

Methodology for Automated Forensic Web

Scraping of Pricing Information

MSc Research Project

Cybersecurity

Peter Byrne

Student ID: X19164131

School of Computing

National College of Ireland

Supervisor: Raza Ul Mustafa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

PETER BYRNE…………………………………………………………………………………………

Student ID:

X19164131…………………..…………………………………………………………………..……

Programme:

MSc. Cybersecurity………………

Year:

2023………………..

Module:

MSc. Research Project…………………………………………………………………….………

Supervisor:

Raza Ul Mustafa…………..………………………………………………………………….………

Submission

Due Date:

…….………

Project Title:

Methodology for Automated Forensic Web Scraping of Pricing

Information……………………………………………………………………………………….……

Word Count:

10673……………………… Page Count…34…………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

PETER BYRNE…………………………………………………………………………………

Date:

18/09/23…………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Methodology for Automated Forensic Web Scraping

of Pricing Information

Peter Byrne

X19164131

Abstract

This research examines current methods around web scraping. The research proposes

a Python based solution to carry out automated forensic web scraping with the main

objective of scraping e-commerce pricing data. The methodology describes the use of

Selenium and Beautiful Soup 4 libraries with MD5 hashing and automation via use of bash

script and ‘cron’ scheduling in the Linux environment. Six existing Python libraries are

extensively tested and compared with each other, using a sample number of websites

across local virtual machine, Amazon Web Services (AWS), Microsoft Azure and Linode

cloud platforms. The comparison experiment aims to answer the question as to whether

there are significant differences in efficacy, amount of data-scraped and time taken, across

the different test environments and libraries. The final proposed methodology incorporates

two stages; a downloader and a parser, to acquire, store and extrapolate meaningful

information from the website data. The methodology uses a supervised syntactic approach

from a JSON configuration file.

1 Introduction

The objective of this research is to outline an automated forensic methodology for web scraping

pricing data from websites using the Python language.

Web sites on the world-wide-web provide an unparalleled opportunity to collect a large amount

of real-time data as well as collecting and storing data for historical analysis (Diouf et al.,

2019). Data such as pricing information can be collected for analysis by regulatory bodies to

indicate activities such as cartel-type behaviour, price-fixing or false advertising among other

breaches (Harrington, 2006). The process of collecting this data from web sites is known as

‘scraping’ or ‘web scraping’.

The research will first compare and evaluate different approaches of scraping data from web

sites. The research will compare existing methods, including a full comparison of six (6)

different Python web scraping methods across five (5) measurements in four (4) different test

environments using a sample size of fifty (50) web sites. Finally, it will outline a full

methodology for carrying out automated web scraping of pricing information in a forensically

sound manner based on these conclusions.

2

Web-scraping broadly speaking consists of a two-software program process; collecting the data

and analysing the data to extrapolate meaningful information (Farley and Pierotte, 2017). This

methodology will follow these two processes and outline them fully. The research will use

three (3) Python scripts to achieve the objective. The scripts will be divided into a comparison

script (sitetest.py) to evaluate Python methods, a downloader script (scraper.py) to collect data

and a parser script (parser.py) to extrapolate meaningful information.

Figure 1

This paper proposes a forensically sound methodology to scrape pricing information from

chosen website sources using an MD5 (messaging digest 5) hashing algorithm to generate a

value when the source content of the page is acquired and stored. The MD5 hashing algorithm

is a one-way deterministic mathematical algorithm producing a fixed length output, that is

commonly used to verify integrity in computer science (Roussev, 2009).

Automated approaches to web scraping are divided into three approaches; supervised,

unsupervised and hybrid (Uzun, 2020). This methodology will use a supervised approach, in

that a manual JSON configuration file is required to parse the end results for each site. The

reason for this approach is because website architecture can change periodically, and as such

code changes may be necessary (Khder, 2021).

This research paper will begin by examining the state-of-the-art in the literature review, in

related work, discussing the various methods currently in use. The research methodology will

outline the parameters of the research experiment comparing the efficacy, time and amount of

data scraped by six (6) existing Python methods across four (4) different test environments.

The design specification will outline the process flows of the comparison script, downloader

script and parser script. Implementation will show the outputs and operation of the final web

scraper downloader and parser. The evaluation section will show the results of the comparison

experiment and evaluate the results of the final web scraper. Finally, there will be a conclusion

and suggestions for future work in the area.

2 Related Work

The importance of web scraping for data for the purpose of price analysis is widely

acknowledged in academic papers (Upadhyay et al., 2017).

There are many suggested tools and methods suggested to achieve the goals, but broadly

speaking they are divided into the following methodologies: the use of browser extensions, the

3

use of third-party tools or services or the use of Python scripting (Khder, 2021). The

methodologies can then comprise of ‘web crawling’, which involves ‘spidering’ or accessing

all or many of the web pages present on a web site, or a targeted acquisition using a DOM

(document object model).

2.1 DOM Scraping

Targeted proposals for web scraping in the literature do not consider the forensic element of

the acquisition and are concerned only with access to the data. Examples of this can be seen in

proposals for DOM scraping (De S Sirisuriya, 2015). This refers to the Document Object

Model, which is defined by Mozilla as “… the data representation of the objects that comprise

the structure and content of a document on the web”1. Methods proposing use of DOM

scraping usually propose that the only data collected are the required data fields from the

website source. This means the processing and analysis of the data is done during the

acquisition phase. This method is very efficient in terms of data storage, but there are some

problems with the method. There is no forensic element inherent in the method, so any data

obtained is unverifiable and must be taken at face value. Another problem with acquisition-

stage DOM scraping is that if there is an issue with the acquisition, there is no option to

reprocess. The data acquired during the scrape is final. The methodology proposed in this paper

will keep a copy of the webpage HTML, and this data can be parsed or analysed at any stage

and in different ways but primarily using a post-acquisition DOM method to parse. The

Beautiful Soup library is a commonly recommended and supported Python library which

performs DOM parsing (Zheng, He and Peng, 2015).

2.2 Forensic Acquisition

The lack of a forensic component during the acquisition phase is a serious consideration for

pricing information from a regulatory or criminal competition angle. Potential competition

offences such as price signalling or cartel behaviour can be shown with multi-variant analysis

which includes pricing information (Harrington, 2006). In such a case, in order to satisfy the

burden of proof, some evidence of the forensic acquisition of the pricing information may be

required. There would be issues with presenting scraped data without a forensically acquired

copy of the HTML code with an accompanying MD5 hash value (Roussev, 2009). Most papers

describing web scraping fail to consider a forensic component to the acquisition, however there

has been strong work done on forensic acquisition and analysis of web pages which are directly

applicable to an automated large web scraping approach to analyse pricing information (Vidya,

Saly and Balan, 2022).

1 https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

4

2.3 Browser Extensions

Proposals for scraping web pages using web browser extensions are easy to implement,

however they usually do not have robust automation or scalability capabilities, so are not as

effective as the proposed methodology of this paper. The extension is maintained and

developed by a third party, and over time some extensions are no longer supported. In a 2019

paper ‘Web Scraping: State-of-the-Art and Areas of Application’ (Diouf et al., 2019), a number

of web browser extensions are listed:

Spider can no longer be found as an extension, so could not be evaluated. It is described in the

paper as showing a list of elements for which data can be retrieved for. This would mean that

it was a manual DOM scraper, and as such would be time-consuming and unsuitable for

automation or forensic acquisition.

Data Scraper2 is an extension that requires subscription or allows 500 pages to be scraped per

month. The user interface is very straightforward and there are multiple different scripts and

customisation options available. It is a manual process however and is a DOM scraper that

saves the target to a CSV or Excel spreadsheet file.

Agenty3 is a visual DOM selector for scraping element data from a web page, which is easy to

use, but again is a DOM scraper which is geared towards targeted scraping. There is an option

for downloading full web page code, however this option uses the ‘curl’ method which does

not execute JavaScript code on the page, and as a result may not acquire the full content4. The

proposed methodology in this research uses a method that can process and interpret JavaScript.

Data Miner and Cloump U-Scraper Plugin for Chrome were no longer available. This

demonstrates a weakness with using browser extensions which can lose support from

developers, and which tend to utilise the DOM model for targeted acquisition of data.

2.4 Python Scripting

The Python scripting method can be broken down into the use of several different

methodologies and libraries which are used when the approach is to develop a web scraping

application (Milev, 2017). Some websites provide an application programming interface (API)

which provides direct access to structured data (Lawson, 2015), however most websites do not

provide an API, and scraping data via an API does not address the digital forensics aspect of

acquiring forensically sound data. Similarly, methodologies which are focused on speed and

efficiency target only the relevant or required data and eliminate or omit the extraneous data

(Uzun, 2020). A number of libraries are available in Python which can acquire the complete

2 https://dataminer.io/
3 https://agenty.com/
4 https://everything.curl.dev/http/post/javascript

5

web page source code. Some libraries such as the ‘Requests’ library or the ‘Urllib’ library will

make HTTP (hyper-text transfer protocol) requests and obtain the HTML (hyper-text markup

language) code of the page (Chapagain, 2019). This can be problematic when web page content

can be generated by JavaScript running on the page. Having decided that an automated and

forensically-sound web scraping methodology is currently best achieved using Python

scripting, the next challenges to address are issues like dynamic content loaded via Javascript,

pagination, cyber-security applications including heuristic based detection to prevent

automated access and cookies (Upadhyay et al., 2017). For this reason, if choosing Python

scripting for the web scraping methodology a library that processes and interprets JavaScript

will yield better results. Newer libraries, such as the Selenium library, which is chosen for the

recommended methodology, utilise actual web browsers to access and scrape the data. This

allows Selenium to use a ‘webdriver’ to interact with a web-browser in order to process and

interpret JavaScript and return a better amount of data from the page (Nyamathulla, Ratnababu

and Shaik, 2021).

There are third-party service companies which offer web scraping, however the issues arising

from these are that lack of forensic process (DOM model again), chain of custody (Prayudi and

Sn, 2015), potential loss of confidentiality and cost. In the case of regulatory or law

enforcement actions in court, presenting evidence provided from a third-party source which

may be located outside of the jurisdiction can be problematic and may be disputed without a

physical witness from the third-party company to give evidence as to how the data was

obtained.

To summarise, the state-of-the-art in relation to Web Scraping focusses heavily on DOM

scraping of targeted data. This approach is a data-mining approach and does not lend itself to

the forensic method which may be required for regulatory or law enforcement proofs. The

proposed methodology of this paper outlines a method for forensic acquisition of entire web

pages, along with screenshots and parsing of the acquired data using the DOM model.

3 Research Methodology

The research methodology was both comparative and experimental. In evaluating current

methodologies for scraping website information using Python, a comparison script sitetest.py

was developed which identified six (6) commonly used and recommended libraries for web

scraping in Python. Each of these was written into a separate Python method and the

comparison script carried out five (5) measurements of a sample of fifty (50) websites. The

sample was comprised of the top 50 websites in Ireland, as listed by ‘Similarweb’, an industry

standard website metric service. One of the entries in the sample set was no longer a valid URL

and was therefore of no value to the test. This entry was replaced by a top Irish retailer. Ranking

by web traffic was not a requirement for the research, as any random sample set of websites

could have been used. The comparison script consisted of a python method for each of the

following:

6

• Wget

• URLLib

• Requests

• Selenium

• Pyppeteer

• Python HTTPLib2

Each method was passed the same inputs and was run in an asynchronous mode to ensure that

the parameters for each method were as equal as possible. Each method returned three metrics;

the efficacy of the method measured by size of downloaded web page, the time taken to scrape

the page, and the size of the returned content.

Figure 2

In the comparison script, each method starts a timer when called, and has the three (3)

dictionaries initialised to store the metrics for each web site. The websites in the list are then

iterated through sequentially and downloaded where possible. This ensures that testing is as

equal as possible. The output of the script then shows the efficacy rate for each method, the

time taken for each method, the individual URLs with a PASS or FAIL, along with the size of

the retrieved website source code. The comparison script was run across four (4) identically

configured test environments on a schedule at the same time over a period of five (5) days. The

results of each day were averaged to account for any anomalies caused by extrinsic factors, and

to provide a more accurate result than a single sample. Increasing the sample size from fifty

(50) and the number of measurements from five (5) could be considered to provide a more

reliable result, however with the time constraints of this paper it was felt that the sample size

and number of measurements was sufficient to give a good overview in order to make the

decision on which method to use for the proposed web scraping methodology.

7

3.1 Control Group

A failure of efficacy on a given sample or samples would be expected to lower the size and

time metrics. As the efficacy rate was a variable which could influence other variables, a control

group of twenty (20) websites was established. This group showed 100% efficacy across all

test environments and methods, in other words the variance of efficacy was removed. This

allowed direct comparison between the methods and between the test environments for average

amount of data downloaded and time taken. The control group results were presented alongside

the main sample group for cleaner results and to compare against the ‘real-world’ scenario

tested with the larger sample size.

3.2 Measuring Efficacy

The hypertext transfer protocol (HTTP) is an application layer protocol which web browsers

use to request and render web pages under the TCP/IP networking protocol. Requests are made

through HTTP and response codes can be returned based on the results. A successful request

for a web page normally returns a HTTP code of 200 (Fielding et al., 1999).

Initially the HTTP response code 200 rate of test sites was used as a metric to measure efficacy

of each method, but this was found to be unreliable. In certain circumstances, a third-party web

service such as CloudFlare would return a HTTP response code of 200 but return a small

CloudFlare holding page instead of the actual web page. The purpose of this is to mitigate

against automated attacks, such as DDoS (distributed denial of service attacks) on the web site.

Measuring efficacy in terms of HTTP 200 in such a case would result in a false positive.

Another issue encountered with using the response code as a metric was that the Selenium

method currently does not have a method to obtain a HTTP response code. As a result, to

measure the rate of efficacy of each method, the sizes of the webpages obtained were used. The

threshold for this test was 1000 bytes of size for content. There are limitations with using this

as an indicator of success, and the different methods can return different sized code for the

website, depending on methodology. Some methods return only the bare XML/HTML code

while others execute scripts on the web page and return additional page source code from these

scripts.

As the methods are never exactly like for like in terms of operation, the evaluation only

included a fast way to screen out non-HTTP 200 returns and CloudFlare pages. More analysis

could be done to ensure a more accurate efficacy return by analysing the downloaded pages to

ensure they are sufficient. A way of doing this could be to get the size of the page source code

manually and compare to the returned results. In order to mitigate against making a false

determination based on the efficacy, I also measured the sizes retrieved from each page. The

sizes were averaged for each method under each test environment, and this allows us to make

a determination based on which method obtains the most data, with the method returning the

most data on average being more effective than the method which returned less data.

8

The timeout supplied to each of the testing algorithms had an impact on the efficacy rate, with

a timeout of 30s supplied on each method. This allowed for the script to open and render the

pages as well as downloading the data. Initially a lower timeout was used on all algorithms

with lower efficacy noted. In the final web scraper proposal, a 30 second timeout will be

recommended and used as a result of this testing.

3.3 Measuring Time Taken

When each method is called in the evaluation script, a timer is started which completes at the

end of the iteration of samples for that method. This will provide an accurate record of the time

taken for each method. It should be noted that there can be cases where the efficacy can be

lower, and this can skew the timers positively or negatively depending on the type of failure

preventing the page from being downloaded. For example, a HTTP 404 error or a HTTP 200

CloudFlare type small page return could result in a lower recorded time for that page.

Conversely, a HTTP 302 redirect error may result in a longer recorded time. As such the timers

can only be directly compared in cases where both methods have the same efficacy rate. In

cases where the efficacy rate is different, for the aforementioned reasons, the timers can be

used as a guide only.

A more scientific evaluation of time taken is carried out and presented using the control group.

The purpose of this control group was to remove the effect of variability of efficacy on the

results. The average amount of data downloaded for this sample would also have to be

considered along with the average time taken measurement as the average size of data result

shows a strong positive correlation (+0.68) with the average time taken. As such both these

metrics will be presented together.

A potential improvement to the measurements could be to run each method separately and

concurrently. This ensures that the variability of time and changing environment are mitigated

even further but would mean that six (6) different methods would have to be run at pre-

determined initialisation times across each test environment for the number of measurements

required (5). As it stands, the tests are run sequentially, so the variable of time for each method

will affect the start time of the next method. This essentially means that method 2 to method n

will be evaluated on each test environment at slightly different times depending on the amount

of time each method takes to complete on each test environment. I would expect the differences

caused by this to be very negligible, however the effect should be noted due to the internet

being a test environment in flux.

3.4 Measuring Amount of Data Scraped

The comparison script logged the size of each web page that was scraped in the experiment.

The different methods used different methodologies to download the web page source, some

making simple HTTP requests for HTML code, and others rendering the page and processing

9

and interpreting JavaScript into the downloaded page source. To account for this behaviour the

acquired webpage size was obtained and used in conjunction with rate of efficacy. The size of

all of the pages obtained by method and in each test environment was averaged over each

measurement. The interpretation of the average amount of data scraped by method was that

more data was better than less data, as it meant a more complete amount of the page data was

scraped. This was also run across the group of twenty (20) 100% efficacy websites, so that the

data amount was not influenced by the rate of efficacy. Only web page source code was

downloaded and measured, and did not include any graphical elements.

3.5 Test Environment

The test environment used was a Ubuntu Server 22.04-2 LTS environment, configured with 1

processor and 2gb of RAM. All other test environments were a type-1 hypervisor on the cloud

platforms and Proxmox Virtualisation Server (v8.03).

An issue presented itself when evaluating the experiment results from the Local Virtual

Machine, in that there were anomalous failures found in efficacy across the control group where

100% efficacy should be expected. This issue seems to have been caused by running the Local

VM as a type-2 hypervisor, and when the experiment was re-done, using a type-1 hypervisor

the data was as expected. This demonstrates the importance of using Type-1 hypervisors for

virtualisation experiments.

The next stage of the evaluation was to measure the speed and efficacy using the same script

across three different cloud service providers. The three (3) providers used for testing were

Amazon AWS, Linode and Microsoft Azure. All three systems were configured in the same

way as the local virtual machine test environment, using the same operating system, software

versions and allocated resources. The purpose of the cloud test environments was to evaluate

whether there were significant changes to efficacy or time taken using the methods, since

current literature often recommends use of cloud environments due to ease of use, high

availability and scalability of resources.

The comparison script, downloader script and parser scripts were programmed using Python

3.6 and designed to run in a Ubuntu 22.04-2 Server environment. The web scraper can be

converted to run in a Windows environment; however, Ubuntu Linux was chosen as part of the

recommended methodology because it is an open-source operating system with proven

reliability and security. The environment also includes supporting BASH scripts to run the web

scraping python script and to carry out status checks. In built Linux ‘cron jobs’ are used to

schedule the web scraping, which was configured to run at the same time each day across each

platform.

During testing, the most important consideration for the effective use of the scraper was RAM.

This is because the Selenium library uses a webdriver to essentially run a browser and open

the target web page, which can require more memory. The web scraper makes use of

10

parallelisation and benefits from multiple processors or cores, but again this can result in

requiring more RAM due to opening multiple pages simultaneously. The web pages are opened

only while they are being acquired, so the requirements are still quite low. A single scraping

project can be done using 2gb of RAM, however 4gb would be recommended with a quad core

processor. In the event that useable RAM is fully utilised then the scraper environment can be

configured to use a swap file which would result in slower performance. This was an extra

variable affecting results, and as such swap files were not used and the testing never utilised

all of the 2gb of RAM provided.

The internet is not a sterile lab environment and at various stages in testing, slightly different

results could be observed at different times. This can be caused by website maintenance or

infrastructural issues. For this reason an average for all values over the five (5) measurements

was calculated and used. An average of ICMP ping was recorded and calculated to give an

indication of network latency in the test environments when the measurements were taken.

The ping tests measuring network latency relate to network infrastructure provisioning and

bandwidth fluctuations which were extrinsic and outside of the control of the experiment.

3.6 Browser User Agent Used

Web browsers send a ‘user agent’ to the webpage as part of the HTTP request. This user agent

is basically version information of the browser making the request. The user agent used for

both the method evaluation and the final web scraper was :

 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36

This was the most popular user agent at the time of the test, with the Chrome web browser

being the most popular web browser in use globally5. The webdriver used by the Selenium

method was Chrome version 114.0.5735.90.

3.7 Web Scraper Downloader

In order to select a web site for testing of the web scraper, I checked the ‘robots.txt’ for an Irish

retailer. The robots.txt is a configuration file used by web sites to prevent automated ‘bots’

from indexing the web site using web crawling or spidering techniques (Jha et al., 2014). The

proposed methodology does not use a web crawling technique, as it simply visits a single page

and takes a copy of the source code along with a screenshot. As the site would be scraped for

a prolonged period, I checked the robots.txt and selected one that allowed indexing. I used a

browser extension to check the robots.txt, although the comparison script also contains a

method which was coded to check the robots.txt of sites and display them.

5 https://gs.statcounter.com/browser-market-share

11

The web scraper downloader was used to test functionality on this site using a test environment

of Ubuntu Server 22.04-2 with 4gb of RAM and 1 x 4 Core Processor. Outputs from the

downloader were generated by running the parser across the downloaded pages and outputting

to a TSV (tab-separated value) file.

4 Design Specification

The research evaluated six different methods to download web pages. Based on the findings of

this research a web scraper solution was developed. All scripts were written in Python 3.6, and

there were supporting BASH scripts developed to run and maintain the web scraper.

The web scraper solution is comprised of two main components, a downloader and a parser.

The downloader requires an input list of URLS, and the parser uses data structures contained

in a JSON configuration file to parse the data. The solution is modular in design as much as

possible to allow for easier development.

4.1 Comparison Script Design

The comparison script is called sitetest.py and requires an input text file containing a single

URL without qualifier per line. When the script is called, it will check the length of the

arguments passed to it, and if they are not correct the usage of the script is displayed. The next

step is to check that the input file is present, and then the file is read into a list and sorted

alphabetically. The next step is to set the web browser user agent which is used when making

requests for web pages. The initialisation phase of the script is :

Figure 3

12

Once initialised, each of the six (6) methods for downloading the page is called sequentially.

The parameters passed to each method and the outputs taken from each method are the same.

Each method is passed the input list of URLs and the user agent. Each method then returns a

results dictionary which contains the response (efficacy) measured as a PASS or FAIL, the

content itself, the size of the content for each URL in the list. It also returns the time taken for

the method to complete.

Figure 4

4.2 Comparison Script Libraries

A full list of versions used for Python and dependent libraries is generated in a directory

containing the comparison python script. The methodology to generate the list of required

dependencies was to use the following pip3 command:

pipreqs --force

This command generates a file named ‘requirements.txt’ which contains the following list of

libraries and versions required for the comparison script (sitetest.py) to function:

httplib2==0.20.2

pyppeteer==1.0.2

pyppeteer_stealth==2.7.4

13

Requests==2.31.0

requests_html==0.10.0

selenium==4.10.0

wget==3.2

These libraries can be installed in the test environment by running:

pip3 install -r requirements.txt

To automate setting up a test environment for the comparison script, a small installation bash

script was run. This bash script contained the following:

export PATH=$PATH:~/.local/bin

sudo apt install python3-pip

pip3 install pipreqs

pipreqs --force

pip3 install -r requirements.txt

sudo apt-get install -y libgbm-dev

sudo apt install -y gconf-service libasound2 libatk1.0-0 libc6

libcairo2 libcups2 libdbus-1-3 libexpat1 libfontconfig1

libgcc1 libgconf-2-4 libgdk-pixbuf2.0-0 libglib2.0-0 libgtk-3-

0 libnspr4 libpango-1.0-0 libpangocairo-1.0-0 libstdc++6

libx11-6 libx11-xcb1 libxcb1 libxcomposite1 libxcursor1

libxdamage1 libxext6 libxfixes3 libxi6 libxrandr2 libxrender1

libxss1 libxtst6 ca-certificates fonts-liberation

libappindicator1 libnss3 lsb-release xdg-utils wget

wget https://dl.google.com/linux/direct/google-chrome-

stable_current_amd64.deb

sudo dpkg -i google-chrome-stable_current_amd64.deb

sudo apt -f install

This script basically installs required python libraries, operating system libraries and

downloaded and installed the latest Google Chrome browser.

4.3 Qualitative Considerations

There are other considerations in relation to choosing a web scraping methodology apart from

the quantitative metrics uncovered in the research. The features of the libraries and support

available also have a qualitative weight.

The qualitative considerations of the web scraping methodologies can be seen in two of the

available methods; namely the Selenium and the Pypetteer methods. Both methods are more

14

difficult to detect as originating from an artificial or automated environment. This can be

observed from the efficacy rates and is a result of the methodology of using real web browsers

in order to make the HTTP request and access the web page. This is the most future proof

method for ensuring high efficacy of web scraping in the face of increasing cybersecurity and

anti-scraping technologies being deployed to prevent automated scanning and attacks on

websites. These methods also allow passing of extra testing parameters and functionality such

as capturing screenshots of websites and interacting with user inputs or buttons on the site.

The ability to screenshot a web page can be useful to lend weight to the forensic methodology

of hashing the website source code. Having the ability to run and scrape JavaScript code on the

page is essential to obtaining the relevant data. Failure to obtain the JavaScript code could

result in failure to obtain data such as pricing information on the page. Cross browser

compatibility refers to the ability of the method to use different browsers such as Firefox.

Browser automation is another important feature and refers to the ability of the method to

interact with the page by activating and interacting with controls on the page.

The following is a brief list of qualitative considerations for each method:

Table 1

Method Screenshot Javascript

Code

Cross

Browser

Compatibility

Browser

Automation

Wget No No No No

URLlib No No No No

Requests No No No No

Selenium Yes Yes Yes Yes

Pyppeteer Yes Yes No Yes

HTTPlib2 No No No No

The newer generation methods of Selenium and Pyppeteer have clear advantages over the older

HTTP request methods. The cost of the added functionality is more memory and processor

usage and longer time to scrape each page. Selenium, however, has more support and a broader

user base, due to the power of its features and the fact that Pyppeteer is an unofficial Python

port of a JavaScript browser automation tool called ‘Puppeteer’.

4.4 Hashing Algorithm

Messaging Digest-5 (MD5) is a 128-bit hashing algorithm that is commonly used in computing

and digital forensics to verify integrity of a file. A hashing algorithm is a one-way deterministic

mathematical algorithm with a fixed length output. A hashing algorithm incorporates an

‘avalanche-effect’ whereby any change to the input will result in a vastly different fixed-length

output. In this way they can prove that no binary-digit (bit) in a digital file has been changed.

The MD5 hashing algorithm is used to ensure integrity and prove forensic acquisition for this

15

web scraping methodology. The hashlib library for Python was used in the web scraper, and

the resulting hashes were cross checked and verified with md5sum in Linux.

4.5 Downloader Libraries

The web scraper downloader for the proposed solution uses the following libraries:

pyppeteer==1.0.2

pyppeteer_stealth==2.7.4

Requests==2.31.0

requests_html==0.10.0

selenium==4.10.0

undetected_chromedriver==3.4.7

webdriver_manager==4.0.0

4.6 Downloader Design

The downloader takes the input URL and creates a unique MD5 hash value to refer to it. The

downloader stores the table of URLs and MD5 values in a file called cipher.csv which it can

use to reverse the MD5 to the original URL. The original URL is not used as a reference as it

can be too long in length and can also contain special characters. The parser file can use the

cipher.csv file to reverse the URLs back to original if required. Here is an example of the

structure of the cipher.csv. It consists of only two (2) tab separated columns, the first containing

the MD5 hash value and the second is the original URL.

Figure 5

Here is a process flow for the initialisation of the downloader script (scraper.py).

Figure 6

16

First the script will check the arguments are correct, the script takes an input list of URLs, in

the same way as the comparison script. The downloader will then start logging of all activity,

which is essential to check that the scrape has been successful and create alerts for unsuccessful

attempts. The script uses a start time randomiser so that the scrape is not carried out at the same

time every day. This can be customised to be random within a range of values. Then a timer is

started to keep track of how long the scraping should take.

Next the downloader will check internet connectivity and log or alert if there is no connection.

The webdriver version is checked or updated and then loaded to enable the Selenium library to

carry out activity on the target web site. This is an important step, as the user agent and other

parameters are passed to the webdriver. The following shows the options added to the web

driver to maximise the chances of successful web scraping.

Figure 7

The parameters that are passed to the browser, via the use of chrome_options.add_argument()

commands can be easily tailored and customised for use with Selenium. This is a very powerful

feature as it allows the browser to be changed and even browser profiles to be created to ensure

that the target web site does not block the scrape. An explanation of each of the features shown

above is beyond the scope of this section, but they are designed to make the browser appear

more natural and human. A scrape of the site ‘bot.sannysoft.com’ will return a list of browser

properties passed to a website in order to profile the browser through browser fingerprinting or

identify bots. The list of arguments added in the above figure are used as during the

experimental stage of development they were found to have high efficacy.

17

Figure 8

Once the downloader has finished initialising, the second phase commences. The script first

checks if there is a downloaded file called ‘output.html’ present for the target URL. If the file

is not present, then it will attempt to download the target. The reason for this step is that it

allows efficient use of more than one iteration of the script. It is recommended to run the

scraping script three (3) times each day, by scheduling a cron-job, to mitigate any failures that

may occur such as the site being offline or the internet connection having a problem at the time.

The second and third iterations of the script will only look to acquire those URLs that have not

already been acquired, which is more efficient and less intrusive on the web sites.

The downloader uses the Selenium library and the webdriver to download the source code of

the target web site. The page is rendered using the web driver for Chrome and the content is

written to output.html in the correct folder and subfolder. A graphical screenshot of the page is

also taken at the time and then all cookies are cleared. The activity is entered into the log files.

Next an MD5 value is generated for the output.html file and saved as ‘hash.txt’ in the same

folder as the output.html file. Time of acquisition is not added as this will be present in the file

creation date and time metadata of the output.html file.

Having attempted to acquire the content of the target URL, a health check is done to check

recursively that an output.html file exists for each URL in the list. If a file exists then it is

logged as a PASS, if the file is not present it is logged as a FAIL. A failure could occur when

a web page is no longer online or when the access is blocked. The contents of the health check

are logged, this is essential for determining success of the operation each day.

4.7 Parser Libraries

The parsing script for the proposed solution requires only the Beautiful Soup 4 library:

beautifulsoup4==4.11.2

18

4.8 Parser Design

The parser design process flow is as follows:

Figure 9

The parser first carries out a recursive scan of the folders and subfolders, looking for the

presence of the output.html files to parse. Once an output.html file is found it is added to a list.

The parser then reads the output.html files from the list and uses the Beautiful Soup 4 library

to create a dictionary of the tags and data found in the output.html file. Next the parser reads

the JSON configuration file containing the tag entries for each root URL address. If the root

URL is found in the JSON then the parser parses the data from tags in the JSON record and

outputs the information onto the standard output. Outputting to the standard output (STDOUT)

allows for greater flexibility in Linux for redirecting to a log file or carrying out user operations

on the data before redirecting (eg. Grep, Sed, Awk commands). The output to STDOUT is by

default a TSV file separated by tabs. The design of the TSV by tabs allows easy importing into

data programs like Excel and R Studio.

5 Implementation

A BASH script can be used to install all the required dependencies onto the Linux virtual

machine, this includes installing the python libraries required.

Evaluating the different methods was carried out by means of using a ‘cron’ scheduler built

into the Linux operating system to run an executable bash script containing the following

commands:

#!/bin/bash

Get the current date

date=$(date +%Y-%m-%d)

Run the Python script and redirect output to a logfile

cd ~

19

python3 sitetest.py top50.txt > "${date}_logfile.txt"

python3 sitetest.py top20.txt > "${date}_top20logfile.txt"

ping -c 100 8.8.8.8 > "${date}_ping.txt"

rm -r *wget*

This bash script would get the current date and use it to name the logfiles needed. Metrics are

obtained via log files output from the Python 3.6 comparison script (sitetest.py). There are three

(3) logfiles obtained, a logfile of URLs with a sample size of 50, a logfile of a sample size of

20 used for the control group and a logfile with ping results. Design and use of the script in this

form would make it easy to configure for a larger number of measurements or platforms. The

final line of the bash script is for housekeeping and removing of the files saved by the Wget

method.

Figure 10

5.1 Comparison Script Log Files

The output of the log files is plain text, tab separated values for easy use with spreadsheet

software or other data analytics (R Studio etc.). The following is an example of the log files

obtained by the sitetest.py script.

******** Python requests method.

Time Taken = 25.565601348876953 seconds

Percentage of web pages downloaded successfully: 98.00%

www.aib.ie PASS 256770

www.amazon.co.uk PASS 7102

www.bbc.co.uk PASS 654339

www.bbc.com PASS 497190

www.bet365.com PASS 3726

www.booking.com PASS 1174160

www.daft.ie PASS 631032

www.dailymail.co.uk PASS 3346002

www.donedeal.ie PASS 766576

20

The output shows the time taken for each method, along with the efficacy rate, then for each

URL in the input list the script records the URL, the efficacy and the size of the downloaded

web page source code.

The software component of the downloader is a Python script called webscraper.sh that accepts

an input text file consisting of a series of web addresses (URLs). The following is a list of

processes which are followed in sequential order by the downloader:

Figure 11

The first task performed by the web scraper is to check the input parameters are correct and

that the input file is present. If the correct number of arguments are not passed to the script, it

will print the usage to the standard output and terminate.

The web scraper will next start logging all activity of the scraper, starting with the timestamp

of commencement, and the status of the network connectivity. The log file is located in a

subfolder under the main project folder and is stored in plain text. Log files are essential to

track the success of the web scraper and identify any issues that arise. The log file could be e-

mailed on a schedule to aid in monitoring.

Network connectivity is checked by accessing a Google server. If network connectivity is

missing then the web scraper will terminate, and an alert can be sent.

The webdriver is an API used to automate functions in a web browser. The purpose of the API

is to test website functionality and web applications. The Selenium library used for the web

scraper to acquire the web site data utilises a webdriver, and as such, the webdriver is loaded

to memory in order to be used later.

The web scraper creates a directory structure such as the following:

21

/Scraping_Project/<root domain>/<date>/<MD5 hash of URL>/

The content of the web page is downloaded and stored as a file called ‘output.html’. During the

digital forensic part of the process, a log file named hash.txt is stored alongside the content. A

graphical screenshot of the page is stored as ‘screenshot.png’. The output of the downloader is

as follows:

Figure 12

5.2 MD5 Hash

As discussed in Design Specification, the web scraper uses the MD5 hashing algorithm to

ensure forensic acquisition of the web page. The method used to generate the MD5 hash value

for the downloaded web code, and the URL to generate a unique folder, is the Python library

hashlib.

5.3 Parsing the Data

The methodology for parsing is to use a supervised syntactic approach. The supervised

approach means that the elements from the web page containing the desired data to be scraped

must be specified. In order to store the elements a JSON (JavaScript Object Notation)

configuration file is used to contain a list of root URLs and a list of the element names to parse

for the data. Once the entry is found in the JSON file the web scraper will recursively scan

22

through all folders and output.html files found therein. The structure of the JSON configuration

file is as follows:

Figure 13

The JSON container is named webElements and consists or a data structure containing the

name of the root website DNS as the primary key. The data structure then consists of five (5)

lists containing three (3) items each. The first list is the elContainer (element container) and is

used to identify ‘containers’ in the web site source code. Containers are used when there are

multiple items using the same structure on a page. An example of this would be a page that

shows a list of fifty products. Each one of the products would usually be in a container that

uses the same structure and repeats fifty-times. The parser will first recursively scan through

each output.html file contained in the subfolders of the project. When it finds a valid

output.html, it uses the Beautiful Soup 4 (BS4) library in Python to create a Python dictionary

of the tags from the web page source code. We can then use beautiful soup to search the

dictionary for these tags and display the value contained under the tags in the web page source

code.

The parser outputs by date, hash of URL, folder location and elements 1 through 4 as defined

by the JSON. By default for price scraping purposes these are set to Brand, Model, Price,

Previous Price.

Here is an example output from the parser:

Figure 14

23

The first column is the date of the scrape and is the primary key for which the output is sorted.

The second column shows an MD5 hash representing the URL. Column three shows the

location of the files on the filesystem, column four shows the brand, column five shows the

model, column six shows the current price, and column seven shows the previous price. All of

this data was obtained from scraping open-source websites and extracted from the page source

code.

6 Evaluation

The data found during the five (5) measurement comparison of the six (6) methods on a sample

size of fifty (50) across the four (4) test environments will be presented. The totals will be

shown first to give an overview and the results will then be broken down by each test

environment. Control group results on the sample size of twenty (20) removing efficacy as a

variable will also be presented and form part of the dataset.

6.1 Total Efficacy Rates

The following efficacy rates were found across the different environments. The table is

presented first, followed by graphs for visualisation.

Table 2

AWS Linode Azure Local Avg

Wget

70.40% 69.20% 69.60% 70.80% 70.00%

URLLib

82.40% 80.40% 82.40% 82.80% 82.00%

Requests

98.00% 98.00% 98.00% 96.80% 97.70%

Selenium

99.60% 99.20% 99.60% 100.00% 99.60%

Pypetteer

97.60% 98.00% 98.00% 97.20% 97.70%

HTTPLib2

93.60% 91.60% 93.60% 93.60% 93.10%

The x-axis shows the methods, with each bar showing a different test environment, and the y-

axis shows the efficacy rate in terms of percent.

24

Figure 15

We can see when measuring efficacy that the Selenium method has the highest success rate at

99.60%. In fact, the Selenium method scored above 99% consistently across the three cloud

test environments over the five measurements. The Wget method showed the lowest efficacy

rate of the methods tested at 70%.

6.2 Total Average Data Scraped

The average data obtained over the course of the test in bytes. Selenium scraped the most data

across the test environments, with the Azure Cloud Platform scraping the most data.

Table 3

AWS Linode Azure Local Avg

Wget

686666 692695 689466 692454 690,320

URLLib

395411 400706 393274 398333 396,931

Requests

817680 820099 836345 844986 829,777

Selenium

1241046 1156664 1297043 1268101 1,240,714

Pypetteer

987543 928059 1017541 974151 976,823

HTTPLib2

390049 402317 395092 400780 397,059

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Efficacy Rate by Test Environment

AWS Linode Azure Local Avg

25

Figure 16

The average data downloaded test carried out on the control group sample size of twenty (20)

of 100% efficacy items revealed the following amount of data in bytes:

Table 4

AWS Linode Azure Local Avg

Wget

1,064,858 1,057,605 1,039,545 1,036,242 1,049,562

URLLib

517,471 521,664 523,658 517,591 520,096

Requests

1,015,049 1,017,713 1,029,811 1,022,979 1,021,388

Selenium

1,221,486 1,225,528 1,319,228 1,216,861 1,245,776

Pypetteer

1,163,007 1,143,877 1,219,537 1,133,833 1,165,064

HTTPLib2

517,446 521,304 523,783 517,500 520,008

Figure 17

0

200000

400000

600000

800000

1000000

1200000

1400000

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Average Data (More is Better) by Test
Environment

AWS Linode Azure Local

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Average Data (More is Better) - Control
Group

AWS Linode Azure Local

26

6.3 Total Average Time Taken

The following table lists the time taken to complete the scraping of the sample URLs across

the different environments. The data was accumulated over a period of five (5) days, all at the

same time, and the average rate is presented in seconds.

Table 5

AWS Linode Azure Local Avg

Wget 16.30 16.31 21.47 21.07 18.79

URLLib 16.30 19.73 19.22 20.27 18.88

Requests 22.98 24.46 21.12 31.55 25.03

Selenium 158.74 240.77 128.92 230.55 189.74

Pypetteer 148.23 230.72 114.37 219.67 178.25

HTTPLib2 20.70 21.23 23.22 28.80 23.49

Figure 18

The timing tests carried out on the control group with a sample size of twenty (20) with 100%

efficacy items revealed the following results measured in seconds:

Table 6

AWS Linode Azure Local Avg

Wget 6.07 5.78 10.89 11.11 8.46

URLLib 7.40 6.34 7.86 9.35 7.74

Requests 10.26 7.50 9.01 12.70 9.87

Selenium 55.82 83.33 54.97 83.32 69.36

Pypetteer 61.10 97.42 53.14 99.46 77.78

HTTPLib2 8.83 10.80 11.98 11.42 10.76

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Time Taken By Method and Test Environment

AWS Linode Azure Local

27

Figure 19

The average time per method, measured in seconds, was calculated by averaging across all test

environments and is as follows:

Figure 20

6.4 Network Latency

The following table shows the average ping values recorded for each of the test environments

over the measurements. This data can be used in conjunction with the time taken data to

establish is network conditions may have influenced the different methods.

Table 7

M1 M2 M3 M4 M5 Avg

AWS

1.424 1.505 1.47 1.414 1.494 1.4614

Linode

0.831 0.863 0.844 0.872 0.85 0.852

Azure

2.424 2.412 2.387 1.647 1.501 2.0742

Local

2.145 2.136 2.253 2.264 2.224 2.2044

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Average Time on Control Group

AWS Linode Azure Local

0.00

20.00

40.00

60.00

80.00

100.00

Wget URLLib Requests Selenium Pypetteer HTTPLib2

Average Time by Method

28

Figure 21

We can see that each test environment has quite low latency, with Linode coming in with the

lowest ping latency. This metric is an overview, and better relevance to the ‘time taken’ test

would be gained by recording the latency to each of the target URLs in the sample to evaluate

any correlation between network latency and time taken to complete. As it stands based on the

data of the experiment, we can say that the low ping latency measured against the Google DNS

servers has no direct correlation to low time taken for completion of each of the methods. The

correlation co-efficient for time-taken by test environment and latency by test environment is :

-0.083966527.

Figure 22

0 0.5 1 1.5 2 2.5 3

M1

M2

M3

M4

M5

Average Ping (Lower is Better)

Local Azure Linode AWS

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ping / Time Taken - Control Group

Ping Time Taken

29

6.5 Web Scraper Methodology Evaluation

In evaluating the proposed forensic web scraper, the web scraper was run over a number of

different online vendors over a period of time with successful results and a large amount of

parsed pricing data. Using the test vendor for this research, the site was scraped 88 times,

with two URLs each time. The data was parsed and produced 3556 lines of pricing

information.

Figure 23

6.6 Discussion

The efficacy rate across the four platforms shows that the Wget method is the least effective at

70% when compared with the most effective method which is Selenium with an average

efficacy of 99.6%. Using efficacy as a primary metric, the Wget method should not be used or

recommended as a web scraping solution. Other methods such as

The data shows that the Selenium method returns the most data, with an average of 1,240,714

bytes. The method which returned the least data on average was the URLLib method with an

average of 396,931 bytes, which was very similar to the HTTPLib2 method.

With the HTTPLib2 and URLLib methods we can see that the methods make a HTTP request

for HTML code, which in a successful case is returned. This HTML web page code does not

include any data or code which is generated by JavaScript scripts in the code. The method does

not call these scripts or obtain the results of them. Depending on the website architecture, this

may be adequate to achieve successful price scraping, however with more complex web page

coding and architecture, the pricing information can often be retrieved from back-end or server-

side databases (often linked to stock control and other systems) and rendered to the web page.

In evaluating these two methods, we see a difference in efficacy between the two, with

HTTPLib2 being the more effective. The requests method is a decent performer in terms of

efficacy, average data downloaded, and time taken.

However, when the high efficacy of the Selenium method is taking into consideration with the

higher amount of data, we can see that Selenium is the preferred method for web scraping

among any of the Python methods shown. The Pyppeteer method comes close, and utilises a

similar methodology for rendering JavaScript content, but obtains less average data including

30

in the control group, has slightly lower efficacy and does not perform significantly faster. The

Pyppeteer library is also a Java port and not as well supported as Selenium.

The price for the increased efficacy and data acquisition due to the use of the webdriver is that

it takes longer and uses more memory during the process. The fastest method shown was Wget

with an average of 18.79 seconds. The other HTML scrapers; URLLib, Requests and

HTTPLib2 were also similar. The control group shows that the URLLib method was faster

than the Wget method, indicating that efficacy was an influencing variable in the real-world

test. The correlation co-efficient with ping average times measured against time taken on the

control group is -0.084.

The time taken for the methods in the real-world and control group testing show that Selenium

and Pypetteer are much slower than the other methods, and this can be accounted for due to

use of web drivers and real web browsers to render the pages, however when considering an

automated and forensic web scraping methodology the most important metric would logically

be the efficacy and completeness of the data along with the forensic component. More work

could be done measuring any correlation between network latency and the time taken for each

method to complete. As it stands, evaluating the data with latency measured by pinging Google

servers at the time of the scraping, there doesn't appear to be a correlation between latency and

time taken in the control group using the sample size. There is a strong correlation (+0.68) in

the control group between the average data downloaded and the amount of time taken, which

is what we would expect.

There were no significant differences in efficacy or average data downloaded across the test

environments, however when looking at the time taken, particularly in the control group results,

we can see some differences, with Azure and AWS test environments showing a significant

lower time taken than the Linode or local VM environments when evaluating the Selenium and

Pyppeteer methods. In evaluating whether the use of cloud platforms is advisable we can see

very slight differences in efficacy across them. The use of cloud platforms for IaaS

(infrastructure as a service) will by definition mean that the network infrastructure

configuration is managed by the CSP and may have a slight bearing on returns. There is also

the possibility that cloud IP address ranges may be blacklisted by website cybersecurity

services.

To summarise, the findings of the comparison experiment show that the Selenium method is

the best for efficacy and average data downloaded. There is a strong correlation between the

average data downloaded and the amount of time taken, but no correlation between ping times

and amount of time taken, and that cloud environments are as viable as local virtual machines

or servers.

31

7 Conclusion and Future Work

This research has proposed a methodology for automated forensic web scraping of pricing

information. This objective was successfully achieved by use of a comparison script, a

downloader script and a parser script.

7.1 Comparison Experiment

A successful experiment using controlled conditions and the scientific method was used to

carry out a comparison of different Python methods.

The experiment to test the efficacy and efficiency of the six methods across cloud and

virtualised local environments shows that there are notable differences in the results. The

methods were evaluated only insofar as having a scientific basis to recommend the proposed

methodology. The Selenium library with its use of webdriver technology to control a real web

browser is shown to be the best methodology to scrape data from web sites. It has the highest

efficacy and the highest amount of data scraped per site, compared to older traditional HTTP

requests for code.

The experiment also showed that the cloud environments are absolutely a viable platform for

running these scripts, particularly for running the downloader. The Amazon Web Services

(AWS) platform seemed to be the slightly better choice in terms of efficacy. The Local VM

proved to be a problem and had sporadic fails in the efficacy for unknown reasons. The layers

of complexity and variables introduced in using a VMWare virtual machine on a Windows 11

host should have been avoided and a Type-1 hypervisor used instead, either a Microsoft Hyper-

V hypervisor or a Proxmox hypervisor would produce more stable results in line with the cloud

test environments. The final web scraper downloader was tested on a Type-1 hypervisor

(Proxmox) and did not show any of the efficacy or timing issues of the Local VM.

7.2 Downloader

A successful methodology and working script for the forensic acquisition of web page data was

developed and shown to work. The web pages were captured for an extended period without

any issues and MD5 hash values for each download were retained. These hash values were

checked and found to be correct. This would enable any digital forensic specialist to stand over

the downloaded page and the subsequent output from the parser.

More work could be done on the proposed methodology for the downloader to account for

pagination and lists of products. This is possible to integrate with the Selenium method used,

but due to time constraints on this research it was not implemented.

32

More work can be done on the scalability of the proposed methodology as the webdriver

solution can use server RAM depending on the size of the pages. This memory usage is

mitigated by closing pages in the webdriver once they are acquired, and in testing this did not

appear to be an issue once the script reached the stage of closing the pages. Under anomalous

conditions, however, the script may not complete properly, which is why the bash script

contains housekeeping such as killing rogue chrome processes or python processes after

running each day.

There is scope for future research into the content returned by each of the methods, as the

results showed differences in the webpage content size depending on the method used to

scrape.

7.3 Parser

The parser script successfully read the JSON configuration file and produced a useful output

in TSV format. The JSON configuration file is a solution that can enable new web sites and

DOM models to be easily added to the parser, based on the root address of the web site.

The running of the parser script was not tested on a cloud platform, as it would be

recommended to run the parser on a machine with more computational resources and RAM

than that needed for the downloader. Cloud platforms could be used but traditionally could be

expensive for computation when compared to a local computer or virtual machine. No timing

tests were carried out on the parser, and there would likely be room for optimisation and testing

there. The time constraints prevented this avenue from being fully explored.

7.4 Future

The future of web scraping will likely utilise artificial intelligence (AI). When examining the

methodology, the most obvious area for AI to operate will be on the JSON configuration for

the parser. This is currently a manual process, whereby a human is required to examine the

web page source code and input the DOM tags into a JSON configuration file. Changes to the

website architecture and DOM can result in previous configurations no longer parsing the

correct data, which could be more effectively dealt with by way of an AI component or

application programming interface (API) integration with this methodology.

Other future challenges to web scraping may present themselves with Web 3.0 when the

architecture of the web changes, and the methodology for efficient and effective web scraping

of online data may change. However, as it stands the outlined methodology in this research is

a robust and modular approach that can present a good amount of agility since the core

methodology involves downloading and retaining the source material. This will provide good

resilience to different parsing rules.

33

References

Chapagain, A. (2019) Hands-On Web Scraping with Python: Perform advanced scraping

operations using various Python libraries and tools such as Selenium, Regex, and others.

Packt Publishing Ltd.

De S Sirisuriya, S.C.M. (2015) ‘A Comparative Study on Web Scraping’. Available at:

http://ir.kdu.ac.lk/handle/345/1051 (Accessed: 21 July 2023).

Diouf, R. et al. (2019) ‘Web Scraping: State-of-the-Art and Areas of Application’, in 2019

IEEE International Conference on Big Data (Big Data). 2019 IEEE International Conference

on Big Data (Big Data), pp. 6040–6042. Available at:

https://doi.org/10.1109/BigData47090.2019.9005594.

Farley, E.J. and Pierotte, L. (2017) ‘Web Scraping’.

Fielding, R. et al. (1999) ‘RFC2616: Hypertext Transfer Protocol–HTTP/1.1’. RFC Editor.

Harrington, J.E. (2006) ‘Behavioral screening and the detection of cartels’, European

competition law annual, pp. 51–68.

Jha, P. et al. (2014) ‘Robots exclusion protocol’, Internation journal of emerging science and

engineering, 2(5).

Khder, M. (2021) ‘Web Scraping or Web Crawling: State of Art, Techniques, Approaches

and Application’, International Journal of Advances in Soft Computing and its Applications,

13(3), pp. 145–168. Available at: https://doi.org/10.15849/IJASCA.211128.11.

Lawson, R. (2015) Web Scraping with Python. Packt Publishing Ltd.

Milev, P. (2017) ‘Conceptual approach for development of web scraping application for

tracking information’, Economic Alternatives, 3, pp. 475–485.

Nyamathulla, S., Ratnababu, P. and Shaik, N.S. (2021) ‘A Review on Selenium Web Driver

with Python’, Annals of the Romanian Society for Cell Biology, pp. 16760–16768.

Prayudi, Y. and Sn, A. (2015) ‘Digital chain of custody: State of the art’, International

Journal of Computer Applications, 114(5).

Roussev, V. (2009) ‘Hashing and data fingerprinting in digital forensics’, IEEE Security &

Privacy, 7(2), pp. 49–55.

Upadhyay, S. et al. (2017) ‘Articulating the construction of a web scraper for massive data

extraction’, in 2017 Second International Conference on Electrical, Computer and

Communication Technologies (ICECCT). 2017 Second International Conference on

Electrical, Computer and Communication Technologies (ICECCT), pp. 1–4. Available at:

https://doi.org/10.1109/ICECCT.2017.8117827.

34

Uzun, E. (2020) ‘A Novel Web Scraping Approach Using the Additional Information

Obtained From Web Pages’, IEEE Access, 8, pp. 61726–61740. Available at:

https://doi.org/10.1109/ACCESS.2020.2984503.

Vidya, V., Saly, K. and Balan, C. (2022) ‘Forensic Acquisition and Analysis of Webpage’, in

2022 2nd International Conference on Intelligent Technologies (CONIT). 2022 2nd

International Conference on Intelligent Technologies (CONIT), pp. 1–6. Available at:

https://doi.org/10.1109/CONIT55038.2022.9848303.

Zheng, C., He, G. and Peng, Z. (2015) ‘A Study of Web Information Extraction Technology

Based on Beautiful Soup.’, J. Comput., 10(6), pp. 381–387.

