""—-
\ National

An IDE Extension for Secure Web
Development

MSc Research Project
MSc in Cybersecurity

Dnyanesh Mahajan
Student ID: x21151270

School of Computing
National College of Ireland

Supervisor: Apurva Vangujar

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dnyanesh Mahajan
Student ID: x21151270
Programme: MSc in Cybersecurity
Year: 2023
Module: MSc Research Project
Supervisor: Apurva Vangujar
Submission Due Date: 14/08/2023
Project Title: An IDE Extension for Secure Web Development
Word Count: 6075
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U
Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | (I
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

An IDE Extension for Secure Web Development

Dnyanesh Mahajan
x21151270

Abstract

The research explores the vulnerabilities and security challenges faced by Word-
Press applications. WordPress sites are frequently targeted by attackers, taking ad-
vantage of vulnerability in the third-party plugins or themes. The research conducts
analysis of the WordPress plugins with their common vulnerabilities. The study
highlights the importance of secure coding practices, offering a set of guidelines and
best practices for developers. This research paper introduces an Integrated Devel-
opment Environment (IDE) extension to help secure coding practices and mitigate
vulnerabilities in stage of WordPress plugin development. The IDE extension is
developed for Visual Studio Code IDE, and it is developed using TypeScript and
VS code libraries. The application provides real time feedback for developers to
follow secure coding practises.

1 Introduction

In an increasingly digital world, technology is changing rapidly and the web is becoming
more sophisticated and complex. In such an evolving industry, the need for secure web
development has become crucial. Websites and web applications are now essential for
businesses, content creators, and individuals and WordPress stands out as one of the
most widely used platforms among the content management systems available. However,
these applications are a common target for attackers as a result of their popularity. Being
exposed to such vulnerabilities and security breaches highlights the need for a secure
WordPress ecosystem.

To address this need, the current research paper works on improving WordPress secur-
ity by exploring the various vulnerabilities found within the WordPress plugin ecosystem.
After careful consideration of the Wordpress ecosystem, an IDE extension has been cre-
ated to enhance security measures in the development process of WordPress plugins.
The primary focus of the proposed solution is on mitigating identified security risks and
promoting best practices in the development.

WordPress, with its user-friendly interface and plugins library, has become an easy
platform for developers and content creators to build feature-rich websites and web ap-
plications. However, this has resulted in increased security concerns, ranging from simple
code vulnerabilities to more complex attacks like Cross Site Scripting. The consequences
of security breaches can have major impacts, such as data leaks compromising user pri-
vacy and many more.

The objective of this research is to analyse the existing security issues in the WordPress
plugin environment and propose a practical approach to support security during the
plugin development process. The focus of this research is on the development of an IDE

How Hacked WordPress Sites Were Compromised

plugin

brute force
core

theme

hosting

file permissions
old files
password theft
workstation
phishing
insider

server

ftp

10.0% 30.0% 40.0% 60.0%

Figure 1: Stats of how WordPress get compromised, Source: |How Attackers Gain Access
‘to WordPress Sites (n.d.)

extension to be integrated with the widely used IDE Visual Studio Code (VS Code).
This will enable developers to write secure WordPress plugins while development of the
plugins itself.

This extension will enable developers to receive real-time suggestions according to
WordPress security standards and function. It will help them to identify potential vul-
nerabilities in the early development lifecycle. In addition to this, the extension will
work as a static code analysis to provide timely feedback to developers. It will promote
a security-first mindset among developers and help establish an environment of secure
WordPress plugin development.

The following sections of this research paper will dive deeper into the security chal-
lenges faced within the WordPress ecosystem, present an in-depth analysis of the pro-
posed IDE extension, and its impact on improving the overall security of plugins within
the ecosystem.

1.1 Research Question

What measures can be taken to support developers in following security standards into
the coding stage of WordPress plugin development?

1.2 Objective

The objective of this research is to make the development of WordPress plugins more
secure. Developing this IDE extension will help developers to follow security standards
defined by WordPress which will save time and cost spent on security testing. This
paper will explore the existing security issues in the WordPress plugin environment, their
Impact on WordPress site, Importance of secure coding, the research focused on the
development of an IDE extension, designed to integrate with the Visual Studio Code (VS
Code) IDE. This will contribute towards knowledge and security of WordPress plugins,

Other vulnerability types combined 13.29%
Cross-Site Request Forgery (CSRF) 11.18%

SQL Injection (SQLi) 6.83%
Arbitrary File Upload 6.83%

Broken Authentication 2.83%

Information Disclosure 2.40%

Bypass Vulnerability 1.09%

Privilege Escalation 1.09%

Remote code execution (RCE) 0.94%

Figure 2: List of vulnerabilities in WordPress plugins, Source; WordPress Hacking Stat-

)

leading to best practices for developers.

2 Related Work

WordPress, WordPress Security, Secure Coding, IDEs, and Extensions are the foundation
of this research. Discovered a research gap between them; this research and solution is
novel, so to understand research more clearly related work is divided into the following
sections

WordPress And WordPress Security. IDE and IDE Extensions. Secure
Coding. IDE and IDE extensions for secure coding. and Summary

2.1 WordPress and WordPress Security

This paper (Abhilash Kumar; 2021)) provides an overview of WordPress as a content
management system (CMS) and discusses its key features. The paper guides new users to
make use of WordPress effectively. The paper begins with an introduction to WordPress
and its increasing popularity among some other open-source CMS platforms like Drupal
and Joomla. The authors underlines the importance of CMS to update the websites
without any requirement of previous knowledge of web development tools in this paper.
It then continues to explore the main characteristics of WordPress. It is described as an
all-in-one content manager and publisher which allows administrators to modify content
and publish it in real time. It has the ability to be easily extended by extra features
with plugins which makes it attractive for developers. Along with providing the services
for free it has compatibility with the MySQL Database for managing the database of the
application. The simplicity of managing content through the WP dashboard is remarkable
as it enables even the non-technical users to create and manage the content.

The paper Jose-Manuel Martinez-Caro| (2018)discusses the vulnerability of WordPress
websites, they mention that WordPress is widely used and therefore a popular target for
hackers, with about 95.62% of hacked websites in 2021 being WordPress-based. The paper
also highlights those vulnerabilities from third-party code, such as plugins and themes,
a significant threat to WordPress websites. Regularly updating WordPress, plugins, and
themes is also recommended to reduce vulnerabilities and enhance website security.

The paper(Jiahuei Lin; 2023) explores the co-evolution of plugins with WordPress and
peer plugins. It addresses security issues related to this co-evolution. It highlights the
quick fixes which lead to compatibility problems, and potential security vulnerabilities
resulting from it. The importance of resolving such issues earlier to mitigate security
risks is highlighted in this study. It further analyses modifications to tools and WordPress
APIs in various release versions and possible security concerns arising from it. It mentions
alterations to the core features and APIs and impact it has on the overall security status
of the WordPress platform and its plugins. In general, the paper’s findings indirectly
underline the importance of addressing compatibility and API-related security concerns
in order to create a safer and more secure WordPress ecosystem.

The paper (Teemu Koskinenj; 2012)) focuses on analysing the vulnerability of plugins
in the official WordPress plugin directory while evaluating the correlation between user
ratings and security. It demonstrates the popularity of the online content management
platform with over 73 million websites developed on the platform with 3004 million
monthly page views. The large number of plugins available in the official WordPress
plugin directory is cited as one of the reasons for its huge popularity. The researchers
applied static analysis to assess the security of the plugins with help of an open-source
tool RIPS which supports detecting various vulnerability types. The paper discusses the
types of vulnerabilities commonly found in PHP, which include remote code execution,
cross-site scripting (XSS), SQL injection (SQLI), PHP configuration, and file system
attacks.

(Oslien Mesa; 2018) paper focuses on understanding vulnerabilities in plugin-based
web systems. The paper follows an exploratory study that aims to analyse the main types
of vulnerabilities caused by plugins in web-based systems, their impact, and the common
security-related topics discussed among the WordPress developers community.

It provides some background on plugin-based web systems and their importance. It
states the rapid growth of the Internet and web technologies as a cause leading to the
adoption of plugin-based development.

The researchers performed an in-depth investigation to analyse vulnerabilities related
to plugins in web systems, with a specific focus on WordPress. The researchers examined
the presence, seriousness, intricacy, and duration of vulnerabilities resulting from the wide
range of plugins offered for WordPress. In addition, the researchers examined the most
frequently discussed security-related subjects among developers on Q&A websites. Key
findings of the study revealed Cross-site Scripting (XSS), SQL Injection, and Cross-site
Request Forgery (CSRF) to be the most common vulnerabilities in WordPress plugins.

Considering the various types of alterations needed and the number of files to be
modified, the researchers analysed the complexity involved in resolving vulnerabilities.
This analysis discovered addressing vulnerabilities to be a challenging and demanding
effort. Furthermore, the study has shown that vulnerabilities resulting from plugins can
go unnoticed for a significant period before they are recognised and resolved. The study
mentioned the average duration for vulnerabilities to be addressed in code to be 653 days.

It shows the importance of the knowledge of vulnerabilities in plugins and significance
of tools that allow to build secure plugins to new and experienced developers alike.

The paper (Daniel T. Murphy; 2021) examines the ability of the security scanner
plugins to find vulnerabilities in third-party plugins for WordPress. Although there is a
wide variety of choice in security tools, the majority of them are complex static analysis
tools that may not be very user-friendly for beginners. Hence, the primary objective
of this study is to investigate tools that are user-friendly and easily accessible, with a

particular focus on the Word fence security plugin.

The methodology in the study involved analysing 11 security scanner plugins on a
WordPress test site which were linked to 51 known vulnerable plugins. A reputable
Exploit Database was used to extensively search WordPress which has been mentioned
to hold a significant market share of 60.3%. This ensures the reliability of the study
and its potential for replication. This study found that plugins for WordPress security
scanning have the capability to identify weaknesses in plugins developed by third-party
sources.

The findings exposed the security concerns present in the WordPress plugin ecosys-
tem and the challenges that new users might face. It established the importance of
having security tools that are user-friendly and easy to understand which also has a
well-documented methodology and results, and can be considered a valuable resource for
enhancing the security of WordPress websites.

The paper (Ruohonen; 2019) explores the connection between the popularity of Word-
Press plugins and the number of vulnerabilities they have. The paper argues against the
common belief of popular and current plugins are less likely to be exploited. Instead,
it suggests that their popularity could make them more appealing to attackers who are
looking to discover new vulnerabilities.

The main question of the study is if more users results in finding more vulnerabilit-
ies. The paper uses data from the WordPress Vulnerability Database (WPVDB) which
includes information about 1,657 plugins and their 2,629 vulnerabilities. Additionally ,
it also includes information from the National Vulnerability Database (NVD) to provide
a more complete understanding of the topic. The results show that there is a connection
between plugins with more users and a higher number of vulnerabilities. This suggests
that plugins that are not popular do not provide much motivation for finding vulnerab-
ilities.

The study notes that there may be limitations in the data, particularly from WPVDB.
However, it argues that using vulnerability counts as a metric is a suitable approach for
examining incentives, rather than assessing software security. This study suggests that
more empirical research should be conducted at the code level. A thorough examination
of the code and an understanding the difficulties involved in maintaining software in
order to improve its security is required. The evidence-based studies are significant in
understanding software vulnerabilities in this way. This emphasises the need for further
investigation in this field.

The paper (Hannes Trunde; [2015) studies the security weaknesses of WordPress web-
sites, especially problems related to SQL injection attacks. The researchers looked at
199 known SQL injection issues and found that automatic scanning tools are unable to
detect many of these problems. They believe manual checks are required to fully test
and secure a site rather than completely relying on automated tools. The paper suggests
that to better protect WordPress sites, a mix of both methods and special attention to
user inputs is necessary along with following safe coding practices.

2.2 1IDE and IDE Extensions

The paper (Aniqua Z. Baset; |2017) research shows An Integrated Development Envir-
onment (IDE) is an application that offers a wide range of tools and features to assist
in software development including a source code editor, compiler or interpreter, and A
debugger which helps identify and fix errors or bugs in the code. IDE extensions also

referred as plugins or add-ons, can be installed in an IDE to improve its functionality.
extensions offer additional functionalities like code analysis, code completion suggestion,
version control integration, and support for specific programming languages or frame-
works. IDE plugins are tools that assist developers in identifying security vulnerabilities
during the process of coding itself. Developers are permitted to examine security flaws in
their code directly from their IDE. There are various plugins that can be used for security
checks. These plugins are compatible with various IDEs including Eclipse, IntelliJ IDEA,
Visual Studio, and Netbeans. The research shows several widely used IDE plugins such
as Checkmarx CxSAST, Fortify, Veracode, Codepro AnalytiX, SensioLabsInsight, and
SSVChecker. The above mentioned plugins provide developers with real-time security
analysis and feedback to enhance the security of their code while detecting vulnerabilities
associated with input validation.

2.3 Secure Coding

Paper (Arafa Anis; 2018) and (Musa Bala Shuaibuj [2017)research shows Secure coding is
the practice of developing computer software in a way that guards against the accidental
introduction of security vulnerabilities. By following secure coding practices, the security
of the applications can be significantly enhanced by developers . This study states that the
security of applications can be achieved by effectively mitigating vulnerabilities such as
input validation and output sanitization with use of secure coding practices. Additionally,
It can effectively prevent the occurrence of common vulnerabilities like SQL injection
and cross-site scripting (XSS) attacks. By following the principle of least privilege and
implementing defence in depth, developers can decrease the potential attack surface of
their applications. By utilising parameterized queries and encrypting sensitive data,
the integrity of the data can be effectively maintained and any unauthorised access or
tampering can be detered.

Developers can effectively deal with security concerns and reduce vulnerabilities through
integrating secure coding practises into the software development life cycle (SDLC). By
adopting this approach, a more secure application can be developed right from the start
of the development, instead of treating security as an afterthought.

2.4 IDE and IDE extensions for secure coding

The papers |Aniqua Z. Baset| (2017) Jingyue Li (2019),Kire Jakimoski (2022) shows IDEs
(Integrated Development Environments) and IDE extensions play a crucial role in pro-
moting secure coding practices. They provide developers with tools and features that help
detect and prevent security vulnerabilities in their code. Here are some ways in which
IDEs and IDE extensions assist in secure coding: Security Analysis: IDEs can integrate
static analysis tools that scan the code for security flaws and vulnerabilities. These tools
analyze the codebase and provide real-time feedback on potential security issues, such as
input validation vulnerabilities, command injection, cross-site scripting, and SQL injec-
tion 1b. This in-situ security analysis helps developers identify and address security flaws
early in the development process. Code Review: IDEs often include features for code
review, which allow developers to collaborate and review each other’s code for security
vulnerabilities. Code review helps identify potential security weaknesses and provides an
opportunity for developers to share best practices and suggest improvements. Security
Guidelines: IDEs can provide built-in support for secure coding guidelines and best prac-

tices. They can highlight potential security issues and suggest secure alternatives or code
patterns that adhere to secure coding practices. Secure Code Templates: IDEs can offer
pre-defined code templates that follow secure coding practices. These templates can help
developers write secure code by providing them with a starting point that incorporates
security measures. Security Testing: IDE extensions can integrate with security testing
tools, such as vulnerability scanners or penetration testing frameworks, to automate se-
curity testing processes. These extensions can help developers identify and fix security
vulnerabilities by running security tests directly from the IDE. Education and Training:
IDEs can provide educational resources, tutorials, and documentation on secure coding
practices. They can offer contextual help and tooltips that explain security concepts and
provide guidance on secure coding techniques.

2.5 Summary

In conclusion, Following secure coding can help to prevent vulnerability. this research
found a gap between WordPress plugin secure development and tools for secure coding
practices. As this research provides a solution that will help developers to follow secure
coding.

Table 1: Literature review summary table

Index| Research Paper Findings

1 WordPress: A Multi-Functional | WordPress is a widely used content manage-
Content Management System | ment system. Most popular CMS than oth-
(Abhilash Kumar; 2021 ers, Wide range of customizable plugins and

themes.

2 Vulnerability Assessment with | It highlights the need for regular vulnerab-
Network-Based Scanner Method | ility scanning of WordPress sites to reduce
for Improving Website Security | exploit risks.

(Laksmiati; 2023)

3 Optimization of Secure Cod- | Secure coding techniques in the standard
ing Practices in SDLC as Part | SDLC will help avoid costs and delays caused
of Cybersecurity Framework | by improperly identifying security issues. It
(Kire Jakimoski; 2022) highlights the rising number of software flaws

and the need for secure coding throughout
the software development life cycle.

4 Systematic Mapping Study on | Secure software engineering (SSE) is still in
Security Approaches in Secure | its early stages.

Software Engineering (Rafiq
Ahmad Khanj 2021)

Plugins to Detect Vulnerable Plu-
gins: An Empirical Assessment of
the Security Scanner Plugins for
WordPress (Daniel T. Murphy;
2021))

Plugins are vulnerable, rather than the core
of WordPress. Many WordPress users don’t
secure their websites. While numerous secur-
ity scanner plugins are available for Word-
Press, their efficiency in identifying plugin
vulnerabilities is inconsistent.

Is Secure Coding Education in the
Industry Needed? An Investiga-
tion Through a Large Scale Sur-
vey (Tiago Espinha Gasiba; 2021])

Many software developers are not aware of
secure coding guidelines. Increasing aware-
ness of security is important to improve com-
pliance with secure coding guidelines. The
survey had 194 participants from different
industries. In the industry, secure coding
standards compliance is not audited. High-
light the need secure coding practices.

Evaluation of Open-Source IDE
Plugins for Detecting Security
Vulnerabilities (Jingyue Li; 2019))

IDE plugins have limitations and a difference
between claimed and confirmed coverage of
vulnerabilities. Many vulnerabilities like in-
jection and broken access control are covered
by most plugins, while others are ignored.

A Demand-Side Viewpoint to
Software Vulnerabilities in Word-
Press Plugins (Ruohonen; [2019)

WordPress plugins with large installation
bases are more likely to have multiple vul-
nerabilities. Using multiple and wide range
on plugins can cause more vulnerability.
Highlights a need of code-level validation is
needed to better understand vulnerabilities
and fix issues.

Detectors for Intent ICC Security
Vulnerability with Android IDE
(Xianyong Meng; 2018))

Developers often overlook security vulnerab-
ilities due to time constraints.

10

Securing Web Applications with
Secure Coding Practices and In-
tegrity Verification (Arafa Anis;
2018)

Security in web applications is often ignored
during development, leading to vulnerabilit-
ies like cross-site scripting, injection attacks,
and code tampering on the client side. To
protect against security attacks, it’s import-
ant to add security features and practise se-
cure coding.

11

A Comparative Study of Web
Content Management Systems

(Jose-Manuel Martinez-Caroj
2018)

The study compared the web content man-
agement systems (WCMS) Joomla! Word-
Press, and Drupal. WordPress is the most
efficient WCMS in terms of performance.

12

Understanding vulnerabilities in
plugin-based web systems (Os-
lien Mesa; 2018)

The most common types of vulnerabilities
caused by WordPress plugins are Cross-site
Scripting, SQL Injection, and Cross-site Re-
quest Forgery. The average time it takes to
fix a vulnerability caused by a plugin is 653
days. Plugin developers lack knowledge of se-
cure programming, which can result in com-
mon vulnerabilities.

13

Analysis and development of an
online knowledge management
support system for a Community
of Practice (Moeketsi Mafereka;
2017)

The study compares Drupal, Joomla, and
WordPress as Content Management Systems
(CMSes) for developing and maintaining on-
line services to support a Knowledge Man-
agement System (KMS) WordPress scored
highest in terms of creating discussion for-
ums, uploading documents, and creating and
editing user profiles.

14

Web application development
model with security concern
in the entire life cycle (Musa
Bala Shuaibuj; 2017)

Many existing web application development
models do not adequately address security
concerns throughout the entire development
life cycle. Inculcating security considerations
at each stage of the web application develop-
ment life cycle can improve the security of
web applications. Existing web applications
often lack security considerations throughout
the development life cycle, leading to vulner-
abilities and potential attacks. The research
paper provides a solution to the security chal-
lenges faced by web applications by emphas-
izing security considerations throughout the
development life cycle.

15

IDE Plugins for Detecting Input-
Validation Vulnerabilities (Ani-
qua Z. Baset; [2017))

There is a low adoption rate of security plu-
gins that check for vulnerabilities. Doc-
umentation on the supported vulnerability
checks is not publicly available for several
plugins, making it difficult for developers to
compare and choose which plugins to use.

16

Detection of Wordpress Content
Injection Vulnerability (Maruf
Hassan Md; [2017)

WordPress content injection vulnerability is
a common issue, particularly in versions 4.7.0
and 4.7.1. The vulnerability allows unau-
thorized users to modify the content of posts
or pages. Among the examined WordPress
web applications, approximately 34% were
found to still contain the content injection
vulnerability.

17 Quality of WordPress Plug-Ins: | There is a weak non-linear correlation
An Overview of Security and User | between user ratings and the number of vul-
Ratings (Teemu Koskinen; 2012)) | nerabilities in WordPress plugins. Over half
of the plugins analysed passed the static ana-
lysis with no vulnerabilities detected. The
quality of security among individual plugins
is inconsistent. Manual review or static ana-
lysis is necessary to ensure the security of
plugins before using them on a WordPress

site.
18 Impact of secure programming | The majority of web developers lack experi-
on web application vulnerabilities | ence and knowledge in web security, leading
(Blerim Rexha; 2015) to vulnerabilities in web applications. There

is a correlation between the factors identified
in penetration testing and the data gathered
from the survey, highlighting the importance
of secure programming techniques.

19 WordPress Security White Paper | Highlights WordPress core is secure. Word-
(WordPress Security White Pa- | Press is a widely used content management
per; m.d.) system, powering over 23% of the top 10
million websites. ~ WordPress follows the
OWASP Top 10 list of common security vul-
nerabilities and has measures in place to mit-
igate these risks.

3 Methodology

The aim of the research is to help the developer to follow secure coding standards at
the stage of development to Implement a solution of IDE extension, which is designed to
help developers with real-time security best practices. Analysed common vulnerabilities
in the plugin and WordPress secure coding standards to mitigate those vulnerabilities.

e Identification of common vulnerabilities and their impact.

e WordPress security coding standards.

3.1 Common Vulnerabilities

Research Papers Daniel T. Murphy| (2021),0Oslien Mesa| (2018),Paulo Nunes| (2017),Maruf
Hassan Md (2017)) /Laksmiati (2023),Marie Vasek| (2016]) JRuohonen (2019),Teemu Koskinen
(2012)identified some common vulnerabilities in WordPress plugins. These vulnerabil-
ities can cause security risks to WordPress-powered websites. Here are the common
vulnerabilities:

Cross-Site Scripting (XSS): XSS vulnerabilities are prevalent in WordPress plu-
gins. They allow attackers to inject malicious scripts into web pages viewed by users,

10

leading to unauthorized actions or data theft. XSS was found to be the most common
vulnerability type, accounting for 43.72% of the vulnerabilities.

SQL Injection (SQLi): SQLi vulnerabilities allow attackers to manipulate data-
base queries, potentially gaining unauthorized access to sensitive data or modifying the
database. SQLi accounted for 20% of the vulnerabilities in the analyzed plugins.

Cross-Site Request Forgery (CSRF): CSRF vulnerabilities enable attackers to
trick authenticated users into performing unintended actions on a website. CSRF vul-
nerabilities were found in the analyzed plugins.

WP _DEBUG True: Setting WP_DEBUG to true in WordPress is essentially turn-
ing on the debugging mode. While this is incredibly useful during the development phase,
it can introduce several security concerns like exposing sensitive information and it can
be a potential attack vector.

wp_ (Default table prefix): The default table prefix "wp_” in WordPress install-
ations can cause a security concern. With the default prefix, database table names are
predictable, which makes it easier for attackers to design SQL injection attacks that tar-
get your database. They are able to run scripts intended to exploit or extract data from
particular tables by knowing the standard table names.

These vulnerabilities can have severe consequences, including data breaches, unau-
thorized access, and website defacement. It is important to note that the prevalence of
these vulnerabilities may vary across different plugins and versions.

Regarding statistics, one study analysed 322 WordPress plugins and discovered 860
vulnerabilities, with XSS being the most common vulnerability type. Another study
found that over 73% of WordPress installations in the Alexa Top 1 Million had vulner-
abilities that could potentially be detected using automated tools.

To address these vulnerabilities, it is crucial to regularly update plugins, use reputable
plugins from trusted sources, and follow security best practices. The WordPress Security
Team works to identify and resolve security issues in the core software and provides
recommendations for plugin and theme authors. However, it is important to note that no
security scanner plugin analysed in one study was capable of sufficiently detecting and
flagging plugin vulnerabilities.

3.2 WordPress Coding Standards

WordPress has defined specific security coding standards. The purpose of these guidelines
is to make sure that developers follow the most effective methods that help avoid common
vulnerabilities, such as Cross-Site Scripting (XSS), SQL Injection (SQLi), and Cross-Site
Request Forgery (CSRF). By following to these standards, developers can protect their
applications but also improve the overall security environment of WordPress-powered
websites. The standards act as a guide for developers, showing them how to write,
sanitise, and validate code in a way that strengthens their applications against security
threats.

11

4

. Cross-Site Scripting (XSS):

When a application allows data to be entered e.g. Comments, attackers can in-
put malicious code. If the site then displays this data without checking, browsers
can execute this code, leading to XSS attacks. The function esc_html() converts
potentially harmful characters into their safe, displayable counterparts. When an
application allows data to be entered (like in a comment), attackers can input ma-
licious code. If the site then displays this data without checking, browsers can
execute this code, leading to XSS attacks. The function esc_html () converts po-
tentially harmful characters into their safe, displayable counterparts. Example <
becomes &1t ;. This ensures that the data is displayed as text and not executed as
code.

. SQL Injection (SQLi):

Attackers can try to "inject” SQL code into queries. This can reveal, alter, or
delete data from database. Use of prepare() process the data ($id in this case) as
a string rather than executable SQL. This means attackers can’t insert malicious
SQL commands.

. Cross-Site Request Forgery (CSRF):

Nonces are unique tokens generated for specific actions and are valid for a short
time. They ensure that the action being taken is genuine and not something an
attacker tricked a user into. Example: use function of wp_create_nonce() to create
nonce and use wp_verify nonce() function to verify that nonce.

WP_DEBUG True:

Debug mode is useful for the development stage, showing all errors. However, in
live sites, these error messages can reveal system details or sensitive information.
By setting WP_DEBUG to false, error messages aren’t publicly displayed. This
keeps system details and potential vulnerabilities hidden from prying eyes.

wp_ (Default table prefix):

If attackers know default table names in your database, they can craft specific
attacks. Altering the default prefix makes it harder for attackers to guess your
table names. This simple change can deter many automated attacks targeting
default configurations.

Implementation

To implement VS code IDE extension, VS code provides Extension API, which allows
to add functionality with Extension. Implement extension require VS Code itself , Ex-
tensions are written in TypeScript or JavaScript, and it requires NPM (Node Packaging
Module) which helps to install required libraries and Yeoman. This extension is written
in TypeScript.

Yeomen give a primary extension file folder structure to maintain standard methods.

It will install all required NPM models or libraries. For example: vs code library. The
folder structure of the extension has a src folder and it contains extensions.ts, which is
the main file of the extension.

12

4.1 Code explanation

Extension.ts:

1. Imports:

vscode: This module provides access to the Visual Studio Code extensibility API.
It allows the extension to interact with the VS Code editor, register commands,
create web views, manage diagnostics, and perform many other tasks.

subscribeToDocumentChanges, WP_ISSUES: These are imported from the ‘dia-
gnostics.ts® file. The subscribeToDocumentChanges function is a helper that sets
up event listeners to refresh diagnostics when a document changes. The constant
‘WP_ISSUES" is used in the context of diagnostic management.

src > extension.ts > ...

import * as vscode from 'vscode';

import * as path from 'path';
import { subscribeToDocumentChanges, WP_ISSUES } from './diagnostics';
import { Configuration, OpenAIApi } from "openai";

Figure 3: Imported libraries

Configuration, OpenAlI Api: These are related to the integration with the
OpenAl API. The ‘Configuration* class is used to set up API configuration, and
OpenAIApi is used to interact with the OpenAl service.

2. OpenAl Configuration: The OpenAl API is initialized with API key.

3. Command Definition: The constant COMMAND serves as an identifier for the com-
mand that, when executed, will trigger the WordPress security scan functionality
of the extension.

const COMMAND = 'wpsecurity.wpscan';

Figure 4: Extension command

4. Activation Logic: The activate function is the main entry point for the
extension. This function is called once when the extension is activated.

e A new diagnostic collection named wpsecurity is created. This collection will
store all the diagnostic messages (warnings/errors) related to WordPress security
vulnerabilities.

The extension subscribes to various events:

1. Changes in the active text editor.

2. Changes in any text document.

13

extension.ts > Q) activate

const COMMAND = 'wpsecurity.wpscan';

export async function activate(context: vscode.ExtensionContext) @

t disposables: vscode.Disposable[] = [];
t wpDiagnostics = vscode.languages.createDiagnosticCollection("wpsecurity");

context.subscriptions.push(wpDiagnostics);
subscribeToDocumentChanges (context, wpDiagnostics);

context.subscriptions.push(vscode.commands.registerCommand(COMMAND, async () =>{

vscode.window.showInformationMessage('WordPress Security Scan');
const = vscode.Uri.file(path.join(context.extensionPath, 'src', 'panel.html'));
const panel = vscode.window.createWebviewPanel(

'wpSecurityPanel’,

'WP Security',

vscode.ViewColumn.One,

enableScripts: true,

)i

panel.webview.html = getHtmlForWebview(panel.webview, context.extensionUri);

Figure 5: Logic after extension activation

3. Closing of any text document.

A command is registered (using the identifier from the COMMAND constant) that, when
triggered, will initiate the WordPress security scan. When the command is executed, an
information message is shown, and a webview panel is created. The specifics of what is
displayed in the webview aren’t entirely visible in the provided snippet, but based on the
function name, it’s likely to be a security report or scan results.

diagnostics.ts

1. Imports vs code: Provides access to the Visual Studio Code extensibility API,
allowing the extension to interact with the editor, manage diagnostics, and more.

2. 2.Constants: WP_SECURITY: A unique identifier for the WordPress-specific dia-
gnostic messages.

WP_ISSUES: An array that will store detected WordPress-related security issues in
the scanned documents. Each item in this array represents a potential vulnerability
in the code.

3. Diagnostic Refresh Logic:

The refreshDiagnostics function is the primary function responsible for analys-
ing the provided document for potential security vulnerabilities. This function is
expected to be called whenever the document content changes.

Unused Nonce Forms: This section of the function identifies forms in the Word-
Press PHP code that lack a nonce field. Nonces are cryptographic tokens used in

14

WordPress to verify the origin and intent of requests. If a nonce is missing, it can
lead to vulnerabilities like Cross-Site Request Forgery (CSRF).

SQL Queries Without Prepare Statement: This section identifies SQL queries
that lack a ‘prepare‘ statement, potentially leading to SQL injection vulnerabilities.
The ‘prepare’ function in WordPress is used to safely substitute placeholders in SQL
queries with user-provided data.

After detecting potential vulnerabilities, they are added to the wpDiagnostics
diagnostic collection.

4. Diagnostic Detection Functions:

refreshDiagnostics function calls functions findUnusedWordPressNonceForms
to find forms which are not using nonce field, findSqlQueries check database
queries are using prepared statement or not, findUnsanitizedInputs to check
user input is sanitized or not, all the functions perform the actual code scanning
to identify potential issues. These functions will use patterns, possibly regular
expressions, to search for the described vulnerabilities in the document content.

text = doc.getText();
nonceforms = findUnusedWordPressNonceForms(text,doc);
nonceforms.length > @ ? WP_ISSUES.push('Potential CSRF Vulnerability: Form lacks a nonce field.') : '';
nonceforms. forEach(form =>
diagnostics.push(createDiagnosticForm(doc, form.range));

|H

const sqlQueries = findSqlQueries(text);
sqlQueries.length > @ ? WP_ISSUES.push('Potential SQL Injection Vulnerability: Query lacks a prepare statement.') :
sqlQueries. forEach(query =>
diagnostics.push(createDiagnosticSQLInjection(doc,query.range));
)i

cC unsanitizedInputs = findUnsanitizedInputs(doc);
unsanitizedInputs.length > @ ? WP_ISSUES.push('Unsanitized Inputs') : '";
unsanitizedInputs.forEach(query =>
diagnostics. push(createDiagnosticUnsanitizedInput(doc,query.range));
5

const unescapedQutput = findUnescapedOutputs(doc);
unescapedOutput.length > @ ? WP_ISSUES.push('Unescaped Outputs') : '';
unescapedOutput. forEach(query =>
diagnostics.push(createDiagnosticUnescapedOutput(doc,query.range));
):

wpDiagnostics.set(doc.uri, diagnostics);

Figure 6: Functions list

Features:

e In detail analysis report with a solution using OpenAl.

e Immediate Warnings As soon as the developer writes code, it’ll highlight if there’s
a potential issue.

e Fasy to Understand: It clearly points out the problems and explains them, making
it easier for coders to fix them.

e Checking Unfiltered Inputs: The extension checks if the code might be missing
steps to sanitize user inputs. If it finds issues, it’ll highlight them and suggest ways
to fix them using WordPress methods.

15

e Making Sure Forms are Safe: It checks if forms have security checks called nonce
fields, which make sure the requests are legit. If a form misses these checks, it
highlights the whole form.

e Looking for Unprotected Outputs: The extension checks where data might be shown
without necessary safety steps. It can lead to Cross-Site Scripting (XSS). It high-
lights the line of code.

e Checking SQL Queries: It looks at SQL queries to make sure they’re using prepared
statements, which prevents SQL attacks.

Instant Feedback: Every time the code changes, the tool rechecks it, making sure
developers get feedback right away. This helps catch and fix problems early on. Working
with OpenAl: The extension integrated with OpenAl, to give better feedback on security
issues. It does not share code with OpenAl.

How It Looks: Any issues found will be highlighted in the code editor. They come
with clear descriptions. Developers can hover over the issues to get more details and
advice on fixing them.

5 Evaluation

The Evaluation of this extension is to find vulnerabilities in the PHP source code file.
There are many cases according to vulnerability. The extension is targeting the 4 most
common vulnerabilities. In all cases, While writing code or opening an existing PHP file
it will scan the code and highlight the line of code, with a hover on that line of code, It
popup a small window with feedback information.

[Extension Development Host] WP Security

EXPLORER = WP Security X
- OPEN EDITORS

X = D ECEy WordPress Secure Coding Guideline for Developers

~~ NO FOLDER OPENED

You have not yet 1. Introduction
opened a folder.
The following coding guidelines provide recommendations and best practices for writing secure code in WordPress. By following these guidelines, developers can reduce the risk of common

Open Folder vulnerabilities and improve the overall security of WordPress-based applications.

Opening a folder will
close all currently
open editors. To keep
them open, - Always keep WordPress core, themes, and plugins updated to the latest versions.

instead. « Sanitize and validate all user input to prevent SQL injection, Cross-Site Scripting (XSS), and other injection attacks.

2. General Recommendations

- Use strong passwords and implement mechanisms like two-factor authentication for user accounts.
« Restrict access to sensitive files and directories using appropriate file permissions.

« Securely handle user sessions and implement security measures such as session expiration and regeneration.
- Implement secure communication by using HTTPS and SSL certificates.

« Regularly backup your WordPress installation and sensitive data.

3. Theme and Plugin Development

- Validate and sanitize all user input, including data obtained from forms and HTTP requests.
« Escape output data to prevent Cross-Site Scripting (XSS) vulnerabilities.

- Implement proper error handling and logging to detect and respond to security incidents.

= Avoid using deprecated WordPress functions and utilize the latest APIs and security features.

« Implement secure authentication and authorization mechanisms, ensuring only authorized users can access sensitive functionality.
- Never store sensitive data, such as passwords, in plain text. Utilize secure password hashing algorithms.

« Implement proper access controls and ensure users have appropriate permissions to perform actions.

4. Database Security

« Always use prepared statements or parameterized queries to prevent SQL injection attacks.
« Minimize the use of direct database queries and utilize WordPress APIs whenever possible.

- Regularly backup your database and store the backups securely.

« Implement proper access controls and restrict database user privileges to the minimum required.

> OUTLINE
> TIMELINE
PASERVERS B Qarurity Dliinine and Tanle
X ®o0A0 © WP security & 2

Figure 7: Opening Window of Extension

To give an idea about WordPress Secure Coding, added an opening window to the
extension, which can be helpful for developers.

16

5.1 Case Study 1: Cross Site Scripting XSS

Cross-site scripting (XSS) is the most common vulnerability, the main reason to cause
XSS is to trust user input and not sanitise it and not escape output securely. WordPress
security provides a range of functions to avoid this.

$user_input = $ _GET['username'];

$password = $_POSTI['password']l;

$email = sanitize text_field($_POST['email’]l);

echo $user_input;

echo esc_html(suser_input);

echo "Hello, " . $user_input . "!"';

echo "Hello, " . esc_html($user_input) . "!";

$html = 'A link</a=>";

echo esc_html(s$html) ;

Figure 8: Unsecured Code of Cross-Site Scripting

Here line numbers 6,8, 14 and 18 are highlighted by extension, input from the form
is passed to a variable as it is. It means the code is trusting user inputs but the user
can give malicious input. To Sanitize user input WordPress has provided many functions
sanitize_text_field() is one of them. On line number 8 and 14 output is directly
printed, content can be anything, if the user passes the script to input and that is printed
on the browser can cause cross-site scripting.

. Unsanitized or unvalidated user inputs found
$user_input
No quick fixes available

$password = $_POST['password'];

$email = sanitize_text_field($_POST['email'l);

Figure 9: Highlighting Unsanitized Input

Hovering over the highlighted line of code, the extension will give a warning message

17

Unescaped outputs found, Can cause XSS

No quick fixes available

echo "Hello, " . $user_input . "!";

echo "Hello, " . esc_html($user_input) . "!";

$html = 'A link';

Figure 10: Unescaped Output

5.2 Case Study 2: Cross-Site Request Forgery CSRF

To prevent CSRF attacks, WordPress has given a token method that is known as the
Nonce field. In HTML form, the developer must need to use a nonce field. Line numbers
47 to 50, is an example of an unsecured HTML form highlighted because it’s not using
nonce field. Where line number 53 to 57, the HTML form is using nonce field so that is
not highlighted.

method="post"
type="text" name="username"
type="submit" wvalue='"Submit"

method="post" action="save_data.php"
wp_nonce_field('my_action', 'my_nonce_field');
type="text" name="data"
type="submit" wvalue="Submit"

Figure 11: Nonce Field

Hovering over the highlighted line of code, the extension will give a warning message

5.3 Case Study 3: SQL Injection

SQL injection is still the top vulnerability in WordPress vulnerabilities, SQL injection
can be prevented by sanitizing input instead of passing variables directly to query, a
developer can use WordPress predefined prepare statement. On line number 33 in the
SQL query, the variable is passed directly which can cause SQL injection

18

Not using nonce field in Form,Can cause CSRF

No quick fixes available
method="post"

type="text" name="username'

type="submit" value="Submit"

method="post" action="save_data.php"
wp_nonce_field('my_action', 'my_nonce_field');
type="text" name="data"
type="submit" value="Submit"

Figure 12: Highlighting Nonce field in Form

$result = $wpdb—>query(" id =" . $ GET['id']);

$query = $wpdb->prepare(" id = %d", $_GET['id']);
$result = $wpdb—>query($query);

Figure 13: Prepare statement SQL Injection

on line number 35, the variable is passed to prepare function but prepare function
process the data as a string rather than executable SQL. This means attackers can’t
insert malicious SQL commands

Not using Prepare Statment in DB Query,Can cause SQL injection

No quick fixes available
$result = $wpdb—>query(" * users id =" . $ GET['id']);

$query = $wpdb—>prepare(" * id = %d", $_GET['id'l);
$result = $wpdb->query($query);

Figure 14: Highlighting unsecured SQL Query

6 Conclusion and Future Work

In conclusion, WordPress core is secure, but the plugin ecosystem brings vulnerabilities.
Web developers lack knowledge of secure coding which results in vulnerable plugins. To
avoid those vulnerabilities developers must follow secure coding from the coding stage.
IDE and IDE extensions play a major role in secure coding.

The developed VS Code extension “WordPress Security Scan” is helping to tackle
vulnerabilities, which cover the most common vulnerabilities. Tackling those vulnerab-
ilities improves the security of WordPress applications. Integrating OpenAl for security

19

reports, give in detail solutions and the impact of the vulnerabilities and which helps de-
veloper to understand them easily. It is giving results as expected and prevents common
security vulnerabilities, this extension is easy to use, and it is beneficial for WordPress
plugin developers.

6.1 Future Work

At present, the extension addresses 5 to 6 security controls. In the future, it can aim
to analyse a wide range of security vulnerabilities caused by various coding practices.
This analysis will enhance the capabilities of the existing extension. While the extension
currently scans and analyses code using the regular expression method, it’s important
to recognise that every developer has a different approach to coding. To understand
complex coding styles, need more deep analysis of coding styles.

VS code marketplace allows publishing extensions, publishing extensions can be very
helpful for WordPress developers. Feedback from developers will directly help to improve
the extension.

References

Abhilash Kumar, Aman Kumar, H. H. S. A. K. (2021). Wordpress: A multi-functional
content management system, 2021 10th International Conference on System Modeling
& Advancement in Research Trends (SMART), IEEE.

URL: https://doi.org/10.11092Fsmart52563.2021.9675511

Aniqua Z. Baset, T. D. (2017). Ide plugins for detecting input-validation vulnerabilities,
2017 IEEE Security and Privacy Workshops (SPW), IEEE.
URL: https://doi.org/10.11092F spw.2017.37

Arafa Anis, Mohammad Zulkernine, S. I. C. L. C. C. (2018). Securing web applications
with secure coding practices and integrity verification, 2018 IEEE 16th Intl Conf on De-
pendable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence
and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Sci-
ence and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), IEEE.
URL: https://doi.org/10.11092Fdasc2Fpicom2Fdatacom2F cyberscitec.2018.00112

Blerim Rexha, Arbnor Halili, K. R. D. I. (2015). Impact of secure programming on web
application vulnerabilities, 2015 IEEFE International Conference on Computer Graph-
ics, Vision and Information Security (CGVIS), IEEE.

URL: https://doi.org/10.11092F cquis.2015.7449894

Daniel T. Murphy, Minhaz F. Zibran, F. Z. E. (2021). Plugins to detect vulnerable
plugins: An empirical assessment of the security scanner plugins for wordpress, 2021
IEEE/ACIS 19th International Conference on Software Engineering Research, Man-
agement and Applications (SERA), IEEE.

URL: https://doi.org/10.11092F sera51205.2021.950927/

Hannes Trunde, E. W. (2015). Wordpress security, Proceedings of the 17th International

Conference on Information Integration and Web-based Applications Eamp Services,
ACM.
URL: https://doi.org/10.11452F2837185.2837195

20

How Attackers Gain Access to WordPress Sites (n.d.). https://wordpress.org/about/
security/.

Jiahuei Lin, Mohammed Sayagh, A. E. H. (2023). The co-evolution of the wordpress
platform and its plugins, ACM Transactions on Software Engineering and Methodology
32(1): 1-24.

URL: https://doi.org/10.11452F3533700

Jingyue Li, Sindre Beba, M. M. K. (2019). Evaluation of open-source ide plugins for
detecting security vulnerabilities, Proceedings of the Evaluation and Assessment on
Software Engineering, ACM.

URL: https://doi.org/10.11452F3319008.3319011

Jose-Manuel Martinez-Caro, Antonio-Jose Aledo-Hernandez, A. G.-P. R. S.-I. M.-D. C.
(2018). A comparative study of web content management systems, Information
9(2): 27.

URL: https://doi.org/10.33902Finfo9020027

Kire Jakimoski, Zorica Stefanovska, V. S. (2022). Optimization of secure coding practices
in sdlc as part of cybersecurity framework, Journal of Computer Science Research
4(2): 31-41.

URL: https://doi.org/10.305642Fjcsr.v}i2.4048

Laksmiati, D. (2023). Vulnerability assessment with network-based scanner method for
improving website security, Journal of Computer Networks, Architecture and High Per-
formance Computing 5(1): 38-45.

URL: https://doi.org/10.477092F cnahpc.v5il. 1991

Marie Vasek, John Wadleigh, T. M. (2016). Hacking is not random: A case-control
study of webserver-compromise risk, I[EEE Transactions on Dependable and Secure
Computing 13(2): 206-219.

URL: https://doi.org/10.11092Ftdsc.2015.2427847

Maruf Hassan Md, Kaushik Sarker, S. B.-H. S. M. (2017). Detection of wordpress content
injection vulnerability, International Journal on Cybernetics Eamp Informatics 6(5): 1-
15.

URL: https://doi.org/10.51212Fjci.2017.6501

Moeketsi Mafereka, S. W. (2017). Analysis and development of an online knowledge
management support system for a community of practice, Proceedings of the 2017
International Conference on Information System and Data Mining, ACM.

URL: https://doi.org/10.11452F3077584.3077604

Musa Bala Shuaibu, R. A. I. (2017). Web application development model with security
concern in the entire life-cycle, 2017 4th IEEE International Conference on Engineering
Technologies and Applied Sciences (ICETAS), IEEE.

URL: https://doi.org/10.11092Ficetas.2017.8277849

Oslien Mesa, Reginaldo Vieira, M. V. V. H. S. D.-E. C. M. K. C. L. (2018). Understand-
ing vulnerabilities in plugin-based web systems, Proceedings of the 22nd International
Systems and Software Product Line Conference - Volume 1, ACM.

URL: https://doi.org/10.11452F3233027.3233042

21

https://wordpress.org/about/security/
https://wordpress.org/about/security/

Paulo Nunes, Iberia Medeiros, J. F. N. N. M. C.-M. V. (2017). On combining diverse static
analysis tools for web security: An empirical study, 2017 15th FEuropean Dependable
Computing Conference (EDCC), IEEE.

URL: https://doi.org/10.11092Fedcc.2017.16

Rafiq Ahmad Khan, Siffat Ullah Khan, H. U. K. M. I. (2021). Systematic mapping study
on security approaches in secure software engineering, IEFEE Access 9: 19139-19160.
URL: https://doi.org/10.11092Faccess.2021.3052311

Ruohonen, J. (2019). A demand-side viewpoint to software vulnerabilities in wordpress
plugins, Proceedings of the Fvaluation and Assessment on Software Engineering, ACM.
URL: https://doi.org/10.11452F3319008.3319029

Teemu Koskinen, Petri Thantola, V. K. (2012). Quality of wordpress plug-ins: An overview
of security and user ratings, 2012 International Conference on Privacy, Security, Risk
and Trust and 2012 International Confernece on Social Computing, IEEE.

URL: https://doi.org/10.11092Fsocialcom-passat.2012.31

Tiago Espinha Gasiba, Ulrike Lechner, M. P.-A. D. M. (2021). Is secure coding education
in the industry needed? an investigation through a large scale survey, 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering FEduca-
tion and Training (ICSE-SEET), IEEE.

URL: https://doi.org/10.11092Ficse-seet52601.2021.0003/

WordPress ~ Hacking Statistics (n.d.). https://colorlib.com/wp/
wordpress-hacking-statistics/.

WordPress Security White Paper (n.d.). https://wordpress.org/about/security/.

Xianyong Meng, Kai Qian, D. L. P. B. (2018). Detectors for intent icc security vulnerab-
ility with android ide, 2018 Tenth International Conference on Ubiquitous and Future
Networks (ICUFN), IEEE.

URL: https://doi.org/10.11092Ficufn.2018.8436802

22

https://colorlib.com/wp/wordpress-hacking-statistics/
https://colorlib.com/wp/wordpress-hacking-statistics/
https://wordpress.org/about/security/

	Introduction
	Research Question
	Objective

	Related Work
	WordPress and WordPress Security
	IDE and IDE Extensions
	Secure Coding
	IDE and IDE extensions for secure coding
	Summary

	Methodology
	Common Vulnerabilities
	WordPress Coding Standards

	Implementation
	Code explanation

	Evaluation
	 Case Study 1: Cross Site Scripting XSS
	 Case Study 2: Cross-Site Request Forgery CSRF
	Case Study 3: SQL Injection

	Conclusion and Future Work
	Future Work

