

Automatic Intrusion Detection System Using Deep

Re-Enforcement Learning With Q-network

Algorithm (DQN)

MSc Research Project

Cyber Security

Ugochukwu Nwokedi

Student ID: x21235287

School of Computing

National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

……. …UGOCHUKWU NWOKEDI

IKENNA……

Student

ID:

……X21235287…………………………………………………………………………………………………

……..……

Programm

e:

………MSC CYBER

SECURITY……………………………………………………

…

Year:

……2022/23…………………….

.

Module:

……ACADEMIC

INTERNSHIP…………………………………………………………………………………………………….

………

Supervisor

:

…………MICHAEL

PRIOR……………………………………………………………………………………………….………

Submissio

n Due

Date:

………14TH AUGUST

2023………………………………………………………………………………………………….………

Project

Title:

……AUTOMATIC INTRUSION DETECTION USING DEEP REINFORCEMENT

LEARNING WITH Q NETWORK

ALGORITHM…………………………………………………………………………………………………….

………

Word

Count:

………11371……………………………… Page

Count……………28……………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………………UGOCHUKWU

NWOKEDI………………………………………………………………………………………………

Date:

…………12TH AUGUST

2023……………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Automatic Intrusion Detection System Using Deep

Re-Enforcement Learning With Q-network

Algorithm (DQN)

Ugochukwu Nwokedi

X21235287

Abstract

IDS is an important part of the cybersecurity and IT space. Network intrusions are most times

very hard to detect and group into their right network patterns. Due to the complexity of

network intrusion detection, new age machine learning models that could eliminate some

problems that an IDS places on a machine learning model e.g. poorly constructed, non-uniform

datasets have to be discovered. Reinforcement learning has been applied to varying successful

degrees in automation, gaming etc., and this report shows that it can be successfully applied to

the field of network intrusion detection as well. Our proposed model uses the algorithm of a

Q-network to operate in a reinforcement learning environment. The approach will be evaluated

using a reward against episodes learning curve and will be further compared to more traditional

machine learning models that use accuracy, recall and precision as evaluation metrics.

1 Introduction

In today's fast-changing cybersecurity world, safeguarding computer networks and systems

from unauthorized access is extremely important. Intrusion Detection Systems (IDS) are

crucial tools for finding and reacting to potential security breaches. These systems do this by

watching and studying network activity or host behaviour to find and address possible breaches

or security problems (Bajtoš, Sokol and Mézešová, 2019).

IDS can be mainly divided into two key types: network-based IDS (NIDS) and host-

based IDS (HIDS) (Suroso and Prastya, 2020). NIDS observe network activity at key spots,

such as network entry points or switches, checking data for dubious patterns or familiar attack

indicators. In contrast, HIDS focus on individual systems, observing system records, file

integrity, and user actions to find potential intrusions. Consequently, merging NIDS and HIDS

provides a more complete and layered approach to finding intrusions, allowing groups to find

and address dangers on various levels. Although IDS have shown their value in cybersecurity,

they still have methods that have many natural issues and restrictions. For example, signature-

based detection, often used by IDS, depends on known attack patterns (Alarqan, Zaaba and

Almomani, 2019). This method is, therefore, inadequate against new and unknown exploits,

which may lack recognizable patterns. Furthermore, rule-based detection is inflexible and

needs constant updates to remain current with evolving attack tactics (Gupta and Agrawal,

1

2020). Anomaly detection methods frequently result in many false alarms, making it hard to

differentiate between legal and harmful actions (Sadikin, van Deursen and Kumar, 2020).

These restrictions emphasize the need for improvements in IDS solutions.

1.1 Research Problem

The research problem in this study revolves around the advancement of Intrusion Detection

Systems (IDS) by comparing the effectiveness of reinforcement learning and supervised

machine learning algorithms. The aim is to explore the potential of machine learning

techniques for improving the accuracy, adaptability, and efficiency of intrusion detection. As

cyber-attacks become increasingly sophisticated and dynamic, traditional IDS approaches face

challenges in effectively identifying and responding to evolving intrusion techniques (Hossain

et al., 2020). Furthermore, the research problem is highly relevant in the current cybersecurity

landscape, where organizations and individuals face constant threats of data breaches, malware

infections, and unauthorized access attempts. The findings of this study can provide valuable

insights into the effectiveness of current machine learning techniques for intrusion detection,

enabling practitioners and researchers to make informed decisions regarding the selection and

implementation of IDS techniques.

1.2 Research Aim and Objectives

The aim of this project is to create an Intrusion Detection System (IDS) using the DQN

algorithm. This IDS aims to accurately identify and categorize network intrusions. It should

have the ability to learn from past network data and make educated judgments about whether

network activity is typical or harmful. This includes identifying different types of malicious

behaviour such as Probing, Denial-of-Service (DOS) attacks, Unauthorized Access (R2L), and

User-to-Root (U2R) attacks.

1.3 Research Questions

This study will explore the following research questions:

1. How effectively can the Multi-Layer Perceptron model, a range of supervised

machine learning algorithms, including random forests, support vector

machines (SVM), K-nearest neighbor (KNN), and Gradient Boosting Machines

(GBM), perform multi-class classification of network intrusion attacks, with a

specific emphasis on accurately categorizing attack types into DoS, Probe, U2R,

and R2L groups?

2. What is the comparative effectiveness of machine learning models and deep

learning model, assessed using accuracy, precision, recall, and F1-score

evaluation metrics, in classifying network intrusion attacks?

3. How can an IDS be developed using DQN algorithm for accurately classifying

various network intrusions by learning from historical data and distinguishing

between normal and malicious behaviours, encompassing Probing, DOS, R2L,

and U2R attacks?

2

1.4 Contribution of the Research

This study explores how reinforcement learning and supervised machine learning algorithms

work, giving useful insights into their strengths, weaknesses, and usefulness for making

intrusion detection more accurate and efficient. The research also explores a deep learning

application and compares the different techniques to find ways to identify intrusions better.

Using reinforcement learning algorithms, the research checks if IDS can learn and change their

ways of finding problems as new attacks happen. The findings of the study can help make IDS

solutions that are good at handling new threats and attacks.

1.5 Structure of the Study

This report contains the introductory section which introduces the research problem, its

significance, and objectives. The related works section reviews existing literature on intrusion

detection systems, highlighting current knowledge and research gaps. The methodology

section includes the general implementation methodology, data collection and experimental

setup. The design specification section identifies techniques, architecture, and requirements

forming the implementation's foundation. The implementation section covers executing the

proposed solution, describing outputs like transformed data and models, along with tools used.

The evaluation section analyses findings, considering academic and practical perspectives, and

focusing on key results. The conclusion and future work section summarizes the research,

highlighting key findings, answering objectives, and suggesting future studies.

2 Related Work

IDS have undergone significant transformation as a result of technological advances in

artificial intelligence and machine learning techniques. Nevertheless, using reinforcement

learning and supervised machine learning algorithms, two well-known IDS techniques, are

explored and contrasted in this research review.

2.1 Intrusion Detection Systems (IDS)

The increasing advancements in computer networks and technologies have led to growing

concerns about security. Cyber-attacks targeting networks have become a common occurrence,

making it crucial to find effective solutions to protect against these threats (Papanikolaou et

al., 2023). Using Intrusion Detection Systems (IDS) and other instruments to identify and stop

hostile activity in networks is one viable strategy (Talaei Khoei and Kaabouch, 2023).

According to Azizan et al. (2021) an intrusion detection system (IDS) is designed to analyse

internet traffic and stop illegal or harmful activity. When suspicious or malicious activity is

discovered, certain IDSs have the ability to take action, such as restricting traffic from suspect

IP addresses. Network assaults have significantly increased in frequency and severity over the

past few years and have become more intricate with time. In recent years, there has been a

significant increase in the number and severity of network attacks, which have become more

complex over time (Qiu et al., 2020). As a result, there has been extensive research on various

3

security techniques to defend against these cyber-attacks and computer viruses over the past

decade. Furthermore, IDS continuously monitors the network and identifies any suspicious or

policy-violating behavior. This is especially important in systems like smart grids, where IDS

can prevent unauthorized access and exploitation of vulnerabilities.

The three primary categories of intrusion detection systems (IDS) are signature-based,

specification-based, and anomaly-based (Ahmad et al., 2020). Cyberattacks are discovered by

signature-based IDS by examining patterns of harmful behaviour. IDS that is based on

specifications notifies users when activity deviates from expected behavior. Statistical

techniques are used by anomaly-based IDS to discriminate between malicious and legitimate

behaviour. IDS plays a key role in distinguishing between system intrusions and malfunctions

by examining data gathered from the system and detecting any modifications that take place

after an attempted attack (Heidari and Jabraeil Jamali, 2022). The choice of algorithm used in

IDS is a significant factor that impacts its performance, and determining the best-performing

algorithm requires further investigation (Alzahrani and Alenazi, 2021). Nevertheless, given the

adaptability of networks, ensuring their security has become crucial. Attackers are capable of

controlling the computer system using strong adaptive techniques while interfering with

network traffic. In order to prevent network breaches and identify the type of intrusion that has

been attempted, it is crucial to do so.

2.2 Machine Learning and Deep Learning

Machine Learning describes computer-based techniques that simulate human learning

processes to autonomously acquire knowledge. This encompasses a wide range of disciplines,

such as psychology, neuroscience, computer science, and statistics, that are combined to

explore and study different aspects (Xu et al., 2021). In recent times, learning algorithms have

made significant advancements, largely due to the increased processing power of computers

and the availability of big data. According to Shin et al. (2019), machine learning is usually

split into three groups of algorithms: supervised learning , unsupervised learning, and

reinforcement learning. Supervised learning algorithms involve training models by mapping

true output labels to learn the relationship with corresponding feature values (Katole, Sherekar

and Thakare, 2018). In contrast, unsupervised learning algorithms learn from the entire training

dataset without knowing the output for each input. They do not rely on labeled data. An

example of an unsupervised learning algorithm is K-means clustering (Ravipati and

Abualkibash, 2019). Further, Reinforcement learning (RL) algorithms focus on learning from

the environment by placing an agent within it (Géron, 2019). The agent learns from actions

within the environment, experiencing both successes and failures.

Furthermore, in supervised machine learning, a learning algorithm is used to optimize

predictions by tuning various parameters based on a dataset of recorded samples (Lopez-

Martin, Carro and Sanchez-Esguevillas, 2020). These samples consist of feature vectors and

corresponding pre-assigned labels. The algorithm's goal is to accurately predict the labels for

new feature vectors. In comparison, there are two essential elements in a conventional Deep

Reinforcement Learning (DRL) framework: a representative as well as a setting (Hu, Beuran,

and Tan, 2020). The agent makes decisions based on observations of the surroundings. As a

consequence of certain actions, the environment undergoes changes, leading to a new state and

4

a reward that represents the effectiveness of the action. In a conventional reinforcement

learning framework, there is no predefined dataset available that pairs examples with their

respective actions. Rather, the framework learns the connection between states and actions by

means of a reward function (Kim et al., 2017). Learning is not based on immediate information

about the best actions, but on a series of rewards that indicate the value of intermediate actions,

with the aim of maximizing the total rewards obtained. Machine Learning-based Intrusion

Detection Systems (IDS) offer an autonomous learning solution and demonstrate improved

performance compared to conventional IDS (Sethi et al., 2019). Due to the conflicting criteria

in predicting IDS performance, the algorithms used are becoming increasingly intricate and

thus, less transparent.

Reinforcement learning stands apart from supervised and unsupervised learning as it

revolves around the concept of sequential decision-making. This approach involves the

interaction between an agent and an environment across discrete time steps. The agent, driven

by goals, functions as a learning algorithm (Subramanian, Chitlangia and Baths, 2022). The

environment encompasses everything beyond the agent's control, and it is not necessarily

limited to physical boundaries, such as those between a robot and its surroundings. In fact, the

agent can even be a component within a larger control system. Typically, the agent possesses

limited knowledge regarding the environment and aims to acquire the optimal behavioural

strategy through learning. First off, the RL's objective is to maximize reward rather than

forecast the output data Y based on the input data X. Second, the learner's goal is to select the

values of X; there is no set distribution D(x) from each point X (Barto and Dietterich, 2004).

Below is a diagram illustrating the main steps of reinforcement learning.

2.3 Review of Related Studies

The growing prevalence of big data has led to widespread adoption of machine learning

techniques in intrusion detection systems. Some studies have utilized traditional machine

learning algorithms or their improved versions for this purpose. Qureshi et al., (2020)

introduced a unique adversarial intrusion detection system called RNN-ADV, which is based

on random neural networks. However, the effectiveness of this model is significantly impacted

by the perturbation environment. When the JSMA algorithm is utilized, RNN-ADV surpasses

deep neural networks in terms of accuracy and F1-score. Verma and Ranga, (2019) conducted

a study on classifier ensembles, evaluating multiple models on three datasets: CIDDS-001,

UNSW-NB15, and NSL-KDD. They performed 10-fold cross-validation and found that the

Classification and Regression Trees algorithm achieved the highest average accuracy of

96.74% by creating decision trees. However, XGBoost achieved a very close accuracy of

96.73% and achieved the best average True Positive Rate (TPR) of 97.31%.

In a study conducted by Azizan et al. in 2021, the main objective was to determine the

classification algorithm that offers optimal detection performance for intrusion in IDSs. The

study provides an evaluation of three commonly used classification algorithms, namely random

forest (RF), decision jungle (DJ), and support vector machine (SVM), in the context of

intrusion detection systems (IDS). The Intrusion Detection Evaluation Dataset (CIC-IDS2017)

and Knowledge Discovery in Databases approach are used to implement and test the ML-based

NIDS model. SVM achieves 98.18% accuracy on average, followed by RF at 96.76% and DJ

5

at 96.50%, according to the data. SVM's, RF's, and DJ's average precisions are 98.74, 97.96,

and 97.82 respectively. SVM scores 95.63, RF scores 97.62, and DJ scores 95.77 for average

recall.. Based on these results, SVM demonstrates the best overall performance for detecting

intrusions in IDSs. Furthermore, Chen et al.(2023) proposed FGS-RFRAS, a feature grouping

and selection strategy that incorporates a robust fuzzy rough approximation space and graph

theory. The effectiveness of this approach was demonstrated through evaluations on 21

datasets, highlighting its ability to improve the model's robustness. Feature selection techniques

fall into three categories, namely filtering, embedding, and wrapper. Among these techniques,

the wrapper method RFE is deemed more appropriate for IDS datasets that contain extensive

data and numerous features because it iteratively selects subsets of features.

In their study, Chowdhury, Ferens, and Ferens (2016) proposed a hybrid approach that

combines two machine learning algorithms to classify abnormal behavior in network traffic.

The performance of their model was assessed using metrics such as false positive rate, false

negative rate, and the time required for intrusion detection. The experimental findings

showcased a high detection rate and accuracy of 98.76%, along with a low false-positive rate

of 0.09% and false-negative rate of 1.15%. In comparison, the conventional SVM-based

scheme achieved a detection accuracy of 88.03%, a false-positive rate of 4.2%, and a false-

negative rate of 7.77%.

In their study, Mohamed, Hefny, and Alsawy (2018) proposed a methodology for

classifying network activities as normal or abnormal using machine learning algorithms such

as Random Forest (RF), Multi-Layer Perceptron (MLP), and Library for Support Vector

Machine (LIBSVM). They conducted experiments on the NSL-KDD dataset and employed the

Correlation Feature Selection (CFS) technique to eliminate irrelevant attributes. The results

revealed that the multilayer perceptron classifier achieved an accuracy of 95.7%. On the other

hand, the Random Forest algorithm exhibited an accuracy of 99.6%, while the LIBSVM

classifier achieved 94.8% accuracy. The CFS feature selection approach showed a lower

accuracy of 91.7%. However, the overall accuracy improved to 97.2% when incorporating

LIBSVM into the methodology.

Biswas (2018) proposed an intrusion detection approach that incorporates machine

learning and other feature selection techniques to identify important features from the original

dataset. By analysing various classifiers and selection methods, they aimed to improve the

accuracy of intrusion detection. The performance of the approach was evaluated using a five-

fold cross-validation technique on the "NSL-KDD" dataset. The experimental results showed

two main findings: (1) the "K-NN" classifier outperformed other methods in terms of

performance and efficiency, and (2) the feature selection method based on information gain

ratio yielded better results.

3 Research Methodology

The research methodology presented here describes the process of conducting multi-class

classification for network intrusion using the NSL_dataset. This project was implemented with

Google Colaboratory, a cloud platform that is built on Jupyter Notebooks (Carneiro et al.,

2018). It offers a runtime that is completely set up for machine learning and deep learning with

6

free access to a powerful GPU. The programming language adopted for this study is the Python

language. Python is a sturdy programming language that is easy grasp. Its object-oriented

programming technique is simple but efficient, and contains sets of high-level data structures

(Raschka, Patterson and Nolet, 2020).

3.1 General Classification Approach

Classification is a widely used technique that involves predicting the class of new samples

based on a model derived from training data. The general approach is shown in Figure 3.1

below. According to Han, Pei and Tong (2022), the classification process consists of two steps.

The first step involves constructing a classification model from a given dataset, referred to as

the training set. The second step involves using the model to predict or test the class labels for

new, unseen data, which is known as the testing set.

Figure 3.1: General classification approach

Source: (Alghamdi and Javaid, 2022) is a widely

3.1.1 Data Preprocessing

Data preprocessing is an essential initial step where the data is transformed or encoded to

enable efficient parsing by the machine (Ramírez-Gallego et al., 2017). This prepares the data

for analysis by the model algorithm, allowing for quick and effective interpretation of its

features. Preprocessing is done to transform raw data into a format that can be used by artificial

intelligence. A data scientist can achieve more accurate results by using structured and clean

data. It is possible to use various techniques to complete each step required to achieve accurate

automatic prediction. Above in Figure is a schematic that shows the preprocessing steps.

3.1.2 Data Cleaning

Data cleaning is the process of identifying inaccurate or noisy data and either fixing them or

eliminating them from the dataset. It primarily focuses on locating and replacing records and

data that are erroneous, irrelevant, incomplete, or otherwise noise-related (Ridzuan and Wan

Zainon, 2019). The initial step in data cleansing involves analyzing the data to identify errors

and inconsistencies present in the dataset.

7

3.1.3 Data Transformation

The transformation process involves modifying and combining data to create structured

configurations that are suitable for knowledge discovery (Maingi, 2015). Data transformation

can also be utilized to convert categorical variables into numerical ones, which is advantageous

for the development of prediction models (Fan et al., 2021). The widely adopted approach for

this transformation is the one-hot encoding method. This method generates a matrix with L −

1 columns for a categorical variable containing L levels (Fan et al., 2019). However, a potential

drawback of this approach is that it can lead to high-dimensional data if the categorical

variables have numerous levels. To address this issue, deep learning algorithms can be

employed. These algorithms represent categorical variables using dense representations,

proving especially useful for text data where individual words are represented as vectors for

further analysis (Goodfellow, Bengio and Courville, 2016). According to Han, Pei and Tong,

(2022), the transformation process achieves its objectives through several sub-processes:

smoothing, aggregation, generalisation, data normalisation and feature construction. Some of

these processes are used, described in subsequent sections.

3.1.4 Data Integration

Data integration involves combining data from different sources into a unified dataset. With

the increase in data volume and complexity, data integration becomes a challenging and

iterative process (Nargesian, Asudeh and Jagadish, 2022). This process includes addressing

heterogeneity and maintaining data standards across various sources.

3.1.5 Data Reduction

Data reduction is a technique that addresses these issues by reducing the size or dimensionality

of a dataset (Ramírez‐Gallego et al., 2015). This helps enhance the efficiency of the model's

learning process and improves performance by preventing overfitting and addressing skewed

data distribution. Large amounts of data in a data warehouse or dataset can create challenges

for storage and processing. However, not every model requires a vast amount of data for

training purposes. The data may contain numerous attributes, some of which may be irrelevant

or interconnected (Ares, Morán-Fernández and Bolón-Canedo, 2022). The data reduction

process aims to obtain a smaller representation of the dataset while preserving the integrity of

the original data.

3.2 Evaluation metrics

To evaluate the efficiency of our classification models, the following performance metrics are

employed.

Precision: Precision is a measure of how accurately the classifier made accurate predictions.

It displays the percentage of accurately identified positive occurrences (also known as true

positives) in comparison to all positive predictions, including both true and false positives. The

formula for calculating precision is TP/(TP + FP).

8

Recall (Sensitivity): Recall, also referred to as sensitivity or the true positive rate, measures

how well a model can pick out positive events from all real positive instances. Where TP stands

for true positives and FN for false negatives, the calculation is TP / (TP + FN).

F1-score: The F1-score, which aims to establish a balance between the two measures, is a

harmonic mean of precision and recall. It offers a solitary indicator of how well the model

performs overall in accurately identifying situations. As 2 * (Precision*Recall) /

(Precision+Recall), the F1- score is determined.

4 Design Specification

This section will discuss the framework of the different machine algorithms used for the model

training which include, random forests, support vector machines (SVM), K-nearest neighbor

(KNN), Gradient Boosting Machines (GBM), neural networks and reinforcement learning.

4.1 Random Forests

In order to effectively analyze and leverage the vast amount of data available today, it is

essential to utilize learning algorithms that can scale with the size of the dataset while

maintaining statistical efficiency. Random forests, introduced by L. Breiman in the early 2000s,

have emerged as one of the most effective methods for handling large data sets (Esteve et al.,

2023). Random Forest (RF) is an ensemble learning technique that involves constructing

multiple decision trees during the training phase and combining their outputs to make final

predictions, such as the mean value in regression problems (Breiman, 2001). The training

process of RF incorporates a dual randomization approach: random sampling of data through

bootstrapping and random selection of predictors (Lorenzen, Igel and Seldin, 2019). Although

RF is widely used in practice, its theoretical understanding remains limited (Arlot and Genuer,

2014; Denil, Matheson and Freitas, 2014). This is mainly due to the complexity of analyzing

the dependencies between the induced partitions of the input space and the predictions within

those partitions (Arlot and Genuer, 2014). To address this issue, a variation called purely

random forests was introduced by Breiman (2002). Purely random forests avoid dependencies

by creating random partitions that are independent of the training data, achieved through

random selection of features and splits.

4.2 Support Vector Machines

Support Vector Machines (SVMs), initially proposed by Vladimir Vapnik in the field of

statistical learning theory and structural risk minimization, have been widely successful in

various classification and forecasting tasks (Vapnik, 1998). SVMs have found applications in

pattern recognition, regression estimation, dependency estimation, forecasting, and the

development of intelligent machines. One key advantage of SVMs is their ability to handle

high-dimensional feature spaces, thanks to the generalization principle rooted in the Structural

Risk Minimization Theory (Ekici, 2012). This principle ensures that the algorithm is grounded

in robust statistical learning theory, providing guaranteed bounds on the risk associated with

9

the learning process (Nayak, Naik and Behera, 2015). Support Vector Machines (SVM) were

initially developed for classification tasks but have been extended to solve regression problems

as well (Roy and Chakraborty, 2023). The regression version of SVM, known as Support

Vector Regression (SVR), has demonstrated superior performance by addressing the

overfitting issue commonly encountered in regression tasks and improving the accuracy of

response approximation.

4.3 K-nearest Neighbour

The K-Nearest Neighbors (KNN) algorithm is a non-parametric classification approach that

does not make any assumptions about the underlying dataset. It is well-known for its simplicity

and effectiveness in solving classification problems (Taunk et al., 2019). The development of

K-nearest neighbour classification stemmed from the necessity to perform discriminant

analysis in situations where accurate parametric estimations of probability densities are either

unknown or challenging to determine (Peterson, 2009). KNN is a supervised learning algorithm

that requires a labelled training dataset, where data points are assigned to different classes.

Using this training data, KNN predicts the class of unlabelled data points. The classification is

determined based on various characteristics of the data. KNN is commonly used as a classifier,

classifying data by identifying the nearest or closest training examples in a given region (Suyal

and Goyal, 2022). This approach is preferred due to its simplicity and computational efficiency.

For continuous data, KNN utilizes the Euclidean distance metric to calculate the proximity to

its nearest neighbours.

4.4 Gradient Boosting Machines

The Gradient Boosting Machine (GBM) is a highly effective supervised learning algorithm that

combines multiple weak learners to create an ensemble model with exceptional predictive

performance (Lu and Mazumder, 2018). It demonstrates impressive results in various

prediction tasks such as spam filtering, online advertising, fraud and anomaly detection,

computational physics (e.g., the discovery of the Higgs Boson), and more. GBM is often ranked

as a top algorithm in competitions like Kaggle and the KDD Cup. One notable feature of GBM

is its ability to handle heterogeneous datasets, including highly correlated data, missing data,

and unnormalized data. GBM produces interpretable models by constructing an additive model.

The goal of gradient boosting is to repair mistakes caused by previous decision trees by learning

a new decision tree at each level (Klug et al., 2019). When higher-order relationships are

present in the data, the non-linear method naturally outperforms linear models (Hong,

Haimovich and Taylor, 2018). However, in a variety of data problems, gradient boosting has

outperformed other machine learning techniques (Eloudi et al., 2023).

4.5 Neural Networks

Over the years, there have been various popularity peaks for neural network (NN) models. The

first one got underway with the invention of the perceptron (Rosenblatt 1958) and its training

algorithm for classification in linearly separable situations. By the beginning of the 1970s,

limitations highlighted by Minsky and Papert (1969) dampened interest in these models. The

subsequent phase of success was accompanied by the appearance of findings that presented

NNs as universal approximators (Cybenko 1989). By the early 2000s, however, new paradigms

10

like support vector machines and technical difficulties had virtually reached a deadlock. Neural

networks offer a powerful learning framework that is highly suitable for natural language tasks

(Gallego and Insua, 2021). A crucial component in language-related neural networks is the

utilization of an embedding layer, which converts discrete symbols, like words, into continuous

vectors within a lower-dimensional space (Goldberg, 2017). They go from being isolated

symbols to manipulable mathematical entities when words are inserted. This enables the

comparison of vectors, thereby simplifying the generalization process from one word to

another. The network learns this representation of words as vectors during the training process.

Moreover, as the network progresses, it also learns how to combine these word vectors

effectively for prediction purposes. This capability helps address the challenges posed by data

sparsity and discreteness to a certain extent.

5 Implementation

This section will discuss the stages and steps taken to implement the various machine learning

models. The goal of the research is to improve the security protocols for computer networks

by classifying network intrusion attempts into multiple categories. The main data source used

is the NSL_KDD dataset, which has 44 features. The major goal is to organize the attack types

into four categories—DoS, Probe, U2R, and R2L—to provide an effective method for

recognizing and minimizing potential threats.

5.1 Data Preprocessing

The Google Collaboratory was used to carry out this project. Python and other programming

languages are available through Google Colab, a web-based cloud service. For this study,

python was the programming language of choice. Data preprocessing is the first step is the

implementation of the data. It is the process of changing raw data into information that the

machine learning model can work with. It is the primary and most crucial step when carrying

out the development of a new model. The data set is loaded and will enable the preprocessing

steps to be carried out.

5.2 Data Cleaning

Data cleaning is the procedure used to locate and fix mistakes in the data warehouse. As data

is gathered from numerous origins into a data warehouse, guaranteeing quality and consistency

across that data becomes a substantial and difficult undertaking. Data cleaning provides

essential services for cleaning data, including attribute selection, token construction, algorithm

selection for grouping, function selection for similarity, function selection for removal,

function selection for merging, etc (Ridzuan and Wan Zainon, 2019). Further, specific data

cleaning activities are carried out to guarantee data quality and consistency. Columns with zero

values, like "difficulty level" and "num_outbound_cmds," are removed from the dataset

because they don't add valuable data. By doing this, the dataset's integrity is guaranteed, and it

is also ready for further preparation.

11

5.3 Data Identification

Data labeling is the process of detecting unlabeled raw data (such as pictures, text files, videos,

etc.) and adding one or more useful labels to give it context so that a machine learning model

may learn from it (Li et al., 2021). The dataset's label column has been identified as the assault

column. The column shows the many network intrusion assault types that must be anticipated

throughout the classification process.

5.4 Descriptive statistics on dataset

A data set's features are summarized by making use of descriptive statistics. Descriptive

statistics entails three crucial measures which are variability, frequency distribution and central

tendency (Cooksey, 2020). Descriptive statistics helps to provide the data engineer with a brief

overview of the dataset being studied without drawing unnecessary conclusions. One variable

can be described using descriptive statistics (univariate analysis) or multiple variables can be

described using descriptive statistics (bivariate/multivariate analysis) (Kaliyadan and Kulkarni,

2019). When too many variables exist from the set, using descriptive statistic tools like scatter

plots could help illustrate the correlation between those variables.

5.5 Data Normalization

Machine learning uses data normalization to reduce the sensitivity of model training to feature

scale (Izonin et al., 2022). This enables the algorithm we use to converge to better weights,

which produces a more accurate model. The characteristics are more uniform after the

normalization process which would boost the models ability to make better predictions (Aksu,

Güzeller and Eser, 2019). The 'StandardScaler()' method is used to scale down the numerical

features without omitting important details or distorting changes in their value ranges. In order

to prevent any one feature from predominating the classification process, this technique scales

each feature to have a unit variance while removing the mean.

5.6 One-Hot-Encoding

One-hot Encoding (OHE) is the usual process used to refine categorical information (Ul Haq

et al., 2019). According to Anderberg, (2014), OHE is frequently used to convert categorical

information to numerical features in many conventional data mining jobs. A single variable

with n observations and d unique values is transformed by OHE into d binary variables, each

with n observations. One-hot encoding is used to convert the protocol_type, service, and flag

categorical variables in the NSL_KDD dataset into numerical variables. The categorical data

is encrypted using this method, enabling efficient use of these variables throughout the

classification process.

5.7 Multi-Class Classification

Multiclass classification plays a crucial role in numerous practical machine learning

applications that require the capability to automatically differentiate among a vast array of

classes, sometimes numbering in the thousands (Thrampoulidis, Oymak and Soltanolkotabi,

2020). There are 24 different attack types listed in the label column, which are then divided

12

into four separate attack types: DoS, Probe, U2R, and R2L. The qualities and goals of each

attack type are used to establish these classes. The multi-classification work is made simpler

by the reclassification, and the findings are easier to understand.

Based on the dataset, the different attack types are being classified to improve the interpretation

of the results. The attacks types are thus discussed below:

1. Denial of Service (DoS): DoS attacks attempt to block authorized users from accessing

a system by reducing system availability (Obaid, 2020). They force intensive

calculation functions on the target by abusing the system's weaknesses or

overwhelming it with numerous useless requests.

2. Probing Attack (Probe): Assaults such as probe or probe-response assaults pose a fresh

risk to collaborative intrusion detection systems. Probing assaults are intended to

expose information about the weaknesses of a target system by performing carefully

chosen sequences of operations and seeing how the target system or the intrusion

detection system (IDS) fronts it responds. Some probing attempts aim to map out the

target's IP address space as a preliminary to a campaign of spreading malware.

3. User to Root Attack (U2R): In a User to Root attack, the attacker first succeeds in

establishing a user session, usually using an interactive shell, or sometimes a TELNET

window on the remote system (Palshikar, 2022). The attacker tries to slowly gain more

privileged access to the system until he gains super user access by mixing up

approaches.

4. Remote to Local Attack (R2L): The user-to-root attack and the remote to local attack

have theoretically similar goals, but the remote to local attack has a more constrained

end goal (Dhanabal and Shantharajah, 2015). An attacker conducts such an attack when

they transmit packets to the target host that are supposed to reveal security weaknesses

that would allow them to abuse the privileges of a local user.

5.8 Attack class Distribution

This shows a graph of the different attack types that are being analysed in the training model.

This illustration is found in the graph below in Fig 5.8.

13

Fig 5.1: multi-class label distribution on attack types.

During the aforementioned phase, a varied dataset of system logs and network traffic was

gathered for covering various time periods and situations. Both instances of typical system

activity and recorded assault events of various kinds are included in the collection. The

percentage of the normal system states is determined by the frequency of the events classified

as "normal" in the dataset system, and from the visualization above we have more than 50% of

the normal system states. It also demonstrates that the majority of attacks are from Denial of

Service (DoS), which is more than 30%, followed by Probe.

5.9 Feature Extraction

The process of extracting features entails changing a picture's raw pixel values into more

valuable, quantifiable information that can be used in other processes like image processing,

pattern recognition, and machine learning (Adekunle and Aiyeniko, 2020). The pearson

correlation analysis was performed to extract features, determine how other characteristics

affected the attack columns, and blend the extracted features with categorical variables. The

Pearson's Product Moment Correlation Coefficient, also known as the Pearson's or Pearson's is

a measurement of the strength (direction and magnitude) of the linear relationship between two

variables (Obilor and Amadi, 2018).

Using the Pearson correlation coefficient, below is an illustration of labelling based on

correlation.

Where,

n is the number of stock pairs,

r is the Pearson correlation coefficient,

 xy is the total of the products of the paired stocks.

x = total of the x scores,

y = total of the y scores,

14

x2 = total of the x scores squared

y2 = total of the y scores squared.

After preprocessing the data and extracting the features, there are more features and columns

overall, all of which are numeric which is integrated into the machine learning method.

6 Evaluation

After preprocessing the data and categorizing the attack types, the dataset is divided into

training and testing sets, and various machine learning algorithms, including random forests,

support vector machines (SVM), K-nearest neighbour (KNN), gradient boosting machines

(GBM), neural networks, and reinforcement learning, are used to train the models. With the

aid of python libraries (such as numpy, pandas, and matplotlib) and keras in tensor flow, the

model's performance is assessed using metrics like accuracy, precision, recall, F1-score, and

learning curve for reinforcement learning to gauge its efficiency in accurately detecting and

classifying network intrusion attacks.

6.1 Evaluation Metrics

The following Table 6.1 shows the various learning algorithms and the results derived from

their training model. The table below which is table 6.1 is a summary of the result from the

support vector machine.

Table 6.1: Support Vector Machine Model

Hyperparameters Metrics

 Precision Recall F1-score

gamma='auto',

kernel='poly'

Macro avg = 0.56

Weight avg = 0.92

M avg = 0.51

W avg = 0.93

Accuracy = 0.93

M avg = 0.53

W avg = 0.92

From the results in Table 6.1, it is observed from the metrics that the F1 score has an accuracy

of 0.93 which is a result of the mean of precision and recall. The hyperparameters used in the

model are the gamma and kernel parameters.

15

Fig 6.1 Showing the performance metrics for the Support Vector Machine Model

Table 6.2: KNN model

Hyperparameters Metrics

 Precision Recall F1-score

n_neighbors = 5 Macro avg = 0.84

Weight avg = 0.98

M avg = 0.78

W avg = 0.98

Accuracy = 0.98

M avg = 0.80

W avg = 0.98

Table 6.2 shows the results from the KNN training model

From the results in Table 6.2, it is observed from the metrics that the F1 score has an accuracy

of 0.98 which is a result of the mean of precision and recall. The hyperparameters used in the

model is the n-neighbors which has a value of 5.

16

Fig 6.2 Showing the performance metrics for the KNN Model

Table 6.3: Gradient Boosting Model

Hyperparameters Metrics

 Precision Recall F1-score

Learning_rate = 0.1,

n_estimators = 100

Macro avg = 0.76

Weight avg = 0.97

M avg = 0.70

W avg = 0.97

Accuracy = 0.97

M avg = 0.72

W avg = 0.97

From the results in Table 6.3, it is observed from the metrics that the F1 score has an accuracy

of 0.97 which is a result of the mean of precision and recall. The hyperparameters used in the

model are the learning rate and n-estimators which has a value of 0.1 and 100 respectively.

Figure 6.2 highlights the important features of the GBM training model which plays an

important role in enhancing the performance and predictive capabilities used.

17

Fig 6.3 Showing the performance metrics for the GB Model

Table 6.4: Random Forest Model

Hyperparameters Metrics

 Precision Recall F1-score

n_estimators = 100 Macro avg = 0.73

Weight avg = 0.98

M avg = 0.70

W avg = 0.98

Accuracy = 0.97

M avg = 0.71

W avg = 0.98

From the results in Table 6.4, it is observed from the metrics that the F1 score has an accuracy

of 0.97 which is a result of the mean of precision and recall. The hyperparameters used in the

model is the n-estimators which has a value of 100.

18

Fig 6.4 Showing the performance metrics for the Random Forest model.

The multi-layer perceptron (MLP) is a feed-forward neural network. It is used in areas like

pattern categorization, function approximation, and predictions (Alla, Moumoun and Balouki,

2021). This deep learning approach trains the input variables using a neural network. This

model training investigated the three important hyperparameters which include Epoch, Batch

size, and Learning rate to learn the well a deep learning algorithm that used neural networks

for training performed. Understanding how these hyperparameters of F1-score, accuracy, and

recall affect a model's precision was crucial for the training. This shows the results from the

Multi-Layer Perceptron Model in table 6.5 below.

Table 6.4: Multi-Layer Perceptron Model Metrics

Accuracy 0.9704

Recall 0.9665

F1-score 0.96783

Precision 0.96916

From the results in Table 6.2, it is observed from the metrics that the F1 score has a value of

0.96 while the accuracy of the model is 0.97. which is a result of the mean of precision and

recall. This presents the findings obtained from the experiments using the hyperparameters

such as Epoch= 100, Batch size= 5000.

19

Fig 6.3 Showing the performance metrics for the multi-layer perception model.

6.2 Reinforcement Learning

Reinforcement learning presents a promising method to improve the capabilities of Intrusion

Detection Systems (IDS) by enabling systems to learn and adjust their behavior based on

feedback received from the environment. In order to understand this section clearer, the

following terms would be defined:

Agent: An entity that can see, investigate, and respond to its environment.

Environment: an environment or scenario in which an agent is present or encircled by. Since

the environment is assumed to be stochastic in RL, it is essentially random.

Action: The steps an agent takes inside the environment are referred to as actions.

State: In response to each action the agent does, the environment returns a state.

Reward: This is a case where the environment provides feedback to the agent in order to assess

its performance.

Policy: Based on the present state, policy is a technique that the agent uses to determine what

to do next.

Value: This explains the fact that long-term returns are anticipated to be lower than short-term

returns due to the discount factor.

20

Intrusion Detection Environment: This is a unique Gym setting created especially for the

intrusion detection system. Dataset_path = '/content/data.npy' is used as the dataset path during

initialization, and it imports data using Numpy. It also determines the observation space, action

space, current step, and maximum steps. The actions connected to identifying intrusions are

represented in the action space, whereas the observation space represents the network traffic

properties.

The reset: The environment is restored to its original state using the reset technique.

The calculate reward: It uses the current state to determine the reward; the award is the total

of the state values (Badr, 2022). Based on the observed network traffic, the reward function is

created to give feedback on the agent's choice.

The step: This performs an action, modifies the environment, and then returns the subsequent

state, reward, done flag, and other details.

DQN Agent: The DQN technique is implemented here in order to train an agent to make

judgments in an intrusion detection environment (Badr, 2022). The agent uses network traffic

observations as input and decides what to do depending on its current policy, which it learns

and updates through interactions with the IDS environment. It sets the state_size and

action_size initial values. In order to learn from previous interactions and enhance its decision-

making, the agent's experience is saved in a replay memory buffer.

Build model: It is a neural network model that makes use of the Keras sequential API. The

model has three dense, fully connected layers that are activated by Rectified Linear Units

(ReLUs), and the output layer has a linear activation function (Tariq et al., 2022). The mean

squared error (MSE) loss and the Adam optimizer are used to build the model. Agent

experiences are stored in the agents' memory, which is implemented as a deque (double-ended

queue) with a maximum length. The algorithm update equation's discount factor is represented

by the gamma parameter. The exploration rate, which changes over time in accordance with

epsilon decay, is determined by the epsilon parameter. The minimal exploration rate is

indicated by the parameter epsilon min. The optimizer's rate of learning is managed via the

learning rate option. The learning curve is plotted based on the total rewards to be obtained in

each episode. The graph below in Fig 6.3 shows the learning curve from the training model

21

Fig 6.3: Reinforcement learning curve

From the above graph in fig 6.3, it shows the assessment of how well the DQN algorithm is

working and keeping track of how the agent's total rewards are convergent. It shows that the

DQN model has summed up 410,000 rewards in total and is learning non-linearly but

progressively over its 10 episodes.

6.3 Discussion

From the analysis derived from the different training algorithms, with the data preprocessing

steps and attack class categorization, the data set was split into testing and training sets where

the application of different machine learning models which includes random forests, support

vector machines (SVM), K-nearest neighbour (KNN), Gradient Boosting Machines (GBM),

neural networks and reinforcement learning were all employed for model training. In the

analysis of the study, the training model performance was evaluated using key metrics like

accuracy, precision, recall, F1-score and learning curve for reinforcement learning to thus

measure the effectiveness acquired to detect and classify network intrusion systems.

Further, from the findings from attack class distributions, the percentage of the normal system

states is calculated based on the frequency of the events classified as "normal" in the dataset

system, and from the results, it shows that there is then 50% normal system states and it also

shows that most attacks are from Denial of Service (DoS), which is more than 30% followed

by Probe.

For the SVM model, the reported F1-score of 0.93 shows that precision and recall are

well-balanced. The accuracy is also 0.93, as it is highlighted. The overall average F1-score and

recall are significantly lower at 0.51 and 0.53 whereas the weighted average precision and

recall are reasonably high at 0.92 and 0.93, respectively. The model appears to perform well in

some classes while faltering in others, according to the discrepancy. The findings demonstrate

that the SVM model offers respectable overall accuracy, although further optimisation may be

beneficial to achieve more evenly distributed performance across various attack types.

 With n_neighbors set to 5, the KNN model produces impressive results. High precision

and recall balance, which result in a well-rounded performance, are indicated by the F1-score

22

of 0.98. The model's ability to effectively categorise instances is supported by its accuracy of

0.98. High weighted and macro average indicators show that performance is consistent across

classes. These findings imply that the KNN model is capable of robustly classifying network

intrusion data and capturing its underlying patterns.

 The Gradient Boosting model performs admirably when learning_rate is set to 0.1 and

n_estimators are set to 100. It performs well, as seen by its accuracy and F1-score of 0.97. The

macro average and weighted measures also show consistent performance across various attack

types. The model's success in achieving a high F1-score and accuracy suggests that it is

effective at identifying network intrusions and correctly classifying them.

 With n_estimators set to 100, the Random Forest model generates outcomes that are

consistent with those of the earlier models. Solid performance is indicated by an F1-score and

accuracy of 0.97. The model's proficiency in managing various assault types is further

supported by the weighted and macro average metrics. The Random Forest is suitable for

network intrusion detection, as shown by these results, which concur with those of the other

models.

 With the hyperparameters Epoch=100, Batch size=5000, and Learning rate set to an

undetermined value, the Multi-Layer Perceptron (MLP) model, a deep learning technique, is

tested. The outcomes, which include an accuracy of 0.9704 and an F1-score of 0.96783,

highlight the model's ability to identify intricate patterns in the data. A balanced performance

is also indicated by the recall and precision values. The model achieves good accuracy, but

there may be potential for improvement in the precision and recall trade-off, as the F1-score is

slightly lower than the F1-scores obtained by some of the other models.

 The evaluation's overall findings show that the K-Nearest Neighbour (KNN), Gradient

Boosting, and Random Forest models regularly outperform other models in effectively

identifying and categorising network intrusion attacks. Although the Support Vector Machine

(SVM) model performs rather well, it might benefit from more tuning to enhance its balance

across various assault types. The Multi-Layer Perceptron (MLP), which achieves high accuracy

with some precision and recall loss, is a good example of the promise of deep learning

approaches. This suggests that a mix of various models might be used to further improve the

detection abilities and robustness of the intrusion detection system. The results of this

evaluation are consistent with earlier studies, like A. Aziz, Hanafi and Hassanien, (2017) and

Uikey and Gyanchandani, (2019), that demonstrate the efficiency of ensemble techniques for

intrusion detection, such as Random Forest and Gradient Boosting. According to a study by

Nikhitha and Jabbar, (2019), the KNN model was used for the intrusion detection systems. The

trained machine learning classifier, KNN performed best in terms of classification accuracy. In

evaluating the model's implementation, experimental analysis was done using the ISCX

dataset. According to the experimental results, the suggested model had an enhanced accuracy

of 99.96%. Also, another study proposed by Dini and Saponara, (2021) used K-nearest

neighbors and artificial neural network to develop an algorithm for an intrusion detection

system. it was realized from their results that KNN was better than the other algorithm both in

the classification of the anomaly class and in the normal class in terms of accuracy.

Furthermore, The RF algorithm produces accuracy results for DOS, Probe, R2L, and U2R of

99.9%, 99.9%, 99.8%, and 99.0% respectively in the method suggested by Farnaaz and Jabbar,

23

(2016). The investigation of deep learning methods, such as MLP, also demonstrates their

capacity to recognise complex patterns seen in network traffic data.

 However, more research into hyperparameter tweaking and model ensembling may

lead to even better outcomes and performance that is more evenly distributed across various

attack classes. The dynamic nature of network attacks and the changing threat landscape must

also be taken into account. The effectiveness of intrusion detection systems must be maintained

by routine updates and model retraining utilising the most recent data and attack patterns.

Therefore, the study's implementation of the Deep Q-Network (DQN) algorithm for network

intrusion detection brings an intriguing new perspective to the analysis of intrusion detection

models. The DQN algorithm attempts to learn from past data and differentiate between

legitimate and malicious behaviours, including various sorts of assaults. A learning curve that

graphs the total reward against the number of episodes is the foundation for the DQN

algorithm's evaluation. Insights into the algorithm's effectiveness can be gained from the

observed pattern in the learning curve, which shows upward movements from episode 395000

to 411000. While deep learning algorithms like DQN can identify complex patterns, they can

also be more complicated and difficult to understand when compared to conventional models.

DQN is one example of a deep learning algorithm that can be computationally demanding.

Therefore, when integrating DQN into intrusion detection systems, it is crucial to evaluate the

trade-off between computational resources and performance gains. Despite this, the rising trend

in the learning curve indicates that throughout the duration of training episodes, the DQN

algorithm is gradually improving its performance. This suggests that the DQN is getting better

at differentiating between legitimate and malicious behaviour as it learns from historical data.

Therefore, it is only a matter of time before the DQN outperforms the other algorithms.

7 Conclusion.

The primary objective of this study were to develop and evaluate a comprehensive approach

for accurately categorizing network intrusion attacks using a combination of traditional

supervised machine learning algorithms, deep learning techniques, and reinforcement

learning. The focus was on classifying attack types into four distinct groups: DoS, Probe,

U2R, and R2L. The objective of the study also include the assessment of the effectiveness of

the different algorithms, optimising their performance, and exploring the potential of the

DQN algorithm for intrusion detection

7.1 Achievement of objectives

The study has successfully accomplished its research objectives by employing a systematic

methodology. The researcher performed multi-class classification using well-established

algorithms such as Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors

(KNN), and Gradient Boosting Machines (GBM), achieving promising results in accurately

categorizing attack types. Furthermore, feature engineering through Pearson correlation

analysis enhanced the performance of these algorithms. The researcher extended

investigation into deep learning by employing the Multi-Layer Perceptron (MLP) model, a

neural network-based algorithm. Through rigorous hyperparameter tuning, the researcher

24

optimized the MLP's performance, highlighting the significance of parameters like Epoch,

Batch_size, and Learning_rate. Furthermore, the researcher ventured into the realm of

reinforcement learning by developing an Intrusion Detection System (IDS) using the DQN

algorithm. This system showcased the potential of learning from historical data to

differentiate between normal and malicious behaviours, based on Probing, DoS, R2L, and

U2R attacks. The performance of the DQN algorithm was assessed using a learning curve

that showed improvements in detecting attack types.

7.2 Key Findings

The investigation yielded significant findings:

1. Traditional machine learning algorithms, when properly tuned and enhanced through

feature engineering, can effectively categorize network intrusion attacks.

2. Deep learning, particularly the Multi-Layer Perceptron model, offers a powerful tool

for intrusion detection, with the potential to capture complex patterns.

3. Reinforcement learning, exemplified by the DQN algorithm, has promising capabilities

in learning from historical data and improving intrusion detection accuracy.

7.3 Implications and Efficacy

The implications of the research are substantial. A robust Intrusion Detection System (IDS)

that combines the strengths of various algorithms can significantly increase network security.

The efficacy of the approach employed is given by the high accuracy, precision, recall, and F1-

score values achieved by the models. The study generally demonstrates that a well-structured

hybrid of machine learning and deep learning techniques can provide a comprehensive solution

for network intrusion detection.

7.4 Limitations

This research is not without limitations. The use of historical data may not fully capture future

attack scenarios, and the effectiveness of the DQN algorithm might vary depending on the

environment. Furthermore, the computational complexity of certain algorithms, particularly

deep learning, needs to be carefully considered in practical implementations. This study did

not do that.

7.5 Future Work and Commercialization

Commercially, this research opens avenues for developing robust and adaptable Intrusion

Detection Systems (IDS) that cater to the increasing sophistication of cyber threats. The

potential for integration into network security solutions is significant.

Future research could focus on:

1. Exploring ensemble techniques that combine the strengths of various algorithms to

further enhance detection accuracy.

25

2. Investigating more advanced hyperparameter optimization methods for deep learning

models.

3. Assessing the adaptability of the DQN algorithm to dynamic and evolving attack

environments.

References

A. Aziz, A.S., Hanafi, S.E.-O. and Hassanien, A.E. (2017). Comparison of Classification

Techniques Applied for Network Intrusion Detection and Classification. Journal of Applied

Logic, 24, pp.109–118. doi:https://doi.org/10.1016/j.jal.2016.11.018.

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J. and Ahmad, F. (2020). Network

Intrusion Detection system: A Systematic Study of Machine Learning and Deep Learning

Approaches. Transactions on Emerging Telecommunications Technologies, 32(1).

doi:https://doi.org/10.1002/ett.4150.

Alarqan, M.A., Zaaba, Z.F. and Almomani, A. (2019). Detection Mechanisms of DDoS

Attack in Cloud Computing Environment: A Survey. Communications in Computer and

Information Science, pp.138–152. doi:https://doi.org/10.1007/978-981-15-2693-0_10.

Alghamdi, T.A. and Javaid, N. (2022). A Survey of Preprocessing Methods Used for

Analysis of Big Data Originated from Smart Grids. IEEE Access, pp.1–1.

doi:https://doi.org/10.1109/access.2022.3157941.

Aljabri, M., Aljameel, S.S., Mohammad, R.M.A., Almotiri, S.H., Mirza, S., Anis, F.M.,

Aboulnour, M., Alomari, D.M., Alhamed, D.H. and Altamimi, H.S. (2021). Intelligent

Techniques for Detecting Network Attacks: Review and Research Directions. Sensors,

21(21), p.7070. doi:https://doi.org/10.3390/s21217070.

Alla, H., Moumoun, L. and Balouki, Y. (2021). A Multilayer Perceptron Neural Network

with Selective-Data Training for Flight Arrival Delay Prediction. Scientific Programming,

[online] 2021, p.e5558918. doi:https://doi.org/10.1155/2021/5558918.

Alzahrani, A.O. and Alenazi, M.J.F. (2021). Designing a Network Intrusion Detection

System Based on Machine Learning for Software Defined Networks. Future Internet, 13(5),

p.111. doi:https://doi.org/10.3390/fi13050111.

Ares, B., Morán-Fernández, L. and Bolón-Canedo, V. (2022). Reduced Precision

Discretization Based on Information Theory. 207, pp.887–896.

doi:https://doi.org/10.1016/j.procs.2022.09.144.

Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W. and Wahab, A. (2020). A

Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of

26

Things: Challenges, Solutions and Future Directions. Electronics, 9(7), p.1177.

doi:https://doi.org/10.3390/electronics9071177.

Azizan, A.H., Mostafa, S.A., Mustapha, A., Foozy, C.F.M., Wahab, M.H.A., Mohammed,

M.A. and Khalaf, B.A. (2021). A Machine Learning Approach for Improving the

Performance of Network Intrusion Detection Systems. Annals of Emerging Technologies in

Computing, 5(5), pp.201–208. doi:https://doi.org/10.33166/aetic.2021.05.025.

Badr, Y. (2022). Enabling Intrusion Detection Systems with Dueling Double Deep Q-

learning. Digital Transformation and Society. doi:https://doi.org/10.1108/dts-05-2022-0016.

Bajtoš, T., Sokol, P. and Mézešová, T. (2019). Multi-stage Cyber-Attacks Detection in the

Industrial Control Systems. Studies in systems, Decision and Control, pp.151–173.

doi:https://doi.org/10.1007/978-3-030-31328-9_8.

Barto, A. and Dietterich, T. (2004). Reinforcement Learning and Its Relationship to

Supervised Learning. [online] Available at:

http://all.cs.umass.edu/pubs/2004/barto_d_04.pdf.

Biswas, S.K. (2018). Intrusion Detection Using Machine Learning: A Comparison Study.

International Journal of Pure and Applied Mathematics. Volume 118 No. 19.

Breiman, L. (2001). Random Forests. Machine Learning, [online] 45(1), pp.5–32.

doi:https://doi.org/10.1023/a:1010933404324.

Canadian Institute for Cybersecurity (2023). NSL-KDD | Datasets | Research | Canadian

Institute for Cybersecurity | UNB. [online] Www.unb.ca. Available at:

https://www.unb.ca/cic/datasets/nsl.html [Accessed Jul. 2023].

Carneiro, T., Medeiros Da Nobrega, R.V., Nepomuceno, T., Bian, G.-B., De Albuquerque,

V.H.C. and Filho, P.P.R. (2018). Performance Analysis of Google Colaboratory as a Tool for

Accelerating Deep Learning Applications. IEEE Access, [online] 6, pp.61677–61685.

doi:https://doi.org/10.1109/access.2018.2874767.

Chen, H., Li, T., Sang, B. and Yuan, Z. (2023). Feature Grouping and Selection with Graph

Theory in Robust Fuzzy Rough Approximation Space. 31(1), pp.213–225.

doi:https://doi.org/10.1109/tfuzz.2022.3185285.

Chowdhury, M. N., Ferens, H., and Ferens, M. (2016). Network Intrusion Detection Using

Machine Learning. Int'l Conf. Security and Management.

Cooksey, R.W. (2020). Descriptive Statistics for Summarising Data. Illustrating Statistical

Procedures: Finding Meaning in Quantitative Data, [online] pp.61–139.

doi:https://doi.org/10.1007/978-981-15-2537-7_5.

Cybenko G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control

Signals Syst. 2(4):303–14

27

Dhanabal, L. and Shantharajah, S. (2015). A Study on NSL-KDD Dataset for Intrusion

Detection System Based on Classification Algorithms. International Journal of Advanced

Research in Computer and Communication Engineering, [online] 4.

doi:https://doi.org/10.17148/IJARCCE.2015.4696.

Dini, P. and Saponara, S. (2021). Analysis, Design, and Comparison of Machine-Learning

Techniques for Networking Intrusion Detection. Designs, 5(1), p.9.

doi:https://doi.org/10.3390/designs5010009.

Duc, A., Dziembowski, S. and Faust, S. (2018). Unifying Leakage Models: from Probing

Attacks to Noisy Leakage. Journal of Cryptology, 32(1), pp.151–177.

doi:https://doi.org/10.1007/s00145-018-9284-1.

Ekici, S. (2012). Support Vector Machines for Classification and Locating Faults on

Transmission Lines. Applied Soft Computing, 12(6), pp.1650–1658.

doi:https://doi.org/10.1016/j.asoc.2012.02.011.

Esteve, M., Aparicio, J., Rodriguez-Sala, J.J. and Zhu, J. (2023). Random Forests and the

Measurement of super-efficiency in the Context of Free Disposal Hull. European Journal of

Operational Research, 304(2), pp.729–744. doi:https://doi.org/10.1016/j.ejor.2022.04.024.

Fan, C., Chen, M., Wang, X., Wang, J. and Huang, B. (2021). A Review on Data

Preprocessing Techniques toward Efficient and Reliable Knowledge Discovery from

Building Operational Data. Frontiers in Energy Research, 9.

doi:https://doi.org/10.3389/fenrg.2021.652801.

Fan, C., Sun, Y., Zhao, Y., Song, M. and Wang, J. (2019). Deep learning-based Feature

Engineering Methods for Improved Building Energy Prediction. Applied Energy, 240, pp.35–

45. doi:https://doi.org/10.1016/j.apenergy.2019.02.052.

Farnaaz, N. and Jabbar, M.A. (2016). Random Forest Modeling for Network Intrusion

Detection System. Procedia Computer Science, [online] 89, pp.213–217.

doi:https://doi.org/10.1016/j.procs.2016.06.047.

Gallego, V. and Insua, D.R. (2021). Current Advances in Neural Networks. 9(1), pp.197–222.

doi:https://doi.org/10.1146/annurev-statistics-040220-112019.

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn and TensorFlow concepts,

tools, and Techniques to Build Intelligent Systems. 2nd ed. O’Reilly Media, Inc.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.

Gupta, A.R. and Agrawal, J. (2020). The multi-demeanor Fusion Based Robust Intrusion

Detection System for Anomaly and Misuse Detection in Computer Networks. Journal of

Ambient Intelligence and Humanized Computing. doi:https://doi.org/10.1007/s12652-020-

01974-4.

28

Han, J., Pei, J. and Tong, H. (2022). Data Mining. Morgan Kaufmann.

Heidari, A. and Jabraeil Jamali, M.A. (2022). Internet of Things Intrusion Detection systems:

A Comprehensive Review and Future Directions. Cluster Computing.

doi:https://doi.org/10.1007/s10586-022-03776-z.

Hossain, M.D., Ochiai, H., Fall, D. and Kadobayashi, Y. (2020). LSTM-based Network

Attack Detection: Performance Comparison by Hyper-parameter Values Tuning. 2020 7th

IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th

IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom).

doi:https://doi.org/10.1109/cscloud-edgecom49738.2020.00020.

Hu, Z., Beuran, R. and Tan, Y. (2020). Automated Penetration Testing Using Deep

Reinforcement Learning. [online] IEEE Xplore.

doi:https://doi.org/10.1109/EuroSPW51379.2020.00010.

Kaliyadan, F. and Kulkarni, V. (2019). Types of variables, Descriptive statistics, and Sample

Size. Indian Dermatology Online Journal, [online] 10(1), pp.82–86.

doi:https://doi.org/10.4103/idoj.IDOJ_468_18.

Katole, R.A., Sherekar, S.S. and Thakare, V.M. (2018). Detection of SQL Injection Attacks

by Removing the Parameter Values of SQL Query. 2018 2nd International Conference on

Inventive Systems and Control (ICISC). doi:https://doi.org/10.1109/icisc.2018.8398896.

Khan, M.Y., Qayoom, A., Nizami, M.S., Siddiqui, M.S., Wasi, S. and Raazi, S.M.K.-R.

(2021). Automated Prediction of Good Dictionary EXamples (GDEX): a Comprehensive

Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep

Learning Techniques. Complexity, 2021, pp.1–18. doi:https://doi.org/10.1155/2021/2553199.

Kim, S.K., Kirchner, E.A., Stefes, A. and Kirchner, F. (2017). Intrinsic Interactive

Reinforcement Learning – Using error-related Potentials for Real World human-robot

Interaction. Scientific Reports, 7(1). doi:https://doi.org/10.1038/s41598-017-17682-7.

Klug, M., Barash, Y., Bechler, S., Resheff, Y.S., Tron, T., Ironi, A., Soffer, S., Zimlichman,

E. and Klang, E. (2019). A Gradient Boosting Machine Learning Model for Predicting Early

Mortality in the Emergency Department Triage: Devising a Nine-Point Triage Score. Journal

of General Internal Medicine, [online] 35(1), pp.220–227.

doi:https://doi.org/10.1007/s11606-019-05512-7.

Lopez-Martin, M., Carro, B. and Sanchez-Esguevillas, A. (2020). Application of Deep

Reinforcement Learning to Intrusion Detection for Supervised Problems. Expert Systems with

Applications, 141, p.112963. doi:https://doi.org/10.1016/j.eswa.2019.112963.

Lorenzen, S.S., Igel, C. and Seldin, Y. (2019). On PAC-Bayesian Bounds for Random

Forests. Machine Learning, 108(8-9), pp.1503–1522. doi:https://doi.org/10.1007/s10994-

019-05803-4.

29

Lu, H. and Mazumder, R. (2018). Randomized Gradient Boosting Machine. [online]

Available at: http://web.mit.edu/haihao/www/papers/RGBM.pdf [Accessed 8 Aug. 2021].

Maingi, M.N. (2015). Survey on Data Preprocessing Concept Applicable in Data Mining.

[online] Available at: https://www.semanticscholar.org/paper/Survey-on-Data-Preprocessing-

Concept-Applicable-in-Maingi/9c7be10cf5aa11bdfc59ac94d4100c5863f31ec1 [Accessed 24

Jul. 2023].

Minsky, M. and Papert, S. (1969). Perceptrons; an Introduction to Computational Geometry.

Muller, S., Lancrenon, J., Harpes, C., Traon, Y.L., Gombault, S. and Bonnin, J.-M. (2018). A

training-resistant Anomaly Detection System. Computers & Security, 76, pp.1–11.

doi:https://doi.org/10.1016/j.cose.2018.02.015.

Muzzammel, R. and Raza, A. (2020). A Support Vector Machine Learning-Based Protection

Technique for MT-HVDC Systems. Energies, 13(24), p.6668.

doi:https://doi.org/10.3390/en13246668.

Nargesian, F., Asudeh, A. and Jagadish, H.V. (2022). Responsible Data Integration: Next-

generation Challenges. doi:https://doi.org/10.1145/3514221.3522567.

Nayak, J., Naik, B. and Behera, H.S. (2015). A Comprehensive Survey on Support Vector

Machine in Data Mining Tasks: Applications & Challenges. International Journal of

Database Theory and Application, 8(1), pp.169–186.

doi:https://doi.org/10.14257/ijdta.2015.8.1.18.

 Bush, S.F and Evans, S.C.(2001) Information assurancedesign and assessment. Final report,

General ElectricResearch and Development Center, August

Nikhitha, M. and Jabbar, M.A. (2019). K Nearest Neighbor Based Model for Intrusion

Detection System. International Journal of Recent Technology and Engineering, 8(2),

pp.2258–2262. doi:https://doi.org/10.35940/ijrte.b2458.078219.

Obaid, H.S. (2020). Denial of Service Attacks: Tools and Categories. International Journal

of Engineering Research and, V9(03). doi:https://doi.org/10.17577/ijertv9is030289.

Obilor, E.I. and Amadi, E.C. (2018). (PDF) Test for Significance of Pearson’s Correlation

Coefficient (). [online] ResearchGate. Available at:

https://www.researchgate.net/publication/323522779_Test_for_Significance_of_Pearson.

Palshikar, A. (2022). What Distinguishes Binary from multi-class Intrusion Detection

systems: Observations from Experiments. International Journal of Information Management

Data Insights, 2(2), p.100125. doi:https://doi.org/10.1016/j.jjimei.2022.100125.

Papanikolaou, A., Alevizopoulos, A., Ilioudis, C., Demertzis, K. and Rantos, K. (2023). An

autoML Network Traffic Analyzer for Cyber Threat Detection.

doi:https://doi.org/10.1007/s10207-023-00703-0.

30

Peterson, L. (2009). K-nearest Neighbor. Scholarpedia, [online] 4(2), p.1883.

doi:https://doi.org/10.4249/scholarpedia.1883.

Pham, S.T., Vo, P.S. and Nguyen, D.N. (2021). Effective Electrical Submersible Pump

Management Using Machine Learning. Open Journal of Civil Engineering, 11(01), pp.70–80.

doi:https://doi.org/10.4236/ojce.2021.111005.

Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G. and Qiu, M. (2020). Adversarial Attacks

against Network Intrusion Detection in IoT Systems. IEEE Internet of Things Journal, pp.1–

1. doi:https://doi.org/10.1109/jiot.2020.3048038.

Qureshi, A.U.H., Larijani, H., Yousefi, M., Adeel, A. and Mtetwa, N. (2020). An Adversarial

Approach for Intrusion Detection Systems Using Jacobian Saliency Map Attacks (JSMA)

Algorithm. Computers, 9(3), p.58. doi:https://doi.org/10.3390/computers9030058.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M. and Herrera, F. (2017). A

Survey on Data Preprocessing for Data Stream mining: Current Status and Future Directions.

Neurocomputing, [online] 239, pp.39–57. doi:https://doi.org/10.1016/j.neucom.2017.01.078.

Ramírez‐Gallego, S., García, S., Mouriño‐Talín, H., Martínez‐Rego, D., Bolón‐Canedo, V.,

Alonso‐Betanzos, A., Benítez, J.M. and Herrera, F. (2015). Data discretization: Taxonomy

and Big Data Challenge. WIREs Data Mining and Knowledge Discovery, 6(1), pp.5–21.

doi:https://doi.org/10.1002/widm.1173.

Raschka, S., Patterson, J. and Nolet, C. (2020). Machine Learning in Python: Main

Developments and Technology Trends in Data Science, Machine Learning, and Artificial

Intelligence. Information, 11(4), p.193. doi:https://doi.org/10.3390/info11040193.

Ravipati, R.D. and Abualkibash, M. (2019). Intrusion Detection System Classification Using

Different Machine Learning Algorithms on KDD-99 and NSL-KDD Datasets - a Review

Paper. [online] papers.ssrn.com. Available at:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3428211.

Rehman, E., Haseeb-ud-Din, M., Malik, A.J., Khan, T.K., Abbasi, A.A., Kadry, S., Khan,

M.A. and Rho, S. (2022). Intrusion Detection Based on Machine Learning in the Internet of

things, Attacks and Counter Measures. The Journal of Supercomputing, 78(6), pp.8890–8924.

doi:https://doi.org/10.1007/s11227-021-04188-3.

Ridzuan, F. and Wan Zainon, W.M.N. (2019). A Review on Data Cleansing Methods for Big

Data. Procedia Computer Science, 161, pp.731–738.

doi:https://doi.org/10.1016/j.procs.2019.11.177.

Rosenblatt F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychol. Rev. 65(6):386

31

Sadikin, F., van Deursen, T. and Kumar, S. (2020). A Hybrid Zigbee IoT Intrusion Detection

System Using Secure and Efficient Data Collection. Internet of Things, p.100306.

doi:https://doi.org/10.1016/j.iot.2020.100306.

Serrano, W. (2017). Smart Internet Search with Random Neural Networks. European Review,

[online] 25(2), pp.260–272. doi:https://doi.org/10.1017/S1062798716000594.

Sethi, K., Sai Rupesh, E., Kumar, R., Bera, P. and Venu Madhav, Y. (2019). A context-aware

Robust Intrusion Detection system: A Reinforcement learning-based Approach. International

Journal of Information Security. doi:https://doi.org/10.1007/s10207-019-00482-7.

Shin, J., Badgwell, T.A., Liu, K.-H. and Lee, J.H. (2019). Reinforcement Learning –

Overview of Recent Progress and Implications for Process Control. Computers & Chemical

Engineering, 127, pp.282–294. doi:https://doi.org/10.1016/j.compchemeng.2019.05.029.

Subramanian, A., Chitlangia, S. and Baths, V. (2022). Reinforcement Learning and Its

Connections with Neuroscience and Psychology. Neural Networks, 145, pp.271–287.

doi:https://doi.org/10.1016/j.neunet.2021.10.003.

Suroso, J.S. and Prastya, C.P. (2020). Cyber Security System with SIEM and Honeypot in

Higher Education. IOP Conference Series: Materials Science and Engineering, 874(1),

p.012008. doi:https://doi.org/10.1088/1757-899x/874/1/012008.

Suyal, M. and Goyal, P. (2022). A Review on Analysis of K-Nearest Neighbor Classification

Machine Learning Algorithms Based on Supervised Learning. International Journal of

Engineering Trends and Technology, 70(7), pp.43–48.

doi:https://doi.org/10.14445/22315381/ijett-v70i7p205.

Talaei Khoei, T. and Kaabouch, N. (2023). A Comparative Analysis of Supervised and

Unsupervised Models for Detecting Attacks on the Intrusion Detection Systems. Information,

14(2), p.103. doi:https://doi.org/10.3390/info14020103.

Tariq, Z.U.A., Baccour, E., Erbad, A., Guizani, M. and Hamdi, M. (2022). Network Intrusion

Detection for Smart Infrastructure Using Multi-armed Bandit Based Reinforcement Learning

in Adversarial Environment. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICCWS56285.2022.9998440.

Taunk, K., De, S., Verma, S. and Swetapadma, A. (2019). A Brief Review of Nearest

Neighbor Algorithm for Learning and Classification. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICCS45141.2019.9065747.

Uikey, R. and Gyanchandani, M. (2019). Survey on Classification Techniques Applied to

Intrusion Detection System and Its Comparative Analysis.

doi:https://doi.org/10.1109/icces45898.2019.9002129.

Vapnik, V.N. (1998). Statistical Learning Theory. Wiley-Interscience.

32

Verma, A. and Ranga, V. (2019). Machine Learning Based Intrusion Detection Systems for

IoT Applications. Wireless Personal Communications. [online]

doi:https://doi.org/10.1007/s11277-019-06986-8.

Xu, N. (2019). Understanding the Reinforcement Learning. Journal of Physics: Conference

Series, 1207, p.012014. doi:https://doi.org/10.1088/1742-6596/1207/1/012014.

Xu, Y., Wang, Q., An, Z., Wang, F., Zhang, L., Wu, Y., Dong, F., Qiu, C.-W., Liu, X., Qiu,

J., Hua, K., Su, W., Xu, H., Han, Y., Cao, X., Liu, E., Fu, C., Yin, Z., Liu, M. and Roepman,

R. (2021). Artificial Intelligence: A Powerful Paradigm for Scientific Research. The

Innovation, [online] 2(4), p.100179. doi:https://doi.org/10.1016/j.xinn.2021.100179.

