

Detection of FTP and SSH Bruteforce

Attacks using

Deep Belief Network Model

MSc Research Project

Cybersecurity

Loveth Ukamaka Diwe

Student ID: x21180211

School of Computing

National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

LOVETH UKAMAKA DIWE………………………………………………………………………

Student ID:

X21180211…………………………………………………………………………………………..……

Programme:

MSc Cybersecurity………………………………………

Year:

2023…………………..

Module:

Research Project…………………………………………………………………………….………

Supervisor:

Imran Khan…………………………………………………………………………………….………

Submission

Due Date:

18/09/2023……………………………………………………………………………………….………

Project Title:

Detection of FTP and SSH Bruteforce attacks using Deep Belief

Network Model…………………………………………………………….………

Word Count:

7720…………………………… Page Count……26……………………………….……...

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

LOVETH UKAMAKA DIWE……………………………………………………………………

Date:

15/09/2023………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Detection of FTP and SSH Bruteforce Attacks using

Deep Belief Network Model

Loveth Ukamaka Diwe

x21180211

Abstract

Cyber-attacks on computers and internet have been on a major increase since every

organization has to communicate and run business operations on the network. The security

awareness and protections implored by individuals and organizations daily is still not

enough to fully eradicate the constant attacks. Bruteforce attack is a major high-level

attack on the network connected via protocols like FTP, SSH or via the WEB. Brute Force

attacks use methods like credential stuffing, DNS spoofing, multiple trials, and different

consistent methods to access the targeted system or network. This attack type can be

unpredictable and is often a gateway to many other attacks once successful hence, the need

for a robust detection method arises. In this research, I investigated the application of Deep

Belief Network (DBN) to detect Bruteforce attacks using the CSE-CICIDS2018 dataset.

For additional performance comparison, we also trained three other algorithms: Decision

Tree, Random Forest, and Logistic Regression. Experiment results showed that DBN

model achieved a higher accuracy score of 99.3% while Random Forest had accuracy of

98.2%, Decision Tree 85.8% and Logistic Regression 99.2%.

1 Introduction

With the increase in the dependence of individuals and organizations on technology and digital

infrastructures for day to activities, there is also an increase in the security threats and risks

with these improvements. Cyber-attacks and Network intrusions continue to increase posing a

constant threat to the required security needed for communications and data management.

Hence, there is a paramount need to provide effective intrusion detection systems to be used in

real time.

Bruteforce network attacks are attacks that can compromise the system security and

infiltrate vulnerable machines. Bruteforce attacks involve repeated attempts to guess login

credentials by systematically trying all combinations until the correct one is found (Roger,

2020). These attacks target a wide range of services and protocols, such as File Transfer

Protocol (FTP), Cross-Site Scripting (XSS), Secure Shell (SSH), and web applications, thereby

posing a substantial risk to network security.
Traditional approaches to intrusion detection frequently rely on approaches based on signatures

that correspond to known attack patterns (Bo & Xue, 2016). These techniques, however, have

trouble spotting new or developing attacks for which there are not any signatures yet coupled

with it taking longer processing time for large data. Whereas the Intrusion Detection Systems

(IDS) can adapt to new attack patterns thanks to machine learning techniques, which have

2

emerged as a solution to this restriction and offers a statistical and mathematical algorithm

needed for effective detection of attacks (Ahmad, et al., 2020).

Recent studies on the use of deep learning algorithms have successfully proven to be a

successful method to detect network intrusion attacks, speech recognition and language

processing. There have been several studies focusing on CNN (Convolutional Neural Network)

algorithm for detecting network intrusion attacks, DDoS attacks and Bruteforce attacks using

different datasets. From my checks on studies published, there has been no recent study on the

performance of Deep Belief Network using CSE-CIC-IDS2018 dataset. This dataset is more

recent and has more network features that capture patterns and relationships which can be

effective in recognizing attack vectors. This study explores an intrusion detection algorithm for

brute force attacks detection leveraging on Deep Belief Network (DBN) algorithm targeting

SSH and FTP.

Listed below are the contributions of this research.

• Collect a full network traffic dataset (CSE-CIC-IDS2018) which comprised of Benign,

FTP, and SSH attack.

• Conduct feature extraction and pre-process the dataset to achieve a more

comprehensive data required for analysis.

• Train the DBN model to capture the complex pattern within the network data.

• Evaluate the result and compare it to other models.

Research Question. How well does Deep Belief Network model perform at detecting FTP-

Bruteforce attacks and SSH-Bruteforce attacks?

The layout of the research is arranged as follows. Literature reviews are presented in section 2.

A brief introduction of the DBN model and method of training is presented in section 3.

Description of the dataset content and Evaluation metrics were also presented. In section 4, the

design specification of the Model is presented. Section 5 presents the implementation of the

work and all necessary details such as research tools and applications installed to bring the

work to fruition. The Section 6 of the report details the evaluation and result of the model

together with the comparisons of other algorithms existing. A general discussion of the work

was stated here. Finally, the conclusion of the work and future work is reported accordingly in

Section 7.

2 Related Work

This section presents an overview of some previous studies done on detection of brute force

attacks and network intrusion attacks under the four categories of attack detection techniques.

2.1 Signature-based detection

Signature-based detection method for brute-force attacks involves developing and storing some

guidelines and known signatures which recognize the patterns of brute force attacks and

intrusion traits (Quincozes, et al., 2021). These known patterns and signatures are then looked

out for during network scanning to identify attacks.

3

(Bronte, et al., 2016) developed a signature-based detection method for detection of

application layer intrusion. This was done using a dataset which they generated from a web

application with malicious scripts.

Another study by (Jing, et al., 2017) proposed the use of signature -based detection and

introduced some other detection methods like dynamic detection and integrity detection which

together can help for better catch. The implementation of the signature technique suggested in

the study is easy but might not be effective for more advanced attacks and unknown threats

with no pattern.

The limitation with the use of signature-based detection method is that new attack trends cannot

be detected with it since only pre-stored patterns in the database can be detected. (Khraisat, et

al., 2019). Hence, a need for an improved detection method is necessitated.

2.2 Anomaly-based detection

Anomaly-based detection technique involves checking for any disparity from the baseline of

the established system’s normal behaviour (Montoya, et al., 2022). It also involves observing

activities which are related to brute force attacks in system logs, traffic, and network activities.

(Deris, et al., 2019) in their study explored brute force attacks against IoT network FTP

servers adopting a time-sensitive and a thorough statistical relationship for detecting

anomalies, unauthorized activities, and visualizing attack patterns in network configurations.

This was conducted using an IoT network testbed which replicated the scenario for an internal

attack with the objective of establishing and identifying the attack pattern which eventually

resulted in a positive result.

A more improved study on brute force attack detection on IoT Network proposed using

a deep learning method for accurate detection of the attack on IoT using MQTT-IoT-IDS2020

dataset (Ahmed, et al., 2023). To train the proposed model, Deeplearning4j java library was

used to achieve the result of Bi-flow Accuracy of 99.56% and Uni-flow Accuracy of 99.67%.

Another study by (Liu, et al., 2021) proposed a feature engineering technique which

could create a block-based packet payload to detect anomalies and help to spot brute force

attacks.

(Jeonghoon, et al., 2021) in their study explained some of the limitations with regards

to lack of a standard procedure required for log files analysis and detection of security of alerts

in time. He proposed a model to detect SSH brute force by extracting some kinds of data such

as IP address. The result showed that the proposed approach can prevent unauthorized IPs and

prevent access to malicious sites owned by the attackers.

(Günter, 2022) created Condition Monitoring System (CMS) in his study to monitor in

real time SSH-brute force attacks observed from anomalies, and fluctuations. This experiment

was done using a generated dataset.

One of the core limitations of the anomaly-based detection method is that there is always a

high chance of false alert triggers.

2.3 Machine Learning-based detection

In this approach, machine-learning models are used to recognize patterns of attacks in a system.

They are used to detect anomalies in system logs, activities and network traffic which could

indicate an intrusion or a brute force attack. With historical data, these algorithms may be

4

trained with standard libraries to recognize well-known attack patterns, and they can also be

changed to recognize emerging patterns and attack traits (Alatwi & Morisset, 2022).

(Yin, et al., 2017) created an RNN model for intrusion detection using KDDTrain and

KDDTest & KDDTest21 as the training set and the testing set, respectively. Result of the model

trained shows that the RNN model has higher accuracy when the training set was used.

Another study (Kim, et al., 2019) developed a CNN model for intrusion detection. In

this study, the dataset was converted into images to improve the performance of the study by

(Yin, et al., 2017). The accuracy score increased after the dataset was pre-processed.

A study by (Karel, et al., 2020) explored ways to fix high FP rate which is experienced

in some detection methods. The study proposed refined machine learning for detection with

extended IP Flow extended specifically using a generated dataset. The result showed that the

Ada-Boosted tree had the highest accuracy of 99.47% followed by C4.5 Decision tree: 99.46%,

5-NN: 99.39%, Random Forest: 99.38%, Naive Bayes: 92.09%.

Using the approach of detection via packet level feature set with a generated dataset.

This dataset consists of 1.8 million number of IP flows, (Jan, et al., 2021) in their study was

able to identify a distinctive packet-level feature set after training some classifiers and achieved

a false positive rate of 10^-4. Also, the true positive rate increased resulting to 0.938. The true

positive rate was higher than the state of art solution, thus can be used as a detection method.

(Hossain et al., 2020) also proposed using LSTM algorithm (Long Short-Term

Memory) for detection of brute-force attack with focus on protocols SSH and FTP. The analysis

was done with CICIDS2017 dataset. The model result when compared to other classifiers such

as k-nearest-neighbour (KNN) and naive Bayes (NB) showed that the LSTM model delivers a

superior accuracy of 99.88%.

Another study by (John, et al., 2021) proposed that a simpler method can be used for

the detection of brute force attacks using the CIC IDS2018 dataset which is a more recent big

dataset for network intrusion. The study trained and tested simple Decision Tree models with

two independent variables to classify the dataset for detection of SSH and FTP brute force

attacks using the Scikit-learn decision tree implementation (F. Pedregosa, 2011). The result

was evaluated based on AUC and AUPRC and scored greater than 0.99 and with that they

concluded using a simple decision tree algorithm can equally be used for the detection of the

attack.

A study by (Wanjau, et al., 2021) proposed using a CNN model with CSE-CIC-IDS 2018

dataset for detecting SSH Brute force attacks and implemented with the use of Python’s

libraries like TensorFlow and Keras. The performance of the model when compared to the past

results of some machine learning classifiers like Naive Bayes, Decision Tree and KNN showed

that the model has a higher accuracy rate and higher precision rate when all features are used.

2.4 Hybrid detection

Hybrid detection technique is a combination of two or more detection techniques for effective

brute-force attack detection. This can be a combination of old and new trends of attacks or a

combination of signature-based and anomaly detection methods (Gupta & Srinivasagopalan,

2020).

5

 (Fernandez & Xu, 2019) in their study proposed both supervised network intrusion and

unsupervised network intrusion detection using deep learning method. The intrusion detection

system was trained with a supervised Deep Neural Network (DNN). An auto encoder was also

used to categorize and detect attack traffic with unsupervised learning. The results from the

study showed the intrusion detection systems performed better than the traditional machine

learning models.

A study by (Luo, et al., 2021) also developed a hybrid learning technique which consists

of self-organizing map (SOM) to detect SSH Brute force attacks. The network flow clusters

were recognized using the SOM. The Association Rule Mining (ARM) algorithm was deployed

for analysing and interpreting traffic behaviour.

Another study by (Wu, et al., 2020) proposed a method for threat intelligence detection

from SSH brute force attacks using a honeypot dataset for experimentation. The study

distinguished between cross-country and persistent attacks and warned IoT vendors cloud

providers about stolen SSH keys, allowing them to check the effectiveness of software fixes

and discourage the evasion strategies with anomaly detectors. The implementation was human

supervised, and the researchers were able to detect ways by which attackers launch persistent

large-scale attacks.

 (Saumya & Tamanna, 2021) proposed a combination signature-based detection

algorithms and an unsupervised anomaly-based detection method to detect intrusion attacks

with the aim to lower false alarm rates and improve the detection rate.

Table 1: Related Studies on Brute Force attack detection

Study/Year Dataset Method Performance

(Bronte, et al., 2016) Generated Dataset Genetic Algorithm False Positive: 0%

False Negative: 0%

(Jing, et al., 2017) NA Signature-based The method is simple and easy to

implement.

(Jeonghoon, et al.,

2021)

Generated internet

router dataset

Network data log. It can prevent unauthorized access, but

it does not respond to real-time attacks.

(Yin, et al., 2017) NSL-KDD dataset RNN Accuracy:81.29% (KDDTest)

Accuracy: 64.67% (KDDTest-21)
(Kim, et al., 2019) CIC-CSE-IDS2018 CNN Improved accuracy results for all attack

types.

(Hossain, et al.,

2020)
CICIDS2017 LSTM Accuracy of 99.88%

(Wanjau, et al.,

2021)

CIC-IDS 2018 CNN

(Fernandez & Xu,

2019)

CIC IDS 2017,

ISCX IDS 2012
DNN TPR = 0.9999

TFR = 0.0003

(Jan, et al., 2021) Generated dataset HistGB

AdaBoost

Random Forest

SVM

Decision Tree

KNN and GaussianNB

TPF = 0.938

6

(Wichmann, et al.,

2021)

Real-world traffic

from a Tor exit node

and via synthetic.

Based on TCP packets. FTPS: F-measure between 85% and

93%,

IMAPS: F-measure between 75% and

86%
(Ahmed, et al., 2023) MQTT-IoT-IDS2020 DNN Bi-flow Accuracy= 99.56%

Uni-flow Accuracy = 99.67%
(Deris, et al., 2019) Generated dataset Snort Successfully detected Snort

(Karel, et al., 2020) Generated dataset Ada-Boosted tree,

5-NN,

Naive Bayes,

RandomForest

C4.5 Decision tree

(Gunter, 2022)

Generated dataset NA Provided a successful monitoring

system for SSH-brute force attacks

happening in real time

(John, et al., 2021) CSE-CIC-IDS2018 Decision Tree classifier AUC & AUPRC scores greater than

0.99.

(Wu, et al., 2020) Honeypot dataset Human supervised The researchers were able to detect

ways by which attackers launch

persistent large-scale attacks.
(Saumya &

Tamanna, 2021)

CSE-CIS-1DS2018

Dataset

Decision tree

Logistic regression

Adaboost

Naive bayes Nearest

neighbour.

 + Isolation tree

Overall, more studies are being done for efficient and easier detection of brute force attacks

with the major work being on machine learning approach. This is because it is currently the

most successful approach of detection when applied to other attacks intrusions (Bo & Xue,

2016).

3 Research Methodology

This section presents methodology proposed for effective detection of FTP & SSH brute force

attack. I also explained the data collection techniques and the evaluation metrics used. This

research offers the use of deep belief network algorithm to detect Bruteforce attacks, case study

being on FTP and SSH protocol using CIC IDS2018 dataset as a sample data for analysis

(UNB, 2023). A comparative analysis with three classical traditional machine learning models

to ascertain the performance rate with the DBN was also presented.

3.1 Deep Belief Networks

Deep Belief Network is a deep neural network classifier that combines multilayer unsupervised

learning networks called RBMs (Restricted Boltzmann Machines) with a supervised learning

network called BP (Backpropagation) (WEI, et al., 2019). They are artificial neural networks

which are made up of layers of RBMs. These RBMs are trained with an unsupervised method

7

to learn the input data which is compressed (Tavanaei, et al., 2019). Each layer of the RBM

learns a representation of the data which is much more abstract as it receives the input from the

previous layer. This way, each RBM layer as a result, learns to extract higher-level features

from the input data.

3.1.1 Restricted Boltzmann Machine (RBM)

RBMs are two-layered networks of stochastic units with undirected connections between pairs

of units in the two layers (Guido, 2018). The two node layers are known as visible and hidden

nodes with no connections from visible to visible or hidden to hidden nodes. RBMs are among

the basic blocks of deep belief network and can be used as a generative model as well as a

classification task. To learn an RBM, design of the training algorithm using the maximum

likelihood estimation of the parameters.

Fig.1 shows RBM which consists of visible units (m) and hidden units (n). (b) and (c) represent

the bias for the visible unit and the hidden unit. (wij) is the weight between (hi) and (vj).

Fig. 1. Restricted Boltzmann Machine (Guido, 2018).

3.1.2 Architecture and Structure of DBNs

There are two primary layers that make up the DBN architecture. The layers are visible layers

and hidden layers. These two layers form an undirected graph. The input data is directly

represented by the visible layer, while the more abstract and higher-level data features are

captured by the hidden layers.

In general, the DBN is made of multiple layers of networks and each pair of the connected

layers are RBMs which form a stack around.

8

Fig.2. Architecture of Deep Belief Networks (WEI, et al., 2019)

Fig.2 above represents the multilayer generative structure of a DBN model with the undirected

connections in the top two layers and directed top-down connections in the lower layers from

the layer above. The recognition model is represented by the upward arrows, while the

generative model is represented by the downward arrows. A DBN may be pre-trained very

effectively using the layer-by-layer unsupervised, greedy learning technique contrastive

divergence (CD), which is used to train the RBM of layers n in the first phase. The observable

variables v are sampled by the posterior distribution p(|)1vh after the posterior p(|) hv1 is

sampled from the first level RBM. Then, the hidden variables h1 are sampled one more using

the same methodology. Up until a randomly approaching equilibrium distribution, the k steps

of alternating Gibbs sampling were repeatedly conducted. After then, the second level RBM is

learned, a sample is computed for h2, and so on through the final layer, using the optimum

representation of the input vector v, h1 (WEI, et al., 2019).

The settings of the entire DBN are fine-tuned in the second phase. In the penultimate layer, the

weights on the undirected connections which are located at the RBM top level are learned by

adjusting and fitting the posterior distribution.

DBNs' capacity to autonomously learn meaningful representations of the data is one of

their primary features. The hierarchical structure allows the network to capture both low-level

and high-level features in an unsupervised manner.

3.1.3 Training of a DBN Model

The training and validation of the DBN model is a crucial step in the methodology of this study.

9

Training a DBN involves two major steps which are.

• Pre-training (Unsupervised learning method)

• Fine-tuning (Supervised)

A. Pre-training

During the pretraining stage, the RBMs are taught individually in a layer-wise manner. The

first layer is trained, followed by the second layer on top and third until the last one in a greedy-

like method (Guido, 2018). At this stage, the RBMs learn to model the probability distribution

of the hidden units given the visible unit by adjusting the RBM weights iteratively using

optimization methods such as contrastive divergence.

B. Fine-tuning

Fine-tuning of DBN can be done by backpropagation and SoftMax regression. Back-

propagations are used to apply full network training with major parameters being batch size

(the number of input samples in each of the group before performing updating the weight) and

number of iterations (epochs) per tuning (Mazur, 2015). With a small iteration and a large

iteration, backpropagation produces better finetuning. When using SoftMax regression on the

other hand, the model determines the likelihood that an input belongs to each class before

allocating it to the class with the highest likelihood. SoftMax regression is also known as the

multinomial logistic regression used for handling analysis involving multiple classes (Ping, et

al., 2018).

The Equation below displays the conditional probability of Y=l (class l) when given the

output where X' =stacked Restricted Boltzmann Machines, C = The coefficient matrix, while

d = intercept. The final prediction lastly is the class which has the highest probability.

Fig.3. Conditional probability equation describing DBN model training (Ping, et al.,

2018)

3.2 Data Collection Techniques

For this study, the dataset used is CSE-CIC-IDS2018 dataset compiled and made public for use

by two Cybersecurity Research and development Units namely, CSE & CIC (Communication

Security Establishment &Canadian Institute of Cybersecurity) (UNB, 2023).

The dataset is a combination of several intrusion attack types presented in Table 2. These

data were gathered for 5 days from 420 machines from 5 different departments. Each attack set

has over 80 features needed for effective network analysis.

The dataset was extracted using the CICFlowMeter-V3 (UNB, 2023) and CSV file format was

downloaded using AWS command line interface (AWS, 2023) and windows command shell.

The data was grouped into ten subsets for the different days whereby the attack

scenarios were performed.

The table below presents the sub datasets, attack types for each subgroup, sample size and date.

Table 2. Dataset Attack types and samples.

10

3.3 Evaluation Metrics

For any study or research, the results generated are based on the metrics chosen. These metrics

are used to determine the best outcome of the models.

For this research paper, the DBN model is evaluated with the following metrics listed (A-D).

A. Accuracy. This metric counts the proportion of cases that were successfully

categorized out of all instances and the correctness of the data (MAOHUA, et al., 2022).

It is determined as the proportion of occurrences that were correctly categorized to all

the instances. That is summation of True Negative (TN) and True Positive (TP) divided

by the sum of False Positive (FP), False Negative (FN), TP and TN. Below is the

formular.

(Hercules, 2018)

B. Precision. This metric counts the proportion of true positive events among all positive

occurrences. It is computed as the ratio of true positive cases to the total of both true

positive and false positive instances (Alice, 2015). Below is the formular.

11

C. Recall. The Recall metrics is calculated as the ratio of the number of true positive to

the sum of true positive and false negative. The formular is given below.

(Alice, 2015)

D. F1 score. This is a measure of the balance between precision and recall. In other words,

it is the harmonic mean of precision and recall. The formular is given below.

 (Md. Alamgir Hossain, 2023)

4 Design Specification

This section provides the description of the architecture used for the proposed detection

method. The core stages/steps involved in the development and analysis of this study include

data collection, Feature Engineering, Data pre-processing, performance evaluation, generating

result of the DBN algorithm. Finally, comparison with other classical algorithms.

The various stages involved in the implementation of the brute force detection system from

start to finish are explained in concise order for quality comprehension.

Fig.4. Design Specification Flow of the Model.

4.1 Data Collection

The first stage of the workflow involves searching and selection of the actual dataset to use for

the analysis. For this, CSE-CIC-IDS2018 dataset was selected because the dataset has complete

network features required for this analysis.

12

4.2 Feature Extraction

Feature extraction involves filtering the dataset and selecting only features represented in the

forms that can be understood by the machine (Max & Kjell, 2019). Feature extraction before

model training is essential to avoid ambiguity and resource overload during processing.

4.3 Data Pre-processing

This step involves cleaning the dataset, filtering, removing, formatting, and normalizing data

to ensure it is suitable and has only required columns needed in the right format for analysis

(Roy, 2022). Duplicates which exist were removed and checks for missing values were also

carried out.

Additionally, encoding categorical variables was performed. In the concluding part of this

stage, the data is split to Test data and Train data.

Test Data: The test data is a subset of the pre-processed data which is used to evaluate how

the trained model performed. It is a mixture of both attack instances.

Train Data: The train data is the main dataset used to train the model. It consists of labelled

examples of normal behaviour and attacks. The data is divided into input features such as IP

addresses, login attempts and corresponding labels such as indicating whether an attack

occurred or not.

4.4 Model Training

In this stage, train data is utilized to train the machine learning model. The model could be

based on various algorithms. The model will learn to recognize patterns and make predictions

based on the input features and labels provided in the train data.

4.5 Evaluation and Result

After the model is trained, the models need to be evaluated to assess the performance. The

evaluation is typically done using the test data that was set aside earlier. The trained model is

applied to the test data, and its predictions are compared to the known labels. Evaluation

metrics can be used to measure how the model performed.

Once the evaluation is completed, results will be generated based on the outcome of metrics

obtained from evaluation.

4.6 Comparison with Other Algorithms

In this stage, you can compare the results obtained from different models or approaches. For

instance, the performance of the proposed method can be compared against different feature

engineering techniques or machine learning algorithms.

For this study, below are the three classical algorithms which were trained and compared to the

DBN model.

A. Random Forest

Random Forest is an ensemble learning technique which uses several decision trees to produce

a single result. It is renowned for its resistance to overfitting and capacity for handling large-

scale, multidimensional data (Pande S., 2021). Random Forest is a traditional Machine

Learning classifier used often for handling classification and regression issues in high-

dimensional data.

13

B. Decision Tree

Decision tree model has a tree-like structure in which each internal tree node from the root

represents a question based on a specific feature or sequence of data splitting until a class label

which is represented on a leaf node is obtained (Bahzad & Adnan, 2021). In general, they are

well-known as machine learning or data mining technology that collects sets of attribute values

(input) and produces a Boolean decision as output (Yang, 2019).

Decision trees are widely utilized in many other domains such as image processing, system

anomaly detections and network interruptions.

C. Logistic Regression

This model predicts the likelihood of a binary result based on one or more predictor factors.

Binary logistic regression is applied when the dependent variable has only two different values

in which case, the predictor variables may be any type of variable such as either quantitative

or qualitative (Hilbe, 2015). The model can also be used for multiclass classification with

techniques like SoftMax regression.

5 Implementation

This section provides the actual work done starting from the selection of tools to the different

processes carried out at each stage of the design specification workflow.

5.1 Research Tools

5.1.1 Lab

My personal computer (HP ProBook) with the following details was used for the analysis.

o OS: Windows 11 Pro.

o Version of PC: 21H2

o System: 64-bit OS, x64-based processor

o Processor of PC: 11th Gen Intel(R), Core (TM) i5-1135G7

o Storage: 512 GB

o RAM size: 16GB.

5.1.2 Installed Applications

o AWS CLI. This is an AWS command line tool used for both downloading, configuration

and execution of OS shell commands (AWS, 2023). It was installed and used with the

windows command shell to execute the commands for downloading the subject dataset.

o CICFlowmeter V3 was used to extract the raw files format and convert them to CSV

file format for further processing (UNB, 2023).

o Anaconda and Jupyter Notebook. Anaconda is a popular platform for python which

includes JupyterNotebook, JupyterLab, RStudio, PyCharm etc. (Anaconda, 2023).

JupyterNotebook is used for creating codes for web developments, visualizations,

arithmetic programs, and machine learning (Jupyter, 2023). It creates faster and more

scientific computing and allows for sharing codes with the output.

o Python. This is used widely for numeric and scientific calculations, web development,

building applications etc. (Python, 2023) The choice of Python language for the

development of the study is because of its versatility, flexibility, availability of libraries

and machine learning/data science frameworks (Svitla, 2022).

14

5.1.3 Python Libraries

o Pandas. It is one of the foundation libraries in Python used in data manipulation,
analysis, and visualization (Pandas, 2023). Pandas provides easy-to-use data structures,
high performance calculations and data analysis framework.

o NumPy. This is also one of Python’s Library used for data manipulations, data cleaning,
transformation and provides efficient tool for working with structured data. It handles
generic multi-dimensional data and provides tools for arrays such as statistical
operations (NumPy, 2023).

o Sklearn. This Library package offers a vast selection of supervised machine learning
techniques and unsupervised machine learning techniques. It provides a simple and
efficient tool for data mining, regression, classification, and pre-processing (Igor,
2023).

o Matplotlib. Matplotlib is used for plotting representations during analysis (Matplotlib,
2023).

5.2 Dataset

5.2.1 Data Collection.

For the purposes of this study, the sub dataset “Sub Data 2” saved in the site as “Wednesday-
14-02-2018_TrafficForML_CICFlowMeter” in Table 2. with three attack types Benign,
Brute Force-FTP and Bruteforce SSH was loaded into the JupyterNotebook using the Pandas
python library. Below is the count of the attack types.

Fig.5. Collected Dataset Labels and count.

A representation of the attack types and count was done using a bar chart created with the

Python library matplotlib.

Fig.6. Bar plot of the Attack Labels and count.

15

5.2.2 Feature Extraction

The area of concentration on this study is on protocols FTP and SSH. Hence, during the feature

extraction stage, only attack types-FTP-Bruteforce and SSH-Bruteforce were extracted. Also,

out of the 80 features, only total of 69 of them were extracted specifically and used for the

analysis. Below are the features extracted.

Fig.7. Dataset Features Extracted.

5.2.3 Data Pre-processing

After extracting the required features needed for building the model, the data was set up for

cleaning. The positive infinite values, negative infinite values (INF, -INF) and not a number

(NAN) were replaced with a generic number (999). This is to allow compatibility with the

algorithms being developed (Christian, 2020). It enabled the data to remain in a consistent

format allowing for easier manipulation.

The attack types were also converted into numerical values (0,1) using the python replace

function. See below the code and output.

Fig.8. Label attack types converted to numerical.

Below is a view of the dataset with features after converting the Label.

16

The features were also normalized to convert the minimum and maximum observable values

into a similar range and avoid issue of having larger magnitude dominating the model training

process using the python Sklearn functions Normalizer(), fit() and transform() (Scikit-learn,

2023).

Below is the code and the output features after the pre-processing.

Fig.9. Normalized Dataset Features.

The last step of the pre-processing done was splitting the dataset to train data (80%) and test

data (20%) using the imported Sklearn function train_test_split().

Fig.10. Pre-processed dataset into Train and Test Data.

5.3 Model Training.

The DBN model, and the three other algorithms were trained using the train dataset and were

evaluated using the test dataset.

Below is the list of the algorithms trained using the trained.

o Proposed Model: Deep Belief Network

o Other Algorithms: Random Forest, Logistic Regression and Decision Tree.

17

6 Evaluation

This section covers the experiments and results analysis from training the DBN model and the

three models (Random Forest, Logistic Regression and Decision tree) using the dataset. The

final performance result from the DBN model training was also compared to three algorithms.

6.1 Experiment 1: DBN Model Training

To train the DBN model, two parameters optimization was experimented during the finetuning

to arrive at the final performance result. The experiments involve using components of RBM

stack. Each RBM was taught to reconstruct its input during the pre-training, then the outputs

were taken as the inputs to produce the output after finetuning.

A. First Parameter Experiment

n_components=400, learning_rate=0.001, n_iter=20, verbose=1

Learning Curve:

Fig.11. DBN Learning curve of the first experiment.

Confusion Matrix:

Fig.12. Confusion Matrix of DBN model.

18

Result from the experiment showed accuracy rate of 93.4%

Classification Report:

Fig.13. Classification report of DBN Model.

B. Final Parameter Experiment/DBN Model Training

n_components=400, learning_rate=0.0005, n_iter=50, verbose=1

The learning curve for the training is shown in Fig.13. below.

Fig.14. DBN Model Learning curve of the final parameter optimized.

Confusion Matrix:

Fig.15. Confusion Matrix of the DBN Model.

19

Accuracy score:

Fig 16. Accuracy score of the DBN.

Classification Report:

Fig.17. Classification report of the DBN Model: Final optimization.

Fig.18. Learning Curve of DBN Model Training

6.2 Experiment 2: Other Algorithms

The same dataset was also used to train RandomForest, Logistic Regression and Decision tree.

The accuracy results from the algorithms are presented below. Also, the classification report

for each is displayed.

20

A. Random Forest

Fig.19. Accuracy score and Confusion Matrix.

Fig.20. Classification report.

B. Logistic Regression

Accuracy and Confusion matrix score.

Fig.21. Accuracy Score & Confusion Matrix

Classification report.

Fig.22. Classification report.

21

C. Decision Tree

Accuracy and confusion matrix score:

Fig.23. Accuracy score and Confusion Matrix.

Classification report:

Fig.24. Classification Report.

Fig.25. ROC Curve of the Algorithms.

6.3 Comparison

Having trained and evaluated the models to produce the output results, the summary of the

performance scores can be presented in a comparison table for better illustration.

22

Table 3. AUC score and Accuracy score of the Models

Model AUC (.3f) Accuracy (Percentage)

DBN 0.993 99.3%

Decision Tree 0.858 85.8%

LogisticRegression 0.992 99.2%

RandomForest 0.982 98.2%

Table 4.

Attack type Algorithm Precision Recall f1-score

FTP Deep Belief Network 1.00 0.99 0.99

Decision Tree 0.89 0.82 0.86

Logistic Regression 1.00 0.99 0.99

Random Forest 1.00 0.96 0.98

SSH Deep Belief Network 0.99 1.00 0.99

Decision Tree 0.83 0.86 0.86

Logistic Regression 0.99 1.00 0.99

Random Forest 0.96 1.00 0.98

6.4 Discussion

The output results above show the learning curve, matrix and performance scores of the entire

experiments carried out in the research. During the first experiments of the DBN model

training, the accuracy of 93.4% was obtained. During the second experiment, the parameters

n_components and learning rate were optimized which made the model learning perform better

with an accuracy of 99.3%. This result exceeded that of the three classifiers trained. Random

Forest 98.2%, Logistic regression 99.2% while Decision tree had the lowest accuracy of 85.8%.

Also, when compared to the performance of the previous work done with the same dataset

where CNN was applied on the detection of SSH-Bruteforce, accuracy was 94.3% (Wanjau, et

al., 2021) This shows that DBN performs very well in detecting attacks.

 Furthermore, the classification reports presented for each of the models show that the

precision score, recall score and f1-score of the DBN model is higher than that of

RandomForest, Logistic Regression and Decision tree. The ROC curve presented showed that

the AUC score of DBN model is 0.993, Random Forest = 0.982, LogisticRegression = 0.992,

while Decision Tree 0.858.

Overall, the design and performance of the proposed DBN model was good. To obtain a high-

performance rate of the model, more layers of the RBM had to be trained with a very low

learning rate of 0.0005 and higher iteration (50) thereby causing longer period.

Hence, there is need for more studies to be explored in developing a DBN training mechanism

with shorter period.

7 Conclusion and Future Work

The purpose of this research paper is to demonstrate that Deep Belief Network can be
successfully trained and applied to detect of brute force attacks. The model learns high-
dimensional representations and it also performs classification tasks which in this case was
needed while using the dataset CSE-CICIDS2018, a big dataset with multiple features and

23

attack types. The DBN model was pre-trained with a multilayered unsupervised RBM and fine-
tuned.

The result showed that the model performed well and produced an accuracy score of
99.3% when the parameters were optimized. Furthermore, three classification algorithms were
also trained using the same dataset. Decision tree scored the accuracy rate of 85.8%, Logistic
Regression 99.2% and Random Forest 98.2% showing that the accuracy rate of the DBN model
is better. Therefore, it answered the research question confirming that the deep belief network
model can perform very well in detecting FTP-Bruteforce and SSH-Bruteforce attacks. Also,
it performs better than traditional machine learning methods when compared. The limitation of
this model however is that the training process which involves pre-training stacks of RBM, and
fine-tuning took longer time when compared to the other methods.
 In the future, I intend to explore more on pre-training and fine-tuning methods of
training a Deep Belief Model to optimize the result in a shorter timeframe.

References
Ahmad, A., Harjula, E., Ylianttila, M. & Ahmad, I., 2020. Evaluation of Machine Learning

Techniques for Security in SDN. Globecom Workshops (GC Wkshps), 978-1-7281-7307-8/20(DOI:

10.1109/GCWkshps50303.2020.9367477), p. 6.

Ahmed, F. O., Wafa’, E. & Emad, E. A., 2023. Deep Learning for Accurate Detection of Brute Force

attacks on IoT. ScienceDirect Procedia Computer Science 220, 14(The 14th International Conference

on Ambient Systems, Networks and Technologies (ANT)), p. 291–298.

Alatwi, H. A. & Morisset, C., 2022. Threat Modeling for Machine Learning-Based Network Intrusion

Detection Systems. IEEE International Conference on Big Data (Big Data), 78-1-6654-8045-1(DOI:

10.1109/BigData55660.2022.10020368), p. 10.

Alice, Z., 2015. Evaluation Metrics. In: S. Cutt, ed. Evaluating Machine Learning Models. 1 ed. 1005

Gravenstein Highway North, Sebastopol, CA: O’Reilly Media, Inc.,, pp. chp 7, pg 12-13.

Anaconda, 2023. Anaconda. [Online]

Available at: https://www.anaconda.com/

[Accessed 01 06 2023].

AWS, 2023. AWS Command Line Interface. [Online]

Available at: https://aws.amazon.com/cli/

[Accessed 01 04 2023].

Bahzad, T. J. & Adnan, M. A., 2021. Classification Based on Decision Tree Algorithm for Machine

Learning. Journal of Appliend Science and Technology Trends, 02(1), pp. 20-28.

Bo, D. & Xue, W., 2016. Comparison Deep Learning Method to Traditional Methods Using for

Network. IEEE International Conference on Communication S oftw are and N etw ork s, Volume 8th,

p. 5.

Bronte, R., Shahriar, H., Haddad, H. M. & Claims, A. I. &., 2016. A Signature-Based Intrusion

Detection System for Web Applications based on Genetic Algorithm. Proceedings of the 9th

International Conference on Security of Information and Networks, SIN 16(2947626.2951964), pp.

32-39.

24

Christian, H., 2020. Learning Scientific Programming with Python. 2nd ed. UK: Cambridge

University. ISBN: 9781108745918.

Deris, S. et al., 2019. Investigating Brute Force Attack Patterns in IoT Network. Journal of Electrical

and Computer Engineering, 2019(4568368; Article ID 4568368), p. 13.

F. Pedregosa, G. V. A. G. V. M. B. T. O. G. B. P. P. R. W., 2011. Scikit-learn:Machine learning in

python. Journal of machine Learning Research, Volume 12, p. 2825–2830.

Fernandez, G. C. & Xu, S., 2019. A Case Study on Using Deep Learning for Network Intrusion

Detection. arXiv Preprints, 1(arXiv:1910.02203v1), p. 6.

Guido, M., 2018. Restricted Boltzmann Machines: Introduction and Review. 1(1), p. 41.

Günter, F., 2022. Realtime Risk Monitoring of SSH Brute Force Attacks. 22nd International

Conference on Innovations for Community Services, 22(DOI: 10.1007/978-3-031-06668-9_8), p. 23.

Gupta, B. B. & Srinivasagopalan, S., 2020. Handbook of Research on Intrusion Detection Systems.

In: S. S. Brij Gupta, ed. A volume in Advances in Information Security Privacy and Ethics (AISPE)

Book series. Pennysylvania USA: IGI Global, p. 68.

Hercules, D., 2018. Evaluation Metrics and Evaluation. In: D. Hercules, ed. Evaluation Metrics and

Evaluation. Salmon Tower Building New York City: Springer International Publishing, pp. chp 6. pg

1-9.

Hilbe, J. M., 2015. Practical Guide to Logistic Regression. 1 ed. 6000 Broken Sound Parkway NW,

Suite 300: Taylor & Francis Group.

Hossain, M. D., Ochiai, H. & Fall Doudou, Y. K., 2020. SSH and FTP brute-force Attacks Detection

in Computer Networks: L STM and Machine L earning Approaches. International Conference on

Computer and Comunication System, 5(978-1-7281-6136-5/20), p. 7.

Igor, R., 2023. Sklearn – An Introduction Guide to Machine Learning. [Online]

Available at: https://algotrading101.com/learn/sklearn-guide/

[Accessed 07 08 2023].

Jan, L., Karel, H. & Tomas, C., 2021. Detection of HTTPS Brute-Force Attacks with Packet-Level

Feature Set. IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC),

78-1-6654-1490-6(DOI: 10.1109/CCWC51732.2021.9375998), p. 9.

Jeonghoon, P. et al., 2021. Network Log-Based SSH Brute-Force Attack Detection Model.

Computers, Materials & Continua; Tech Science Press, 68(1), p. 15.

Jing, L. et al., 2017. A Review on Signature-Based Detection for Network Threats. IEEE

International Conference on Communication Software and Networks, 9(9th), p. 5.

John, H., Taghi, M. K. & Leevy, J. L., 2021. Detecting SSH and FTP Brute Force Attacks in Big

Data. IEEE International Conference on Machine Learning and Applications (ICMLA), 20(DOI:

10.1109/ICMLA52953.2021.00126), p. 6.

Jupyter, 2023. Jupyter. [Online]

Available at: https://jupyter.org/

[Accessed 01 06 2023].

25

Karel, H., Tomas, B., Tomas, C. & Hana, K., 2020. Refined Detection of SSH Brute-Force Attackers

Using Machine Learning. IFIP International Federation for Information Processing, 2020(M. Holbl

et al. (Eds.): SEC 2020, IFIP AICT 580, pp. 49–63, 2020.), p. 15.

Khraisat, A., Gondal, I., Vamplew, P. & Kamruzzaman, J., 2019. Survey of intrusion detection

systems: techniques, datasets and challenges. Open Access, 1(1), p. 22.

Kim, J., Shin, Y. & Choi, E., 2019. An Intrusion Detection Model based on a Convolutional Neural

Network. Journal of Multimedia Information System , 6; No 4(ISSN 2383-7632 (Online)), pp. 165-

172.

Liu, J. et al., 2021. Deep Anomaly Detection in Packet Payload. arXiv Preprints, 1(1912.02549), p.

27.

Luo, X., Yao, C. & Zincir-Heywood, A. N., 2021. Modelling and visualising SSH brute force attack

behaviours through a hybrid learning framework. International Journal of Information and Computer

Security, 16(1-2), pp. 170-191.

MAOHUA, G., ZEYNEP, Y. & AKITO, M., 2022. Improvement and Evaluation of Data Consistency

Metric CIL for Software Engineering Data Sets. IEEE Access, 3188246 (Digital Object Identifier

10.1109/ACCESS.2022.3188246), p. 15.

Matplotlib, 2023. Matplotlib: Visualization with Python. [Online]

Available at: https://matplotlib.org/

[Accessed 07 08 2023].

Max, K. & Kjell, J., 2019. Feature Engineering and Selection: A Practical Approach for Predictive

Models. 1 ed. U.S: Taylor & Francis Group, LLC. .

Mazur, M., 2015. A Step by Step Backpropagation Example. [Online]

Available at: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

[Accessed 11 06 2023].

Md. Alamgir Hossain, M. S. I., 2023. Ensuring network security with a robust intrusion detection

system using ensemble-based machine learning. Array,

19(https://doi.org/10.1016/j.array.2023.100306.), p. 14.

Montoya, V. D. A., Montana, V. D. F., Portela, F. G. & Diaz, T. O. A., 2022. Intrusion Detection

System (IDS) with anomaly-based detection and deep learning application. IEEE Xplore Digital

Library, 1(1), p. 4.

Numpy, 2023. Numpy. [Online]

Available at: https://numpy.org/

[Accessed 30 06 2023].

Pandas, 2023. Pandas. [Online]

Available at: https://pandas.pydata.org/

[Accessed 30 06 2023].

Pande S., K. A. G. D. a. T. D., 2021. DDOS Detection Using Machine Learning Techinques. Studies

in Computational Intelligence, 921(doi: org/10.1007/978-981-15-8469-5_5), pp. pp. 59-68.

Ping, D. et al., 2018. Softmax Regression by Using Unsupervised Ensemble Learning. 2018 9th

International Symposium on Parallel Architectures, Algorithms and Programming, 9(doi:

10.1109/PAAP.2018.00041), pp. 196-201.

26

Python, 2023. Applications for Python. [Online]

Available at: https://www.python.org/about/apps/

[Accessed 07 01 2023].

Quincozes, S. E., Albuquerque, C., Passos, D. & Mossé, D., 2021. A survey on intrusion detection

and prevention systems in digital substations. Computer Networks, 184(107679), p. pg 7.

Roger, A. G., 2020. Brute-Force Attacks. In: Hacking Multifactor Authentication. s.l.:Wiley Data and

Cybersecurity, pp. 295 - 306.

Roy, J., 2022. Hands-On Data Preprocessing in Python. 1 ed. Birmingham, United Kingdom: Packt

Publishing.

Saumya, B. & Tamanna, M., 2021.

Hybrid_Intrusion_Detection_System_using_an_Unsupervised_method_for_Anomaly-

based_Detection. EE International Conference on Advanced Networks and Telecommunications

Systems (ANTS) , 978-1-6654-4893-2/21/(1), p. 6.

Scikit-learn, 2023. SKLearn Preprocessing Normalize. [Online]

Available at: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html

[Accessed 11 06 2023].

Svitla, 2022. Machine Learning with Python. [Online]

Available at: https://svitla.com/blog/machine-learning-with-python-best-libraries-tutorials-use-case-

examples

[Accessed 01 06 2023].

UNB, 2023. CICFlowMeter (formerly ISCXFlowMeter). [Online]

Available at: https://www.unb.ca/cic/research/applications.html#CICFlowMeter

[Accessed 01 04 2023].

UNB, 2023. CSE-CIC-IDS2018 on AWS. [Online]

Available at: https://www.unb.ca/cic/datasets/ids-2018.html

[Accessed 01 04 2023].

Wanjau, S. K., Wambugu, G. M. & Kamau, G. N., 2021. SSH-Brute Force Attack Detection Model

based on Deep Learning. International Journal of Computer Applications Technology and Research,

10(01; ISSN:-2319–8656), pp. 42-50.

WEI, P. et al., 2019. An Optimization Method for Intrusion Detection Classification Model Based on

Deep Belief Network. IEEE, 1(1), p. 13.

Wichmann, P., Marx, M., Federrath, H. & Fischer, M., 2021. Detection of Brute-Force Attacks in

End-to-End Encrypted Network Traffic. The 16th International Conference on Availability,

Reliability and, 16(https://doi.org/10.1145/3465481.3470113), p. 9.

Wu, Y. et al., 2020. Mining Threat Intelligence from Billion-scale SSH Brute-Force Attacks.

Workshop on Decentralized IoT Systems and Security (DISS) 2020, ISBN 1-891562-64-9(1), p. 7.

Yang, F.-J., 2019. An Extended Idea about Decision Trees. International Conference on

Computational Science and Computational Intelligence (CSCI), 1(1), p. 6.

Yin, C., Zhu, Y., Fei, J. & He, X., 2017. A Deep Learning Approach for Intrusion Detection Using

Recurrent Neural Network. IEEE Access, 5(doi: 10.1109/ACCESS.2017.2762418), pp. 21954 -

21961.

