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Detection of FTP and SSH Bruteforce Attacks using  

Deep Belief Network Model 
 

Loveth Ukamaka Diwe  

x21180211  
 

 

Abstract 

Cyber-attacks on computers and internet have been on a major increase since every 

organization has to communicate and run business operations on the network. The security 

awareness and protections implored by individuals and organizations daily is still not 

enough to fully eradicate the constant attacks. Bruteforce attack is a major high-level 

attack on the network connected via protocols like FTP, SSH or via the WEB. Brute Force 

attacks use methods like credential stuffing, DNS spoofing, multiple trials, and different 

consistent methods to access the targeted system or network. This attack type can be 

unpredictable and is often a gateway to many other attacks once successful hence, the need 

for a robust detection method arises. In this research, I investigated the application of Deep 

Belief Network (DBN) to detect Bruteforce attacks using the CSE-CICIDS2018 dataset. 

For additional performance comparison, we also trained three other algorithms: Decision 

Tree, Random Forest, and Logistic Regression. Experiment results showed that DBN 

model achieved a higher accuracy score of 99.3% while Random Forest had accuracy of 

98.2%, Decision Tree 85.8% and Logistic Regression 99.2%. 

 
 

1 Introduction 
 

With the increase in the dependence of individuals and organizations on technology and digital 

infrastructures for day to activities, there is also an increase in the security threats and risks 

with these improvements. Cyber-attacks and Network intrusions continue to increase posing a 

constant threat to the required security needed for communications and data management. 

Hence, there is a paramount need to provide effective intrusion detection systems to be used in 

real time.  

 

Bruteforce network attacks are attacks that can compromise the system security and 

infiltrate vulnerable machines. Bruteforce attacks involve repeated attempts to guess login 

credentials by systematically trying all combinations until the correct one is found (Roger, 

2020). These attacks target a wide range of services and protocols, such as File Transfer 

Protocol (FTP), Cross-Site Scripting (XSS), Secure Shell (SSH), and web applications, thereby 

posing a substantial risk to network security.  
Traditional approaches to intrusion detection frequently rely on approaches based on signatures 

that correspond to known attack patterns (Bo & Xue, 2016). These techniques, however, have 

trouble spotting new or developing attacks for which there are not any signatures yet coupled 

with it taking longer processing time for large data. Whereas the Intrusion Detection Systems 

(IDS) can adapt to new attack patterns thanks to machine learning techniques, which have 
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emerged as a solution to this restriction and offers a statistical and mathematical algorithm 

needed for effective detection of attacks (Ahmad, et al., 2020). 

Recent studies on the use of deep learning algorithms have successfully proven to be a 

successful method to detect network intrusion attacks, speech recognition and language 

processing. There have been several studies focusing on CNN (Convolutional Neural Network) 

algorithm for detecting network intrusion attacks, DDoS attacks and Bruteforce attacks using 

different datasets. From my checks on studies published, there has been no recent study on the 

performance of Deep Belief Network using CSE-CIC-IDS2018 dataset. This dataset is more 

recent and has more network features that capture patterns and relationships which can be 

effective in recognizing attack vectors. This study explores an intrusion detection algorithm for 

brute force attacks detection leveraging on Deep Belief Network (DBN) algorithm targeting 

SSH and FTP.  

 

Listed below are the contributions of this research. 

• Collect a full network traffic dataset (CSE-CIC-IDS2018) which comprised of Benign, 

FTP, and SSH attack.  

• Conduct feature extraction and pre-process the dataset to achieve a more 

comprehensive data required for analysis. 

• Train the DBN model to capture the complex pattern within the network data. 

• Evaluate the result and compare it to other models.  

 

Research Question. How well does Deep Belief Network model perform at detecting FTP-

Bruteforce attacks and SSH-Bruteforce attacks? 

 

The layout of the research is arranged as follows. Literature reviews are presented in section 2. 

A brief introduction of the DBN model and method of training is presented in section 3. 

Description of the dataset content and Evaluation metrics were also presented. In section 4, the 

design specification of the Model is presented. Section 5 presents the implementation of the 

work and all necessary details such as research tools and applications installed to bring the 

work to fruition. The Section 6 of the report details the evaluation and result of the model 

together with the comparisons of other algorithms existing. A general discussion of the work 

was stated here. Finally, the conclusion of the work and future work is reported accordingly in 

Section 7. 

 

2 Related Work 
 

This section presents an overview of some previous studies done on detection of brute force 

attacks and network intrusion attacks under the four categories of attack detection techniques.  

2.1 Signature-based detection 

Signature-based detection method for brute-force attacks involves developing and storing some 

guidelines and known signatures which recognize the patterns of brute force attacks and 

intrusion traits (Quincozes, et al., 2021). These known patterns and signatures are then looked 

out for during network scanning to identify attacks.  
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(Bronte, et al., 2016) developed a signature-based detection method for detection of 

application layer intrusion. This was done using a dataset which they generated from a web 

application with malicious scripts.  

Another study by (Jing, et al., 2017) proposed the use of signature -based detection and 

introduced some other detection methods like dynamic detection and integrity detection which 

together can help for better catch. The implementation of the signature technique suggested in 

the study is easy but might not be effective for more advanced attacks and unknown threats 

with no pattern.  

The limitation with the use of signature-based detection method is that new attack trends cannot 

be detected with it since only pre-stored patterns in the database can be detected. (Khraisat, et 

al., 2019). Hence, a need for an improved detection method is necessitated. 

2.2 Anomaly-based detection  

Anomaly-based detection technique involves checking for any disparity from the baseline of 

the established system’s normal behaviour (Montoya, et al., 2022). It also involves observing 

activities which are related to brute force attacks in system logs, traffic, and network activities.  

(Deris, et al., 2019) in their study explored brute force attacks against IoT network FTP 

servers adopting a time-sensitive and a thorough statistical relationship for detecting 

anomalies, unauthorized activities, and visualizing attack patterns in network configurations. 

This was conducted using an IoT network testbed which replicated the scenario for an internal 

attack with the objective of establishing and identifying the attack pattern which eventually 

resulted in a positive result.  

A more improved study on brute force attack detection on IoT Network proposed using 

a deep learning method for accurate detection of the attack on IoT using MQTT-IoT-IDS2020 

dataset (Ahmed, et al., 2023). To train the proposed model, Deeplearning4j java library was 

used to achieve the result of Bi-flow Accuracy of 99.56% and Uni-flow Accuracy of 99.67%. 

Another study by (Liu, et al., 2021) proposed a feature engineering technique which 

could create a block-based packet payload to detect anomalies and help to spot brute force 

attacks.  

(Jeonghoon, et al., 2021) in their study explained some of the limitations with regards 

to lack of a standard procedure required for log files analysis and detection of security of alerts 

in time. He proposed a model to detect SSH brute force by extracting some kinds of data such 

as IP address. The result showed that the proposed approach can prevent unauthorized IPs and 

prevent access to malicious sites owned by the attackers. 

(Günter, 2022) created Condition Monitoring System (CMS) in his study to monitor in 

real time SSH-brute force attacks observed from anomalies, and fluctuations. This experiment 

was done using a generated dataset. 

One of the core limitations of the anomaly-based detection method is that there is always a 

high chance of false alert triggers.  

2.3 Machine Learning-based detection  

In this approach, machine-learning models are used to recognize patterns of attacks in a system. 

They are used to detect anomalies in system logs, activities and network traffic which could 

indicate an intrusion or a brute force attack. With historical data, these algorithms may be 
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trained with standard libraries to recognize well-known attack patterns, and they can also be 

changed to recognize emerging patterns and attack traits (Alatwi & Morisset, 2022).  

(Yin, et al., 2017) created an RNN model for intrusion detection using KDDTrain and 

KDDTest & KDDTest21 as the training set and the testing set, respectively. Result of the model 

trained shows that the RNN model has higher accuracy when the training set was used.  

Another study (Kim, et al., 2019) developed a CNN model for intrusion detection. In 

this study, the dataset was converted into images to improve the performance of the study by 

(Yin, et al., 2017). The accuracy score increased after the dataset was pre-processed. 

A study by (Karel, et al., 2020) explored ways to fix high FP rate which is experienced 

in some detection methods. The study proposed refined machine learning for detection with 

extended IP Flow extended specifically using a generated dataset. The result showed that the 

Ada-Boosted tree had the highest accuracy of 99.47% followed by C4.5 Decision tree: 99.46%, 

5-NN: 99.39%, Random Forest: 99.38%, Naive Bayes: 92.09%. 

Using the approach of detection via packet level feature set with a generated dataset. 

This dataset consists of 1.8 million number of IP flows, (Jan, et al., 2021) in their study was 

able to identify a distinctive packet-level feature set after training some classifiers and achieved 

a false positive rate of 10^-4. Also, the true positive rate increased resulting to 0.938. The true 

positive rate was higher than the state of art solution, thus can be used as a detection method. 

(Hossain et al., 2020) also proposed using LSTM algorithm (Long Short-Term 

Memory) for detection of brute-force attack with focus on protocols SSH and FTP. The analysis 

was done with CICIDS2017 dataset. The model result when compared to other classifiers such 

as k-nearest-neighbour (KNN) and naive Bayes (NB) showed that the LSTM model delivers a 

superior accuracy of 99.88%.  

Another study by (John, et al., 2021) proposed that a simpler method can be used for 

the detection of brute force attacks using the CIC IDS2018 dataset which is a more recent big 

dataset for network intrusion. The study trained and tested simple Decision Tree models with 

two independent variables to classify the dataset for detection of SSH and FTP brute force 

attacks using the Scikit-learn decision tree implementation (F. Pedregosa, 2011). The result 

was evaluated based on AUC and AUPRC and scored greater than 0.99 and with that they 

concluded using a simple decision tree algorithm can equally be used for the detection of the 

attack.  

A study by (Wanjau, et al., 2021) proposed using a CNN model with CSE-CIC-IDS 2018 

dataset for detecting SSH Brute force attacks and implemented with the use of Python’s 

libraries like TensorFlow and Keras. The performance of the model when compared to the past 

results of some machine learning classifiers like Naive Bayes, Decision Tree and KNN showed 

that the model has a higher accuracy rate and higher precision rate when all features are used.  

 

2.4 Hybrid detection  

Hybrid detection technique is a combination of two or more detection techniques for effective 

brute-force attack detection. This can be a combination of old and new trends of attacks or a 

combination of signature-based and anomaly detection methods (Gupta & Srinivasagopalan, 

2020). 
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  (Fernandez & Xu, 2019) in their study proposed both supervised network intrusion and 

unsupervised network intrusion detection using deep learning method. The intrusion detection 

system was trained with a supervised Deep Neural Network (DNN). An auto encoder was also 

used to categorize and detect attack traffic with unsupervised learning. The results from the 

study showed the intrusion detection systems performed better than the traditional machine 

learning models.  

A study by (Luo, et al., 2021) also developed a hybrid learning technique which consists 

of self-organizing map (SOM) to detect SSH Brute force attacks. The network flow clusters 

were recognized using the SOM. The Association Rule Mining (ARM) algorithm was deployed 

for analysing and interpreting traffic behaviour.  

Another study by (Wu, et al., 2020) proposed a method for threat intelligence detection 

from SSH brute force attacks using a honeypot dataset for experimentation. The study 

distinguished between cross-country and persistent attacks and warned IoT vendors cloud 

providers about stolen SSH keys, allowing them to check the effectiveness of software fixes 

and discourage the evasion strategies with anomaly detectors. The implementation was human 

supervised, and the researchers were able to detect ways by which attackers launch persistent 

large-scale attacks. 

  (Saumya & Tamanna, 2021) proposed a combination signature-based detection 

algorithms and an unsupervised anomaly-based detection method to detect intrusion attacks 

with the aim to lower false alarm rates and improve the detection rate. 

 

Table 1: Related Studies on Brute Force attack detection 

Study/Year Dataset Method Performance 

(Bronte, et al., 2016) Generated Dataset Genetic Algorithm False Positive: 0% 

False Negative: 0% 

(Jing, et al., 2017) NA Signature-based The method is simple and easy to 

implement. 

(Jeonghoon, et al., 

2021) 

Generated internet 

router dataset 

Network data log. It can prevent unauthorized access, but 

it does not respond to real-time attacks. 

(Yin, et al., 2017) NSL-KDD dataset RNN Accuracy:81.29% (KDDTest)  

Accuracy: 64.67% (KDDTest-21) 
(Kim, et al., 2019) CIC-CSE-IDS2018 CNN Improved accuracy results for all attack 

types. 

 
(Hossain, et al., 

2020) 
CICIDS2017 LSTM  Accuracy of 99.88% 

(Wanjau, et al., 

2021) 

CIC-IDS 2018 CNN  

 
(Fernandez & Xu, 

2019) 

CIC IDS 2017,  

ISCX IDS 2012 
DNN TPR = 0.9999 

TFR = 0.0003 

(Jan, et al., 2021) Generated dataset HistGB 

AdaBoost 

Random Forest 

SVM 

Decision Tree 

KNN and GaussianNB 

TPF = 0.938 
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(Wichmann, et al., 

2021) 

Real-world traffic 

from a Tor exit node 

and via synthetic. 

Based on TCP packets. FTPS: F-measure between 85% and 

93%,  

IMAPS: F-measure between 75% and 

86% 
(Ahmed, et al., 2023) MQTT-IoT-IDS2020 DNN Bi-flow Accuracy= 99.56%  

Uni-flow Accuracy = 99.67%  
(Deris, et al., 2019) Generated dataset Snort Successfully detected Snort 

(Karel, et al., 2020) Generated dataset Ada-Boosted tree, 

5-NN, 

Naive Bayes, 

RandomForest 

C4.5 Decision tree 

 

 

   
(Gunter, 2022) 

 
Generated dataset NA Provided a successful monitoring 

system for SSH-brute force attacks 

happening in real time 

(John, et al., 2021) CSE-CIC-IDS2018 Decision Tree classifier AUC & AUPRC scores greater than 

0.99. 

 
(Wu, et al., 2020) Honeypot dataset Human supervised The researchers were able to detect 

ways by which attackers launch 

persistent large-scale attacks. 
(Saumya & 

Tamanna, 2021) 

 

CSE-CIS-1DS2018 

Dataset 

Decision tree 

Logistic regression 

Adaboost  

Naive bayes Nearest 

neighbour. 

 + Isolation tree 

 

 

Overall, more studies are being done for efficient and easier detection of brute force attacks 

with the major work being on machine learning approach. This is because it is currently the 

most successful approach of detection when applied to other attacks intrusions (Bo & Xue, 

2016).  

 

3 Research Methodology 
 

This section presents methodology proposed for effective detection of FTP & SSH brute force 

attack. I also explained the data collection techniques and the evaluation metrics used. This 

research offers the use of deep belief network algorithm to detect Bruteforce attacks, case study 

being on FTP and SSH protocol using CIC IDS2018 dataset as a sample data for analysis 

(UNB, 2023). A comparative analysis with three classical traditional machine learning models 

to ascertain the performance rate with the DBN was also presented. 

3.1 Deep Belief Networks  

Deep Belief Network is a deep neural network classifier that combines multilayer unsupervised 

learning networks called RBMs (Restricted Boltzmann Machines) with a supervised learning 

network called BP (Backpropagation) (WEI, et al., 2019). They are artificial neural networks 

which are made up of layers of RBMs. These RBMs are trained with an unsupervised method 
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to learn the input data which is compressed (Tavanaei, et al., 2019). Each layer of the RBM 

learns a representation of the data which is much more abstract as it receives the input from the 

previous layer. This way, each RBM layer as a result, learns to extract higher-level features 

from the input data. 

3.1.1 Restricted Boltzmann Machine (RBM) 

RBMs are two-layered networks of stochastic units with undirected connections between pairs 

of units in the two layers (Guido, 2018). The two node layers are known as visible and hidden 

nodes with no connections from visible to visible or hidden to hidden nodes. RBMs are among 

the basic blocks of deep belief network and can be used as a generative model as well as a 

classification task. To learn an RBM, design of the training algorithm using the maximum 

likelihood estimation of the parameters. 

 

Fig.1 shows RBM which consists of visible units (m) and hidden units (n). (b) and (c) represent 

the bias for the visible unit and the hidden unit. (wij) is the weight between (hi) and (vj).  

 
Fig. 1. Restricted Boltzmann Machine (Guido, 2018). 

3.1.2 Architecture and Structure of DBNs 

There are two primary layers that make up the DBN architecture. The layers are visible layers 

and hidden layers. These two layers form an undirected graph. The input data is directly 

represented by the visible layer, while the more abstract and higher-level data features are 

captured by the hidden layers. 

 

In general, the DBN is made of multiple layers of networks and each pair of the connected 

layers are RBMs which form a stack around.  
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Fig.2. Architecture of Deep Belief Networks (WEI, et al., 2019) 

 

Fig.2 above represents the multilayer generative structure of a DBN model with the undirected 

connections in the top two layers and directed top-down connections in the lower layers from 

the layer above. The recognition model is represented by the upward arrows, while the 

generative model is represented by the downward arrows. A DBN may be pre-trained very 

effectively using the layer-by-layer unsupervised, greedy learning technique contrastive 

divergence (CD), which is used to train the RBM of layers n in the first phase. The observable 

variables v are sampled by the posterior distribution p(|)1vh after the posterior p(|) hv1 is 

sampled from the first level RBM. Then, the hidden variables h1 are sampled one more using 

the same methodology. Up until a randomly approaching equilibrium distribution, the k steps 

of alternating Gibbs sampling were repeatedly conducted. After then, the second level RBM is 

learned, a sample is computed for h2, and so on through the final layer, using the optimum 

representation of the input vector v, h1 (WEI, et al., 2019). 

The settings of the entire DBN are fine-tuned in the second phase. In the penultimate layer, the 

weights on the undirected connections which are located at the RBM top level are learned by 

adjusting and fitting the posterior distribution.  

DBNs' capacity to autonomously learn meaningful representations of the data is one of 

their primary features. The hierarchical structure allows the network to capture both low-level 

and high-level features in an unsupervised manner. 

3.1.3 Training of a DBN Model  

The training and validation of the DBN model is a crucial step in the methodology of this study. 
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Training a DBN involves two major steps which are. 

• Pre-training (Unsupervised learning method) 

• Fine-tuning (Supervised)  

A. Pre-training 

During the pretraining stage, the RBMs are taught individually in a layer-wise manner. The 

first layer is trained, followed by the second layer on top and third until the last one in a greedy-

like method (Guido, 2018). At this stage, the RBMs learn to model the probability distribution 

of the hidden units given the visible unit by adjusting the RBM weights iteratively using 

optimization methods such as contrastive divergence.  

 

B. Fine-tuning 

Fine-tuning of DBN can be done by backpropagation and SoftMax regression. Back-

propagations are used to apply full network training with major parameters being batch size 

(the number of input samples in each of the group before performing updating the weight) and 

number of iterations (epochs) per tuning (Mazur, 2015). With a small iteration and a large 

iteration, backpropagation produces better finetuning. When using SoftMax regression on the 

other hand, the model determines the likelihood that an input belongs to each class before 

allocating it to the class with the highest likelihood. SoftMax regression is also known as the 

multinomial logistic regression used for handling analysis involving multiple classes (Ping, et 

al., 2018).  

The Equation below displays the conditional probability of Y=l (class l) when given the 

output where X' =stacked Restricted Boltzmann Machines, C = The coefficient matrix, while 

d = intercept. The final prediction lastly is the class which has the highest probability. 

 
Fig.3. Conditional probability equation describing DBN model training (Ping, et al., 

2018) 

3.2 Data Collection Techniques 

For this study, the dataset used is CSE-CIC-IDS2018 dataset compiled and made public for use 

by two Cybersecurity Research and development Units namely, CSE & CIC (Communication 

Security Establishment &Canadian Institute of Cybersecurity) (UNB, 2023).  

The dataset is a combination of several intrusion attack types presented in Table 2. These 

data were gathered for 5 days from 420 machines from 5 different departments. Each attack set 

has over 80 features needed for effective network analysis. 

The dataset was extracted using the CICFlowMeter-V3 (UNB, 2023) and CSV file format was 

downloaded using AWS command line interface (AWS, 2023) and windows command shell.  

The data was grouped into ten subsets for the different days whereby the attack 

scenarios were performed. 

The table below presents the sub datasets, attack types for each subgroup, sample size and date. 

 

Table 2. Dataset Attack types and samples. 
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3.3 Evaluation Metrics 

For any study or research, the results generated are based on the metrics chosen. These metrics 

are used to determine the best outcome of the models.  

For this research paper, the DBN model is evaluated with the following metrics listed (A-D). 

   

A. Accuracy. This metric counts the proportion of cases that were successfully 

categorized out of all instances and the correctness of the data (MAOHUA, et al., 2022). 

It is determined as the proportion of occurrences that were correctly categorized to all 

the instances. That is summation of True Negative (TN) and True Positive (TP) divided 

by the sum of False Positive (FP), False Negative (FN), TP and TN. Below is the 

formular. 

(Hercules, 2018) 

 

B. Precision. This metric counts the proportion of true positive events among all positive 

occurrences. It is computed as the ratio of true positive cases to the total of both true 

positive and false positive instances (Alice, 2015). Below is the formular. 
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C. Recall. The Recall metrics is calculated as the ratio of the number of true positive to 

the sum of true positive and false negative. The formular is given below. 

(Alice, 2015) 

 

D. F1 score. This is a measure of the balance between precision and recall. In other words, 

it is the harmonic mean of precision and recall. The formular is given below. 

    (Md. Alamgir Hossain, 2023) 

 

4 Design Specification 
 

This section provides the description of the architecture used for the proposed detection 

method. The core stages/steps involved in the development and analysis of this study include 

data collection, Feature Engineering, Data pre-processing, performance evaluation, generating 

result of the DBN algorithm. Finally, comparison with other classical algorithms. 

The various stages involved in the implementation of the brute force detection system from 

start to finish are explained in concise order for quality comprehension.  

 

 
Fig.4. Design Specification Flow of the Model. 

4.1 Data Collection  

The first stage of the workflow involves searching and selection of the actual dataset to use for 

the analysis. For this, CSE-CIC-IDS2018 dataset was selected because the dataset has complete 

network features required for this analysis. 
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4.2 Feature Extraction 

Feature extraction involves filtering the dataset and selecting only features represented in the 

forms that can be understood by the machine (Max & Kjell, 2019). Feature extraction before 

model training is essential to avoid ambiguity and resource overload during processing.  

4.3 Data Pre-processing 

This step involves cleaning the dataset, filtering, removing, formatting, and normalizing data 

to ensure it is suitable and has only required columns needed in the right format for analysis 

(Roy, 2022). Duplicates which exist were removed and checks for missing values were also 

carried out. 

Additionally, encoding categorical variables was performed. In the concluding part of this 

stage, the data is split to Test data and Train data. 

 

Test Data: The test data is a subset of the pre-processed data which is used to evaluate how 

the trained model performed. It is a mixture of both attack instances. 

 

Train Data: The train data is the main dataset used to train the model. It consists of labelled 

examples of normal behaviour and attacks. The data is divided into input features such as IP 

addresses, login attempts and corresponding labels such as indicating whether an attack 

occurred or not. 

4.4 Model Training 

In this stage, train data is utilized to train the machine learning model. The model could be 

based on various algorithms. The model will learn to recognize patterns and make predictions 

based on the input features and labels provided in the train data. 

4.5 Evaluation and Result 

After the model is trained, the models need to be evaluated to assess the performance. The 

evaluation is typically done using the test data that was set aside earlier. The trained model is 

applied to the test data, and its predictions are compared to the known labels. Evaluation 

metrics can be used to measure how the model performed. 

Once the evaluation is completed, results will be generated based on the outcome of metrics 

obtained from evaluation.  

4.6 Comparison with Other Algorithms 

In this stage, you can compare the results obtained from different models or approaches. For 

instance, the performance of the proposed method can be compared against different feature 

engineering techniques or machine learning algorithms.  

For this study, below are the three classical algorithms which were trained and compared to the 

DBN model.  

 

A. Random Forest 

Random Forest is an ensemble learning technique which uses several decision trees to produce 

a single result. It is renowned for its resistance to overfitting and capacity for handling large-

scale, multidimensional data (Pande S., 2021). Random Forest is a traditional Machine 

Learning classifier used often for handling classification and regression issues in high-

dimensional data. 
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B. Decision Tree 

Decision tree model has a tree-like structure in which each internal tree node from the root 

represents a question based on a specific feature or sequence of data splitting until a class label 

which is represented on a leaf node is obtained (Bahzad & Adnan, 2021). In general, they are 

well-known as machine learning or data mining technology that collects sets of attribute values 

(input) and produces a Boolean decision as output (Yang, 2019).  

Decision trees are widely utilized in many other domains such as image processing, system 

anomaly detections and network interruptions. 

 

C. Logistic Regression 

This model predicts the likelihood of a binary result based on one or more predictor factors. 

Binary logistic regression is applied when the dependent variable has only two different values 

in which case, the predictor variables may be any type of variable such as either quantitative 

or qualitative (Hilbe, 2015). The model can also be used for multiclass classification with 

techniques like SoftMax regression. 

 
 

5 Implementation 
 

This section provides the actual work done starting from the selection of tools to the different 

processes carried out at each stage of the design specification workflow.  

5.1 Research Tools 

5.1.1 Lab 

My personal computer (HP ProBook) with the following details was used for the analysis. 

o OS: Windows 11 Pro. 

o Version of PC: 21H2 

o System: 64-bit OS, x64-based processor 

o Processor of PC: 11th Gen Intel(R), Core (TM) i5-1135G7  

o Storage: 512 GB 

o RAM size: 16GB. 

5.1.2 Installed Applications 

o AWS CLI. This is an AWS command line tool used for both downloading, configuration 

and execution of OS shell commands (AWS, 2023). It was installed and used with the 

windows command shell to execute the commands for downloading the subject dataset. 

o CICFlowmeter V3 was used to extract the raw files format and convert them to CSV 

file format for further processing (UNB, 2023). 

o Anaconda and Jupyter Notebook. Anaconda is a popular platform for python which 

includes JupyterNotebook, JupyterLab, RStudio, PyCharm etc. (Anaconda, 2023). 

JupyterNotebook is used for creating codes for web developments, visualizations, 

arithmetic programs, and machine learning (Jupyter, 2023). It creates faster and more 

scientific computing and allows for sharing codes with the output. 

o Python. This is used widely for numeric and scientific calculations, web development, 

building applications etc. (Python, 2023) The choice of Python language for the 

development of the study is because of its versatility, flexibility, availability of libraries 

and machine learning/data science frameworks (Svitla, 2022). 
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5.1.3 Python Libraries 

o Pandas. It is one of the foundation libraries in Python used in data manipulation, 
analysis, and visualization (Pandas, 2023). Pandas provides easy-to-use data structures, 
high performance calculations and data analysis framework. 

o NumPy. This is also one of Python’s Library used for data manipulations, data cleaning, 
transformation and provides efficient tool for working with structured data. It handles 
generic multi-dimensional data and provides tools for arrays such as statistical 
operations (NumPy, 2023). 

o Sklearn. This Library package offers a vast selection of supervised machine learning 
techniques and unsupervised machine learning techniques. It provides a simple and 
efficient tool for data mining, regression, classification, and pre-processing (Igor, 
2023).  

o Matplotlib. Matplotlib is used for plotting representations during analysis (Matplotlib, 
2023). 

5.2 Dataset  

5.2.1 Data Collection. 

For the purposes of this study, the sub dataset “Sub Data 2” saved in the site as “Wednesday-
14-02-2018_TrafficForML_CICFlowMeter” in Table 2. with three attack types Benign, 
Brute Force-FTP and Bruteforce SSH was loaded into the JupyterNotebook using the Pandas 
python library. Below is the count of the attack types.  

 
Fig.5. Collected Dataset Labels and count.  

 

A representation of the attack types and count was done using a bar chart created with the 

Python library matplotlib. 

 

 
Fig.6. Bar plot of the Attack Labels and count. 
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5.2.2 Feature Extraction 

The area of concentration on this study is on protocols FTP and SSH. Hence, during the feature 

extraction stage, only attack types-FTP-Bruteforce and SSH-Bruteforce were extracted. Also, 

out of the 80 features, only total of 69 of them were extracted specifically and used for the 

analysis. Below are the features extracted. 

  
Fig.7. Dataset Features Extracted. 

5.2.3 Data Pre-processing 

After extracting the required features needed for building the model, the data was set up for 

cleaning. The positive infinite values, negative infinite values (INF, -INF) and not a number 

(NAN) were replaced with a generic number (999). This is to allow compatibility with the 

algorithms being developed (Christian, 2020). It enabled the data to remain in a consistent 

format allowing for easier manipulation.  

The attack types were also converted into numerical values (0,1) using the python replace 

function. See below the code and output. 

 
Fig.8. Label attack types converted to numerical. 

 

Below is a view of the dataset with features after converting the Label. 
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The features were also normalized to convert the minimum and maximum observable values 

into a similar range and avoid issue of having larger magnitude dominating the model training 

process using the python Sklearn functions Normalizer(), fit() and transform() (Scikit-learn, 

2023).  

Below is the code and the output features after the pre-processing. 

 
Fig.9. Normalized Dataset Features. 

 

The last step of the pre-processing done was splitting the dataset to train data (80%) and test 

data (20%) using the imported Sklearn function train_test_split().  

 
Fig.10. Pre-processed dataset into Train and Test Data. 

5.3 Model Training. 

The DBN model, and the three other algorithms were trained using the train dataset and were 

evaluated using the test dataset. 

Below is the list of the algorithms trained using the trained. 

o Proposed Model: Deep Belief Network 

o Other Algorithms: Random Forest, Logistic Regression and Decision Tree. 
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6 Evaluation 
 

This section covers the experiments and results analysis from training the DBN model and the 

three models (Random Forest, Logistic Regression and Decision tree) using the dataset. The 

final performance result from the DBN model training was also compared to three algorithms.  

6.1 Experiment 1: DBN Model Training 

To train the DBN model, two parameters optimization was experimented during the finetuning 

to arrive at the final performance result. The experiments involve using components of RBM 

stack. Each RBM was taught to reconstruct its input during the pre-training, then the outputs 

were taken as the inputs to produce the output after finetuning.  
 

A. First Parameter Experiment 
 

n_components=400, learning_rate=0.001, n_iter=20, verbose=1 
  
Learning Curve: 

 
Fig.11.  DBN Learning curve of the first experiment. 

 

Confusion Matrix: 

 
Fig.12. Confusion Matrix of DBN model. 
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Result from the experiment showed accuracy rate of 93.4% 

 

Classification Report: 

 
Fig.13. Classification report of DBN Model. 

 
B. Final Parameter Experiment/DBN Model Training 

 
n_components=400, learning_rate=0.0005, n_iter=50, verbose=1 

 

The learning curve for the training is shown in Fig.13. below.  

 
Fig.14. DBN Model Learning curve of the final parameter optimized. 

 

Confusion Matrix: 

 

 
Fig.15. Confusion Matrix of the DBN Model. 
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Accuracy score: 

 
Fig 16. Accuracy score of the DBN. 

 

Classification Report: 

 
Fig.17. Classification report of the DBN Model: Final optimization. 

 

 
Fig.18. Learning Curve of DBN Model Training 

 

6.2 Experiment 2: Other Algorithms 

The same dataset was also used to train RandomForest, Logistic Regression and Decision tree. 

The accuracy results from the algorithms are presented below. Also, the classification report 

for each is displayed. 
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A. Random Forest 

 
Fig.19. Accuracy score and Confusion Matrix.  

 

 
Fig.20. Classification report. 

 

B. Logistic Regression 

 

Accuracy and Confusion matrix score. 

 

 
Fig.21. Accuracy Score & Confusion Matrix 

 

Classification report. 

 
Fig.22. Classification report. 



21 
 

 

C. Decision Tree 

Accuracy and confusion matrix score: 

 

 
Fig.23. Accuracy score and Confusion Matrix. 

 

 

Classification report: 

  
Fig.24. Classification Report. 

 

  

 
Fig.25. ROC Curve of the Algorithms. 

 

6.3 Comparison 

Having trained and evaluated the models to produce the output results, the summary of the 

performance scores can be presented in a comparison table for better illustration. 
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Table 3. AUC score and Accuracy score of the Models 

Model AUC (.3f) Accuracy (Percentage)  

DBN 0.993 99.3% 

Decision Tree 0.858 85.8% 

LogisticRegression 0.992 99.2% 

RandomForest 0.982 98.2% 

 

Table 4.   

Attack type Algorithm Precision Recall f1-score 

FTP Deep Belief Network 1.00 0.99 0.99 

Decision Tree 0.89 0.82 0.86 

Logistic Regression 1.00 0.99 0.99 

Random Forest 1.00 0.96 0.98 

     

SSH Deep Belief Network 0.99 1.00 0.99 

Decision Tree 0.83 0.86 0.86 

Logistic Regression 0.99 1.00 0.99 

Random Forest 0.96 1.00 0.98 

 

6.4 Discussion 

The output results above show the learning curve, matrix and performance scores of the entire 

experiments carried out in the research. During the first experiments of the DBN model 

training, the accuracy of 93.4% was obtained. During the second experiment, the parameters 

n_components and learning rate were optimized which made the model learning perform better 

with an accuracy of 99.3%. This result exceeded that of the three classifiers trained. Random 

Forest 98.2%, Logistic regression 99.2% while Decision tree had the lowest accuracy of 85.8%. 

Also, when compared to the performance of the previous work done with the same dataset 

where CNN was applied on the detection of SSH-Bruteforce, accuracy was 94.3% (Wanjau, et 

al., 2021) This shows that DBN performs very well in detecting attacks. 

 Furthermore, the classification reports presented for each of the models show that the 

precision score, recall score and f1-score of the DBN model is higher than that of 

RandomForest, Logistic Regression and Decision tree. The ROC curve presented showed that 

the AUC score of DBN model is 0.993, Random Forest = 0.982, LogisticRegression = 0.992, 

while Decision Tree 0.858. 

Overall, the design and performance of the proposed DBN model was good. To obtain a high-

performance rate of the model, more layers of the RBM had to be trained with a very low 

learning rate of 0.0005 and higher iteration (50) thereby causing longer period. 

Hence, there is need for more studies to be explored in developing a DBN training mechanism 

with shorter period.  
 
 

7 Conclusion and Future Work 
 

The purpose of this research paper is to demonstrate that Deep Belief Network can be 
successfully trained and applied to detect of brute force attacks. The model learns high-
dimensional representations and it also performs classification tasks which in this case was 
needed while using the dataset CSE-CICIDS2018, a big dataset with multiple features and 
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attack types. The DBN model was pre-trained with a multilayered unsupervised RBM and fine-
tuned.  
 

The result showed that the model performed well and produced an accuracy score of 
99.3% when the parameters were optimized. Furthermore, three classification algorithms were 
also trained using the same dataset. Decision tree scored the accuracy rate of 85.8%, Logistic 
Regression 99.2% and Random Forest 98.2% showing that the accuracy rate of the DBN model 
is better. Therefore, it answered the research question confirming that the deep belief network 
model can perform very well in detecting FTP-Bruteforce and SSH-Bruteforce attacks. Also, 
it performs better than traditional machine learning methods when compared. The limitation of 
this model however is that the training process which involves pre-training stacks of RBM, and 
fine-tuning took longer time when compared to the other methods. 
 In the future, I intend to explore more on pre-training and fine-tuning methods of 
training a Deep Belief Model to optimize the result in a shorter timeframe.  
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