|

N
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Cyber Security

Raj Yatin Koli
Student 1D: x21154678

School of Computing
National College of Ireland

Supervisor: Michael Pantridge

w
National College of Ireland National

MSc Project Submission Sheet Collegeof
c Project Submission Shee I
reland
School of Computing
Student Name Raj Yatin Koli
Student ID X21154678
Programme Cyber Security
Year: 2023
Module: Msc Research Project
Supervisor: Michael Pantridge
Submission Due Date: 18t September 2023
Deepfake Detection System by Integrating Deep
Project Title: Learning and Blockchain Technology
Word Count: 946
Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature Raj Yatin Koli

Date 18t September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project |
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

lOffice Use Only

|Signature:

Date:

|Pena|ty Applied (if applicable):

Configuration Manual

Raj Yatin Koli
Student ID: x21154678

1 Introduction

This Configuration Manual lists together all prerequisites needed to duplicate the studies and
its effects on a specific setting. A glimpse of the source for Data Importing & Video frame
analysis and after that Block chain after that all the created algorithms, and Evaluations is
also supplied, together with the necessary hardware components as well as Software
applications. The report is organized as follows, with details relating environment
configuration provided in Section 2.

Information about data gathering is detailed in Section 3. Data exploration is done in Section
4. Video Frame Analysis is included in Section 5. In section 6, the Blockchain is described.
Details well about models that were created and tested are provided in Section 7. How the
results are calculated and shown is described in Section 8.

2 System Requirements

The specific needs for hardware as well as software to put the research into use are detailed in
this section.

2.1 Hardware Requirements

The necessary hardware specs are shown in Figure 1 below. MacOs M1 Chip, macOS 10.15.x
(Catalilna) operating system, 8GB RAM, 256GB Storage, 24” Display.

» »
QT T

Figure 1: Hardware Requirements

2.2 Software Requirements

e Anaconda 3 (Version 4.8.0)
e Jupyter Notebook (Version 6.0.3)
e Python (Version 3.7.6)

2.3 Code Execution

The code can be run in jupyter notebook. The jupyter notebook comes with
Anaconda 3, run the jupyter notebook from startup. This will open jupyter
notebook in web browser. The web browser will show the folder structure of the
system, move to the folder where the code file is located. Open the code file from
the folder and to run the code, go to Kernel menu and Run all cells.

3 Data Collection

The dataset is taken from Kaggle public repository from the link
https://www.kaggle.com/competitions/deepfake-detection-challenge/data.
Facebook, Microsoft, the Partnership on AI’s Media Integrity Steering Committee,
and academics have come together to build the Deepfake Detection Challenge
(DFDC).

4 Data Exploration
Figure 2 includes a list of every Python library necessary to complete the project.

: | import numpy as np
import pandas as pd
import cv2
import numpy as np
import matplotlib.pyplot as plt
¥matplotlib inline
import os
import datetime
import hashlib
import json
from wuid import uuid4
import socket

from sklearn.model_selection import train_test_split

import keras

from keras.layers import ConvlD, Conv2D, Conv3D, ConvlL5TM2D, Dense, Flatten, Dropout, BatchNormalization, GRU
from keras.layers import Input

from keras.models import Seguential, Model

from keras.optimizers import Adam

from keras.callbacks import EarlyStopping, ReducelROnPlateau

Using TensorFlow backend.

Figure 2: Necessary Python libraries

The Figure 3 represents the block of code to import the training videos and check for the
data.

https://www.kaggle.com/competitions/deepfake-detection-challenge/data
https://www.partnershiponai.org/the-partnership-on-ai-steering-committee-on-ai-and-media-integrity/

train_dir = "train_sample videos/
train _video files = [train dir + x for x in os.listdir{train_dir)]
test dir = 'test wvideos/'

test_wvideo files = [test_dir + x for x in os.listdir(test_dir)]

df_train = pd.read_json('train_sample_wvideos/metadata.json’').transpose(
df _train.head()

label split original

aagfhgtpmv.mpd FAKE train vudstovrck. mp4
aapnvogymg.mpd FAKE train jdubbvizwz.mpd
abarnvbtwb.mpd REAL train MNone
abofeumbvv.mpd4 FAKE ftrain atvmeowwyns.mpd
abgwwspghj.mpd FAKE train gzimuosizz.mp4
Figure 3: Importing training videos and Checking Data Information

As seen in Figure 4, the information about the training data.

df train.shape # We have 488 vide:

(4ea, 3)

df train.original.nunique() # fr

269

df train.label.value counts()

FAKE 323
REAL 77
Mame: label, dtype: intéd

Figure 4: Training data

In figure 5, the code to value counts for real and fake video in the dataset.

df train.label.value counts()

FAKE 323

REAL 77

Mame: label, dtype: intéd
df_train.label.value_counts().plot.bar()

¢matplotlib.axes. subplots.AxesSubplot at @xlad7f2co@cs:

300 -

250 1

200 1

150 1

100 1

FAKE
REAL

df train.label.value counts{normalize=True

FAKE 8.86875
REAL B.1925
Mame: label, dtype: floatsd

Figure 5: Class count

The Figure 6, illustrate the code to check the value counts of original columns giving
the count of fake videos available for that video.

df_train['original’].value_counts() : | df_train[df_train['original’]=="meawmsgiti.mp4"’
atvmxviyns . mpd G] o
meawmsgiti.mpa B label split original
geumxirsme.mpd 5 - .)
kabkktcixF.mpa c akxoopgigz.mpd FAKE train meawmsgit. mp4
fysyrqfguw.mpd 4 aliziddtxi.mp4 FAKE frain meawmsgitimp4
cizlkenljw.mpa .i arlmiizoob.mp4 FAKE train meawmsgiti.mp4
xagsvjctmp.mp4 1 axczxisdtb.mpd4 FAKE frain meawmsqgiti mpd
uuxgylnzls.mpd 1

brwrlczjvi.mpd 1 bghtpgmmgp.mpd FAKE frain meawmsgiti.mp4

bdnagemxmr.mpd 1
Mame: original, Length: 289, dtype: inté4d

Figure 6: Multi Convolver

czkdanyadc.mpd4 FAKE frain meawmsgitimpd

5 Video Frame Analysis

The Figure 7, illustrate the read the video frame and show each frame image.

def display img(video):
cap = cv2.VideoCapture(video) # take 1 picture
ret, frame = cap.read()
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
ax.imshow(frame)

display img(videol)

0
200
400
600
800

1000

500 750 1000 1250 1500 1750
Figure 7: Read video

Figures 8 show the code used read training video and find its data entry in the dataset.

first Video = train video files[8]
first Video

'train_sample videos/acxwigylke.mpd'
name_video = first Video.split('/', 5)[1]
df train[df _train.index == name_video]

label split original

acxwigylke.mpd FAKE ftrain ficwhpnpuw.mpd

Figure 8: read video

The Figure 9, illustrate the code to generate frames into images and display each frame by
getting their current frame position.

count = @
cap = cv2.VideoCapture(first Video)
ret,frame = cap.read()

while count < 3:
cap.set({cv2.CAP_PROP_POS MSEC, (count®™1ee@))
ret,frame = cap.read()

if count == @:
imaged@ = frame

elif count == 1:
imagel = frame

elif count == 2:
image2 = frame

my

#cv2.imwrite(filepath+ "\frameXd.jpg"” ¥ count

count = count + 1

def display(img):

fig = plt.figure(figsize=(8,8))

ax = fig.add subplot(111)

img = cv2.cvtColor(img, cv2.COLOR_BGRZRGE)
ax.imshow(img)

display({image8) # frame 1
Figure 9: read video

6 Blockchain

The Figure 10, illustrate the code to read features and target from the data and to set
global variables for blockchain.

¥ =df_train['original’]
y =df _train['label’]

img size = 224
block size = 6
blocks = 5
input_shape = (img _size,img size,3)
max_chain_length = 2@

num_features = 2848

Figure 10: Global Variables

4

Figures 11 show the code to create functions for cropping to centre and loading the block..

def crop _center square(frame):
v,%x = frame.shape[@:2]
min_dim = min(y, x)
start_x = (x // 2) - (min_dim // 2}
start_y = (y // 2) - (min_dim // 2)
return frame[start y :start y + min_dim, start x : start x + min_dim]

def load block{path, max frames=8, resize=(img size, img size)):
cap = cv2.VideoCapture(path)
frames = []

try:
while 1:
ret, frame = cap.read()
if not ret:
break
frame = crop_center square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 8]]
frames.append(frame)
if len{frames)} == max_frames:
break
finally:

cap.release()
return np.array(frames)

Figure 11: Load block

Figures 12 show the code to analyze blocks and generating features of the block using
InceptioNet.

: def blockanalyse():
faature_sxtractor = keras.applications.inceptionV3{ueights - "imagenut”™, include_top-False, pooling="avg™, input_shape = ing

Input{input_shapa)
outputs featu

return Model(Inputs,

or{ inputs)

Tputs, faane="featurs extractor”)

feature_extractor - blockAnalyse()

Figure 12: Block Analysis

The Figure 13, illustrate the code to create the function for generating the blockchain for the
video.

def prepareBlockchain(df, root dir):
num_samples = len{df)
video paths = list(df.index)
labels = df["label™].values
labels = np.array(labels=="FAKE').astype(np.int)

frame_masks = np.zeros{shape=(num_samples, max_chain_length), dtype="bool")
frame_features = np.zeros(
shape={num_samples, max_chain_length, num_features), dtype="float32"

)

for idx, path in enumerate(video paths):
frames = load_block{os.path.join{root_dir, path))
frames = frames[None, ...]

temp_frame_mask = np.zeros(shape=(1, max_chain_length,), dtype="bool")
temp_frame_features = np.zeros(shape=(1, max_chain_length, num_features), dtype="float32"

for i, batch in enumerate(frames):
video_length = batch.shape[@]
length = min(max_chain_length, video_length)
for j in range(length):
temp_frame_ features[i, j, :] =feature extractor.predict(batch[None, j, :1])
temp_frame_mask[i, :length] =1 # 1 = not mosked, @ = masked

frame features[idx,] =temp frame features.squeeze()
frame_masks[idx,] =temp_ frame mask.sgueeze()

return (frame features, frame masks), labels

Figure 13: Function to generate blockchain

The Figure 14, illustrate the code to build training and testing data and implementation to
generate the training and testing set into blockchain.

train , test = train_test split(df_train, test size=0.1,random_state=42, stratify=df train['label’])
¥_train, y_train = prepareBlockchain(train, "train")
x_val, y_val = prepareBlockchain(test, "test")

Figure 14: Blockchain

7 Deep Learning Models

7.1 RNN

blockchain_input = Input((max_chain_length, num_festures))
nask_input = Input((max_chaln_leogth,),dtype="bool")

X = GRU(16, return_sequencesaTroe)({blockchalin_Input, nask « mask_input)
x = GRUCH) (x)

X = Dropout{8.4)(x)

x = Dense(8, activation-"tanh™)(x)

output = Dense(l, activations="tanh")(x)

rna - Model([blockchain_input, mask_input], output)
roncompile{loss~"binary_crossentropy”, optimizer="adan”, metrics«[“accuracy™])
ron . sumnacy()

Model: “"model_1"

Layer (type) Cutput Shape Paran ¥
input_3 (Inputiayer) (None, 20, 2048) @
gru_1 (GRV) {None, 20, 16) 99129
gru_2 (GRu) (None, 8) ced
dropout_3 (Dropout) {None, 8) @
dense_1 (Dense) (None, 8) 72
dense_2 (Densa) {Nong, 1) g

Total params: 99,801
Trainable params: 99,801
Non-trainable paranms: @

es « EarlyStopping(sonitors'accuracy”, verbose«1, patience«3)
history « ron. Tit{[x_train[@], x_train{1]],y _train,validation daza~([x_valle], x_val{il], y_val),epachs~blocks, callbacks~[as]

Traln on 360 samples, valldate on 4@ samples

Epoch 1/%

J6e/360 [] - 1s ans/step - loss: 12,4685 - accuracy: 9.1917 - val_loss: 12.340@ - val_sccuracy:
@.2008

Epoch 2/%5

360/360 [se== = ==n) - 85 78%us/step - loss: 12,4685 - accuracy: 8.1917 - val_loss: 12,3488 - val_accuracy
@.2900

Figure 15: Implementation of RNN

7.2 Convultional RNN

= ConviD(18, karnel_size~3, activation-'relu’, padding-'same’)(blockchain_input)
« CoviD(6a, kernel _size=3, activatione'relu’, paddings'same’)(x)

X
X
x = GRU(32)(%)

X = Batchhormalization()(x)
X = Dropout(0.5)(x)

x

= Dense(16, activation-"relu”)(x)

output = Dense(l, activation="sigmoid”)(x)

cnn - Model([blockchain_input, mask_input], output)
cnn.compile{loss~"binary_crossentropy”, optimizer~"adan”, metrics~["accuracy™])

cnn. summary()

Model: "model 2"

Layer (type) Output Shape Param 3
input_3 (Inputlayer) (None, 20, 2848) [
convld_t (ConviD) (Nane, 28, 18) 110018
convid_2 (CenviD) (None, 20, 62) 3s2e
gru_3 (GRU) (None, 32) 9312
batch_normalization_05 (Batc (None, 32) 128
dropout_2 {Dropout } {None, 132) 2
dense_3 (Dense) (None, 16) 528
dense_4 (Dense) (None, 1) 17

Total params: 124,115
Trainable params: 124,851
Non-tralnable perams: 64

@5 = EarlyStopping(monitor="accuracy’, verboss~1, patience-3)

history « cnn.fFit([x_train[@], x_train[1]],y_train, validation data-([x_val{@], x_val[1]], y_val).epochssblocks, callbacks«[es]

Train on 360 samples, valicdate on 4@ samples

Epoch 1/5
368/260 |

eee
Epoch 2/5

368/360 [
0.800¢
Fnach 3/%

] - 1s Ins/step - loss: 0.6984 - accuracy: @.763% - val_loss: @.6868 - val_accuracy: 9.1

] - @s 980us/step - loss: @.6835 - accuracy: 0.8083 - val _loss: 8.6788 - val_accuracy:

Figure 16: Implementation of C-RNN

7 Model result

This section explains the performance of the models.

7.1 Model Scores

loss, accuracy = rnn.evaluate([x val[8], x val[1]], y_wval
accuracy*18e

48/48 [==============================] - 85 6@1lus/step

26.860800292022224
Figure 18: Model Performance RNN

loss, accuracy = cnn.evaluate([x val[@], x val[1]], y_wval
round(accuracy*18a)

45;"’46 [==============================] - Ps EEQUSIST_EP

Figure 19: Model Performance CNN

References

https://www.kaggle.com/competitions/deepfake-detection-challenge/data

OpenCV: OpenCV modules

https://www.opensourceforu.com/2019/08/using-python-tools-and-libraries-for-blockchain-programming/

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

Convolutional Neural Network (CNN) | TensorFlow Core

https://www.kaggle.com/competitions/deepfake-detection-challenge/data
https://docs.opencv.org/3.4/index.html
https://www.opensourceforu.com/2019/08/using-python-tools-and-libraries-for-blockchain-programming/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.tensorflow.org/tutorials/images/cnn

