after the 

normalization process which would boost the models ability to make better predictions (Aksu, 

Güzeller and Eser, 2019). The 'StandardScaler( )' method is used to scale down the numerical 

features without omitting important details or distorting changes in their value ranges. In order 

to prevent any one feature from predominating the classification process, this technique scales 

each feature to have a unit variance while removing the mean.  

 

5.6 One-Hot-Encoding 

One-hot Encoding (OHE) is the usual process used to refine categorical information (Ul Haq 

et al., 2019). According to Anderberg, (2014), OHE is frequently used to convert categorical 

information to numerical features in many conventional data mining jobs.  A single variable 

with n observations and d unique values is transformed by OHE into d binary variables, each 

with n observations. One-hot encoding is used to convert the protocol_type, service, and flag 

categorical variables in the NSL_KDD dataset into numerical variables. The categorical data 

is encrypted using this method, enabling efficient use of these variables throughout the 

classification process.  

5.7 Multi-Class Classification 

Multiclass classification plays a crucial role in numerous practical machine learning 

applications that require the capability to automatically differentiate among a vast array of 

classes, sometimes numbering in the thousands (Thrampoulidis, Oymak and Soltanolkotabi, 

2020). There are 24 different attack types listed in the label column, which are then divided 
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into four separate attack types: DoS, Probe, U2R, and R2L. The qualities and goals of each 

attack type are used to establish these classes. The multi-classification work is made simpler 

by the reclassification, and the findings are easier to understand.  

 

Based on the dataset, the different attack types are being classified to improve the interpretation 

of the results. The attacks types are thus discussed below: 

 

1. Denial of Service (DoS): DoS attacks attempt to block authorized users from accessing 

a system by reducing system availability (Obaid, 2020). They force intensive 

calculation functions on the target by abusing the system's weaknesses or 

overwhelming it with numerous useless requests. 

 

2. Probing Attack (Probe): Assaults such as probe or probe-response assaults pose a fresh 

risk to collaborative intrusion detection systems.  Probing assaults are intended to 

expose information about the weaknesses of a target system by performing carefully 

chosen sequences of operations and seeing how the target system or the intrusion 

detection system (IDS) fronts it responds. Some probing attempts aim to map out the 

target's IP address space as a preliminary to a campaign of spreading malware.  

 

3. User to Root Attack (U2R): In a User to Root attack, the attacker first succeeds in 

establishing a user session, usually using an interactive shell, or sometimes a TELNET 

window on the remote system (Palshikar, 2022). The attacker tries to slowly gain more 

privileged access to the system until he gains super user access by mixing up 

approaches. 

 

4. Remote to Local Attack (R2L): The user-to-root attack and the remote to local attack 

have theoretically similar goals, but the remote to local attack has a more constrained 

end goal (Dhanabal and Shantharajah, 2015). An attacker conducts such an attack when 

they transmit packets to the target host that are supposed to reveal security weaknesses 

that would allow them to abuse the privileges of a local user. 

 

5.8 Attack class Distribution 

This shows a graph of the different attack types that are being analysed in the training model. 

This illustration is found in the graph below in Fig 5.8. 
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Fig 5.1: multi-class label distribution on attack types. 

 

During the aforementioned phase, a varied dataset of system logs and network traffic was 

gathered for covering various time periods and situations. Both instances of typical system 

activity and recorded assault events of various kinds are included in the collection. The 

percentage of the normal system states is determined by the frequency of the events classified 

as "normal" in the dataset system, and from the visualization above we have more than 50% of 

the normal system states. It also demonstrates that the majority of attacks are from Denial of 

Service (DoS), which is more than 30%, followed by Probe. 

5.9 Feature Extraction 

The process of extracting features entails changing a picture's raw pixel values into more 

valuable, quantifiable information that can be used in other processes like image processing, 

pattern recognition, and machine learning (Adekunle and Aiyeniko, 2020). The pearson 

correlation analysis was performed to extract features, determine how other characteristics 

affected the attack columns, and blend the extracted features with categorical variables. The 

Pearson's Product Moment Correlation Coefficient, also known as the Pearson's or Pearson's is 

a measurement of the strength (direction and magnitude) of the linear relationship between two 

variables (Obilor and Amadi, 2018).  

 

Using the Pearson correlation coefficient, below is an illustration of labelling based on 

correlation. 

 
Where, 

n is the number of stock pairs,  

r is the Pearson correlation coefficient, 

 xy is the total of the products of the paired stocks. 

x = total of the x scores,  

y = total of the y scores, 
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x2 = total of the x scores squared 

y2 = total of the y scores squared. 

 

After preprocessing the data and extracting the features, there are more features and columns 

overall, all of which are numeric which is integrated into the machine learning method. 

 

 

6 Evaluation 
 

After preprocessing the data and categorizing the attack types, the dataset is divided into 

training and testing sets, and various machine learning algorithms, including random forests, 

support vector machines (SVM), K-nearest neighbour (KNN), gradient boosting machines 

(GBM), neural networks, and reinforcement learning, are used to train the models. With the 

aid of python libraries (such as numpy, pandas, and matplotlib) and keras in tensor flow, the 

model's performance is assessed using metrics like accuracy, precision, recall, F1-score, and 

learning curve for reinforcement learning to gauge its efficiency in accurately detecting and 

classifying network intrusion attacks. 
 

6.1 Evaluation Metrics 

The following Table 6.1 shows the various learning algorithms and the results derived from 

their training model. The table below which is table 6.1 is a summary of the result from the 

support vector machine. 

 

Table 6.1: Support Vector Machine Model 

 

Hyperparameters Metrics 

 Precision Recall F1-score 

gamma='auto', 

kernel='poly' 

Macro avg = 0.56 

Weight avg = 0.92 

M avg = 0.51 

W avg = 0.93 

Accuracy = 0.93 

M avg = 0.53 

W avg = 0.92 

 

From the results in Table 6.1, it is observed from the metrics that the F1 score has an accuracy 

of 0.93 which is a result of the mean of precision and recall. The hyperparameters used in the 

model are the gamma and kernel parameters. 
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Fig 6.1 Showing the performance metrics for the Support Vector Machine Model 

 

 

Table 6.2: KNN model 

Hyperparameters Metrics 

 Precision Recall F1-score 

n_neighbors = 5 Macro avg = 0.84 

Weight avg = 0.98 

M avg = 0.78 

W avg = 0.98 

Accuracy = 0.98 

M avg = 0.80 

W avg = 0.98 

Table 6.2 shows the results from the KNN training model 

 

From the results in Table 6.2, it is observed from the metrics that the F1 score has an accuracy 

of 0.98 which is a result of the mean of precision and recall. The hyperparameters used in the 

model is the n-neighbors which has a value of 5. 
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Fig 6.2 Showing the performance metrics for the KNN Model 

 

Table 6.3: Gradient Boosting Model 

Hyperparameters Metrics 

 Precision Recall F1-score 

Learning_rate = 0.1, 

n_estimators = 100 

Macro avg = 0.76 

Weight avg = 0.97 

M avg = 0.70 

W avg = 0.97 

Accuracy = 0.97 

M avg = 0.72 

W avg = 0.97 

 

From the results in Table 6.3, it is observed from the metrics that the F1 score has an accuracy 

of 0.97 which is a result of the mean of precision and recall. The hyperparameters used in the 

model are the learning rate and n-estimators which has a value of 0.1 and 100 respectively. 

Figure 6.2 highlights the important features of the GBM training model which plays an 

important role in enhancing the performance and predictive capabilities used.  
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Fig 6.3 Showing the performance metrics for the GB Model 

 

 

Table 6.4: Random Forest Model 

Hyperparameters Metrics 

 Precision Recall F1-score 

n_estimators = 100 Macro avg = 0.73 

Weight avg = 0.98 

M avg = 0.70 

W avg = 0.98 

Accuracy = 0.97 

M avg = 0.71 

W avg = 0.98 

From the results in Table 6.4, it is observed from the metrics that the F1 score has an accuracy 

of 0.97 which is a result of the mean of precision and recall. The hyperparameters used in the 

model is the n-estimators which has a value of 100. 
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Fig 6.4 Showing the performance metrics for the Random Forest model. 

 

 

The multi-layer perceptron (MLP) is a feed-forward neural network.  It is used in areas like 

pattern categorization, function approximation, and predictions (Alla, Moumoun and Balouki, 

2021). This deep learning approach trains the input variables using a neural network. This 

model training investigated the three important hyperparameters which include Epoch, Batch 

size, and Learning rate to learn the well a deep learning algorithm that used neural networks 

for training performed. Understanding how these hyperparameters of F1-score, accuracy, and 

recall affect a model's precision was crucial for the training. This shows the results from the 

Multi-Layer Perceptron Model in table 6.5 below. 

 

Table 6.4: Multi-Layer Perceptron Model Metrics 

Accuracy 0.9704 

Recall 0.9665 

F1-score 0.96783 

Precision 0.96916 

 

From the results in Table 6.2, it is observed from the metrics that the F1 score has a value of 

0.96 while the accuracy of the model is 0.97. which is a result of the mean of precision and 

recall. This presents the findings obtained from the experiments using the hyperparameters 

such as Epoch= 100, Batch size= 5000. 
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Fig 6.3 Showing the performance metrics for the multi-layer perception model. 

 

6.2 Reinforcement Learning 
 

Reinforcement learning presents a promising method to improve the capabilities of Intrusion 

Detection Systems (IDS) by enabling systems to learn and adjust their behavior based on 

feedback received from the environment. In order to understand this section clearer, the 

following terms would be defined: 

 

Agent: An entity that can see, investigate, and respond to its environment. 

 

Environment: an environment or scenario in which an agent is present or encircled by. Since 

the environment is assumed to be stochastic in RL, it is essentially random. 

 

Action: The steps an agent takes inside the environment are referred to as actions. 

 

State: In response to each action the agent does, the environment returns a state. 

 

Reward: This is a case where the environment provides feedback to the agent in order to assess 

its performance. 

Policy: Based on the present state, policy is a technique that the agent uses to determine what 

to do next. 

 

Value: This explains the fact that long-term returns are anticipated to be lower than short-term 

returns due to the discount factor. 

 



20 
 

 

Intrusion Detection Environment: This is a unique Gym setting created especially for the 

intrusion detection system. Dataset_path = '/content/data.npy' is used as the dataset path during 

initialization, and it imports data using Numpy. It also determines the observation space, action 

space, current step, and maximum steps. The actions connected to identifying intrusions are 

represented in the action space, whereas the observation space represents the network traffic 

properties. 

 

The reset: The environment is restored to its original state using the reset technique. 

 

The calculate reward: It uses the current state to determine the reward; the award is the total 

of the state values (Badr, 2022). Based on the observed network traffic, the reward function is 

created to give feedback on the agent's choice. 

 

The step: This performs an action, modifies the environment, and then returns the subsequent 

state, reward, done flag, and other details. 

 

DQN Agent: The DQN technique is implemented here in order to train an agent to make 

judgments in an intrusion detection environment (Badr, 2022). The agent uses network traffic 

observations as input and decides what to do depending on its current policy, which it learns 

and updates through interactions with the IDS environment. It sets the state_size and 

action_size initial values. In order to learn from previous interactions and enhance its decision-

making, the agent's experience is saved in a replay memory buffer. 

 

Build model: It is a neural network model that makes use of the Keras sequential API. The 

model has three dense, fully connected layers that are activated by Rectified Linear Units 

(ReLUs), and the output layer has a linear activation function (Tariq et al., 2022). The mean 

squared error (MSE) loss and the Adam optimizer are used to build the model. Agent 

experiences are stored in the agents' memory, which is implemented as a deque (double-ended 

queue) with a maximum length. The algorithm update equation's discount factor is represented 

by the gamma parameter. The exploration rate, which changes over time in accordance with 

epsilon decay, is determined by the epsilon parameter. The minimal exploration rate is 

indicated by the parameter epsilon min. The optimizer's rate of learning is managed via the 

learning rate option. The learning curve is plotted based on the total rewards to be obtained in 

each episode. The graph below in Fig 6.3 shows the learning curve from the training model 
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Fig 6.3: Reinforcement learning curve 

 

From the above graph in fig 6.3, it shows the assessment of how well the DQN algorithm is 

working and keeping track of how the agent's total rewards are convergent. It shows that the 

DQN model has summed up 410,000 rewards in total and is learning non-linearly but 

progressively over its 10 episodes. 

6.3 Discussion 
 

From the analysis derived from the different training algorithms, with the data preprocessing 

steps and attack class categorization, the data set was split into testing and training sets where 

the application of different machine learning models which includes random forests, support 

vector machines (SVM), K-nearest neighbour (KNN), Gradient Boosting Machines (GBM), 

neural networks and reinforcement learning were all employed for model training. In the 

analysis of the study, the training model performance was evaluated using key metrics like 

accuracy, precision, recall, F1-score and learning curve for reinforcement learning to thus 

measure the effectiveness acquired to detect and classify network intrusion systems.  

Further, from the findings from attack class distributions, the percentage of the normal system 

states is calculated based on the frequency of the events classified as "normal" in the dataset 

system, and from the results, it shows that there is then 50% normal system states and it also 

shows that most attacks are from Denial of Service (DoS), which is more than 30% followed 

by Probe. 

For the SVM model, the reported F1-score of 0.93 shows that precision and recall are 

well-balanced. The accuracy is also 0.93, as it is highlighted. The overall average F1-score and 

recall are significantly lower at 0.51 and 0.53 whereas the weighted average precision and 

recall are reasonably high at 0.92 and 0.93, respectively. The model appears to perform well in 

some classes while faltering in others, according to the discrepancy. The findings demonstrate 

that the SVM model offers respectable overall accuracy, although further optimisation may be 

beneficial to achieve more evenly distributed performance across various attack types. 

 With n_neighbors set to 5, the KNN model produces impressive results. High precision 

and recall balance, which result in a well-rounded performance, are indicated by the F1-score 
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of 0.98. The model's ability to effectively categorise instances is supported by its accuracy of 

0.98. High weighted and macro average indicators show that performance is consistent across 

classes. These findings imply that the KNN model is capable of robustly classifying network 

intrusion data and capturing its underlying patterns.  

 The Gradient Boosting model performs admirably when learning_rate is set to 0.1 and 

n_estimators are set to 100. It performs well, as seen by its accuracy and F1-score of 0.97. The 

macro average and weighted measures also show consistent performance across various attack 

types. The model's success in achieving a high F1-score and accuracy suggests that it is 

effective at identifying network intrusions and correctly classifying them. 

 With n_estimators set to 100, the Random Forest model generates outcomes that are 

consistent with those of the earlier models. Solid performance is indicated by an F1-score and 

accuracy of 0.97. The model's proficiency in managing various assault types is further 

supported by the weighted and macro average metrics. The Random Forest is suitable for 

network intrusion detection, as shown by these results, which concur with those of the other 

models. 

 With the hyperparameters Epoch=100, Batch size=5000, and Learning rate set to an 

undetermined value, the Multi-Layer Perceptron (MLP) model, a deep learning technique, is 

tested. The outcomes, which include an accuracy of 0.9704 and an F1-score of 0.96783, 

highlight the model's ability to identify intricate patterns in the data. A balanced performance 

is also indicated by the recall and precision values. The model achieves good accuracy, but 

there may be potential for improvement in the precision and recall trade-off, as the F1-score is 

slightly lower than the F1-scores obtained by some of the other models. 

 The evaluation's overall findings show that the K-Nearest Neighbour (KNN), Gradient 

Boosting, and Random Forest models regularly outperform other models in effectively 

identifying and categorising network intrusion attacks. Although the Support Vector Machine 

(SVM) model performs rather well, it might benefit from more tuning to enhance its balance 

across various assault types. The Multi-Layer Perceptron (MLP), which achieves high accuracy 

with some precision and recall loss, is a good example of the promise of deep learning 

approaches. This suggests that a mix of various models might be used to further improve the 

detection abilities and robustness of the intrusion detection system. The results of this 

evaluation are consistent with earlier studies, like A. Aziz, Hanafi and Hassanien, (2017) and 

Uikey and Gyanchandani, (2019), that demonstrate the efficiency of ensemble techniques for 

intrusion detection, such as Random Forest and Gradient Boosting. According to a study by 

Nikhitha and Jabbar, (2019), the KNN model was used for the intrusion detection systems. The 

trained machine learning classifier, KNN performed best in terms of classification accuracy. In 

evaluating the model's implementation, experimental analysis was done using the ISCX 

dataset. According to the experimental results, the suggested model had an enhanced accuracy 

of 99.96%. Also, another study proposed by Dini and Saponara, (2021) used K-nearest 

neighbors and artificial neural network to develop an algorithm for an intrusion detection 

system. it was realized from their results that KNN was better than the other algorithm both in 

the classification of the anomaly class and in the normal class in terms of accuracy. 

Furthermore, The RF algorithm produces accuracy results for DOS, Probe, R2L, and U2R of 

99.9%, 99.9%, 99.8%, and 99.0% respectively in the method suggested by Farnaaz and Jabbar, 
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(2016). The investigation of deep learning methods, such as MLP, also demonstrates their 

capacity to recognise complex patterns seen in network traffic data. 

 However, more research into hyperparameter tweaking and model ensembling may 

lead to even better outcomes and performance that is more evenly distributed across various 

attack classes. The dynamic nature of network attacks and the changing threat landscape must 

also be taken into account. The effectiveness of intrusion detection systems must be maintained 

by routine updates and model retraining utilising the most recent data and attack patterns. 

Therefore, the study's implementation of the Deep Q-Network (DQN) algorithm for network 

intrusion detection brings an intriguing new perspective to the analysis of intrusion detection 

models. The DQN algorithm attempts to learn from past data and differentiate between 

legitimate and malicious behaviours, including various sorts of assaults. A learning curve that 

graphs the total reward against the number of episodes is the foundation for the DQN 

algorithm's evaluation. Insights into the algorithm's effectiveness can be gained from the 

observed pattern in the learning curve, which shows upward movements from episode 395000 

to 411000. While deep learning algorithms like DQN can identify complex patterns, they can 

also be more complicated and difficult to understand when compared to conventional models. 

DQN is one example of a deep learning algorithm that can be computationally demanding. 

Therefore, when integrating DQN into intrusion detection systems, it is crucial to evaluate the 

trade-off between computational resources and performance gains. Despite this, the rising trend 

in the learning curve indicates that throughout the duration of training episodes, the DQN 

algorithm is gradually improving its performance. This suggests that the DQN is getting better 

at differentiating between legitimate and malicious behaviour as it learns from historical data. 

Therefore, it is only a matter of time before the DQN outperforms the other algorithms.  
 
 

7 Conclusion. 
 

The primary objective of this study were to develop and evaluate a comprehensive approach 

for accurately categorizing network intrusion attacks using a combination of traditional 

supervised machine learning algorithms, deep learning techniques, and reinforcement 

learning. The focus was on classifying attack types into four distinct groups: DoS, Probe, 

U2R, and R2L. The objective of the study also include the assessment of the effectiveness of 

the different algorithms, optimising their performance, and exploring the potential of the 

DQN algorithm for intrusion detection 

7.1 Achievement of objectives 

The study has successfully accomplished its research objectives by employing a systematic 

methodology. The researcher performed multi-class classification using well-established 

algorithms such as Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors 

(KNN), and Gradient Boosting Machines (GBM), achieving promising results in accurately 

categorizing attack types. Furthermore, feature engineering through Pearson correlation 

analysis enhanced the performance of these algorithms. The researcher extended 

investigation into deep learning by employing the Multi-Layer Perceptron (MLP) model, a 

neural network-based algorithm. Through rigorous hyperparameter tuning, the researcher 
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optimized the MLP's performance, highlighting the significance of parameters like Epoch, 

Batch_size, and Learning_rate. Furthermore, the researcher ventured into the realm of 

reinforcement learning by developing an Intrusion Detection System (IDS) using the DQN 

algorithm. This system showcased the potential of learning from historical data to 

differentiate between normal and malicious behaviours, based on Probing, DoS, R2L, and 

U2R attacks. The performance of the DQN algorithm was assessed using a learning curve 

that showed improvements in detecting attack types. 

 

 

7.2 Key Findings 

The investigation yielded significant findings: 

 

1. Traditional machine learning algorithms, when properly tuned and enhanced through 

feature engineering, can effectively categorize network intrusion attacks. 

2. Deep learning, particularly the Multi-Layer Perceptron model, offers a powerful tool 

for intrusion detection, with the potential to capture complex patterns. 

3. Reinforcement learning, exemplified by the DQN algorithm, has promising capabilities 

in learning from historical data and improving intrusion detection accuracy. 

7.3 Implications and Efficacy 

The implications of the research are substantial. A robust Intrusion Detection System (IDS) 

that combines the strengths of various algorithms can significantly increase network security. 

The efficacy of the approach employed is given by the high accuracy, precision, recall, and F1-

score values achieved by the models. The study generally demonstrates that a well-structured 

hybrid of machine learning and deep learning techniques can provide a comprehensive solution 

for network intrusion detection. 

7.4 Limitations 

This research is not without limitations. The use of historical data may not fully capture future 

attack scenarios, and the effectiveness of the DQN algorithm might vary depending on the 

environment. Furthermore, the computational complexity of certain algorithms, particularly 

deep learning, needs to be carefully considered in practical implementations. This study did 

not do that.  

 

7.5 Future Work and Commercialization 

 

Commercially, this research opens avenues for developing robust and adaptable Intrusion 

Detection Systems (IDS) that cater to the increasing sophistication of cyber threats. The 

potential for integration into network security solutions is significant. 

Future research could focus on: 

 

1. Exploring ensemble techniques that combine the strengths of various algorithms to 

further enhance detection accuracy. 
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2. Investigating more advanced hyperparameter optimization methods for deep learning 

models. 

3. Assessing the adaptability of the DQN algorithm to dynamic and evolving attack 

environments. 
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